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Abstract: A rich representation is key to general robotic manipulation, but exist-1

ing approaches to learn one require a lot of multimodal demonstrations. In this2

work we propose PLEX, a transformer-based architecture that learns from a small3

amount of task-agnostic visuomotor trajectories accompanied by a much larger4

amount of task-conditioned object manipulation videos —- a type of data that is5

available in quantity. The key insight behind PLEX is that visuomotor trajectories6

help induce a latent feature space and train a robot to execute task-agnostic ma-7

nipulation routines, while diverse video-only demonstrations can efficiently teach8

the robot how to plan in this feature space for a wide variety of tasks. In con-9

trast to most works on robotic manipulation pretraining, PLEX learns a generaliz-10

able sensorimotor multi-task policy, not just an observational representation. We11

also show that using relative positional encoding in PLEX’s transformers greatly12

helps PLEX in low-data regimes when learning from human-collected demonstra-13

tions. Experiments showcase PLEX’s generalization on Meta-World benchmark14

and SOTA performance in challenging Robosuite environments.15

Keywords: Robot learning, Robotic manipulation, Visuomotor representations16

1 Introduction17

The use of transformers [1] has lead to breakthroughs in training large-scale general-purpose repre-18

sentations for computer vision (CV) and natural language processing (NLP) [2], enabling zero-shot19

adaptation and fast finetuning [3]. At the same time, despite impressive progress, transformer-based20

representations haven’t shown the same versatility for robotic manipulation. Some attribute this gap21

to the lack of suitable training data for robotics [3]. We argue instead that data relevant to training22

robotic manipulation models is copious but has important structure that most existing training meth-23

ods ignore and fail to leverage. These insights lead us to propose a novel transformer-based model,24

called PLEX, that is capable of zero-shot adaptation and effective finetuning thanks to being tailored25

to the realities of robotic manipulation data.26

We observe that robotics-relevant data falls into three major categories. (1) The most plentiful27

category is comprised of “in-the-wild” video datasets [4–6]. Some of them, e.g., Epic Kitchens [7,28

8], focus on object manipulation. In aggregation, these datasets cover an immense variety of tasks29

and are typically annotated with activity descriptions but contain no explicit action information for30

a robotic to mimic. (2) The second category consists of matching sequences of percepts and actions.31

In some datasets of this type, these sequences don’t correspond to meaningful task and are generated32

by a scripted exploration policy [9]. In others, they come from well-defined tasks, but even in the33

largest such datasets, e.g., [10], the task coverage is modest compared to video-only data such as [6].34

Nonetheless, these sensorimotor sequences capture valuable correlations between a robot’s actions35

and changes in the environment. (3) The third data category, the scarcest one, consists of high-36

quality demonstrations for a target task in a target environment. Thus, a scalable model architecture37
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for robotic manipulation must be able to learn primarily from videos, while being extra data-efficient38

on sensorimotor training sequences and the available demonstrations from the target environment.39

PLEX, the PLanning-EXecution architecture we propose, achieves exactly that. A PLEX model40

has two major transformer-based components: (I) a task-conditioned observational planner that,41

given a task specification and an estimate of the current world state, determines the next state to42

which the robot should attempt to transition, and (II) an executor that, having received the desired43

next state from the planner, produces an action that should lead there from the current state. The44

executor is trained by optimizing an inverse dynamics loss over exploratory sensorimotor data of the45

aforementioned category (2), while the planner is trained by minimizing a loss of its autoregressive46

predictions computed with respect to video-only trajectories of category (1). The target-task data of47

category (3) can be optionally used to efficiently finetune the planner, the executor, or both.48

We make three design choices that greatly help the data efficiency of PLEX’s training:49

• Learning to plan in the observation embedding space. Rather than generating videos of proposed50

task execution using, e.g., stable diffusion as in Du et al. [11], PLEX learns to plan and execute in51

the low-dimensional space of observation embeddings.52

• Asymmetric learning of the embedding space. The space in which the executor and the planner op-53

erate is induced either by a pretrained frozen feature-rich observation encoder, such as R3M [12],54

or by the executor’s training loss only. Keeping the planner’s gradients from entering observation55

encoders makes training significantly cheaper and removes the risk of latent space collapse.56

• Relative positional encodings. We adopt the relative positional encodings [13] in PLEX. We em-57

pirically show that in robotic manipulation the relative positional encodings significantly improve58

training efficiency from human-collected data compared with the absolute positional encodings [1]59

commonly used in the literature on transformers.60

Most approaches that use video-only demonstrations for pretraining in robotic manipulation pro-61

duce purely visual representations (see, e.g., [12, 14–16]). The majority of algorithms that produce62

sensorimotor models need most or all of the video demonstrations to be accompanied by action63

sequences that generated the videos, a requirement that holds only for a small fraction available64

manipulation data [10, 17–22]. Few approaches have a dedicated trainable planning component;65

e.g. [21, 23–26] plan in a skill space, which PLEX can be modified to do as well. Conceptually,66

PLEX falls under the paradigm of learning from observations (LfO), but existing LfO approaches67

don’t have multitask zero-shot planning capability [27–30] or demostrate it only in low-dimensional68

environments across similar tasks [31]. Of the works that have used transformers for robotic ma-69

nipulation [20, 22, 26, 32, 33], only Brohan et al. [22] have analyzed their data efficiency, and none70

have looked at positional embeddings as a way to improve it. Overall, the closest approach to PLEX71

is the concurrently proposed UniPi [11]. It also has counterparts of PLEX’s planner and executor,72

but its planner operates using diffusion in the image space [5], which is expensive both datawise and73

computationally, and may fail to model manipulation-relevant 3D object structure consistently [5].74

A more extensive discussion of prior work is provided in Appendix A.75

We experimentally show that PLEX’s planner-executor design can effectively exploit the structure76

of realistically available robotic manipulation data to achieve efficient learning. On the multi-task77

Meta-World [34] benchmark, despite pretraining mostly on video data, PLEX exhibits strong zero-78

shot performance on unseen tasks and can be further improved by finetuning on a small amount of79

video-only demonstrations. We empirically show on the challenging Robosuite/Robomimic [35, 36]80

benchmark that, contrary to conclusions from NLP [13], the use of relative positional encodings81

significantly improves the data efficiency of PLEX learning from human-collected demonstrations.82

2 Problem statement and relevant concepts83

2.1 Problem statement84

We consider the problem of learning a generalist task-conditioned policy for goal-directed object85

manipulation. Namely, we seek a policy that can control a robotic manipulator to successfully86
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accomplish tasks that the robot may not have encountered during the policy training process; such a87

policy formally can be viewed a solution to a task-conditioned partially observable Markov decision88

process (POMDP) described in Appendix B. In practice, learning a generalist policy that performs89

well on a broad distribution of tasks zero-shot is very challenging, as the coverage and amount90

of publicly available training data are limited. Therefore, in this work we consider a two-phased91

learning process: (1) pretraining, during which a generalist policy is trained, and (2) finetuning,92

during which this policy is adapted to a target task.93

2.2 Data for training robotic manipulation models94

We consider three broad groups of datasets relevant to training robotic manipulation systems:195

Multi-task video demonstrations (Dmtvd). Being the most abundant category, it comprises data96

collections ranging from general YouTube videos to curated benchmarks such as Ego4D [6], Epic97

Kitchens [7, 8], and YouTube-8M [4] showing an agent – either a robot or a person – performing a98

meaningful object manipulation task with an end-effector. This data contains demonstration-quality99

sequences of video observations and descriptions of tasks they accomplish, but not the action se-100

quences whose execution generated these videos.101

Visuomotor trajectories (Dvmt). These trajectories consist of paired sequences of observations and102

robots’ actions. Although some of them may be high-quality demonstrations of specific tasks, e.g.,103

as in the Bridge Dataset [10], many of these trajectories are generated by activities that most people104

will not find meaningful, e.g., grabbing random objects in a tray, as in the RoboNet [9]. Since no105

strong quality, quantity, or task association requirements are imposed on Dvmt data, it is relatively106

easy to collect for any target embodiment and environment.107

Target-task demonstrations (Dttd). This is the most scarce but also most desirable data category,108

since it encompasses high-quality trajectories for a specific task in question, ideally collected on the109

target embodiment (robot). Note, however that we don’t require that these demonstrations be visuo-110

motor. In fact, our experiments show that PLEX needs only video demonstrations for finetuning to111

learn a high-quality policy for a target task.112

A key data assumption we make in this work is that |Dttd| ≪ |Dvmt| ≪ |Dmtvd|.113

2.3 Transformers and positional encodings114

A transformer-based architecture consists of several specially structured self-attention layers and,115

in general, maps an input set (often called a context) of K elements (called tokens) to an output116

of the same size K [1]. In most applications, such as language translation, transformers need to117

map ordered sets (i.e. sequences) to other ordered sets, and therefore add special vectors called118

positional encodings to each input element to identify its position in a sequence. These encodings119

can be learned as part of transformer’s training or be hand-crafted.120

The most common scheme is the absolute positional encoding, where each position in the trans-121

former’s K-sized context gets a positional vector [1]. Some transformers, e.g., Chen et al. [37], use122

what we call a global positional encoding. It is similar to the absolute one, but assigns a separate123

vector to each position in the entire input sequence rather than just the K-sized context, up to some124

maximum length T ≫ K. Finally, models based on Transformer-XL [13, 20, 22], instead condition125

the attention computation on the relative positions between different pairs of input tokens within126

a context. In this work, we argue that on robotic manipulation finetuning datasets that consist of127

small numbers of human-gathered demonstrations, relative positional encoding is significantly more128

data-efficient than absolute or global one.129

3 PLEX architecture and training130

3.1 Intuition131

1Static image datasets, e.g., ImageNet, aren’t treated by PLEX in a special way and we don’t discuss it here,
but can be used to pretrain PLEX’s image encoders.
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Figure 1: PLEX architecture. PLEX is optimized
using the planner’s loss LPL (computation shown with
black arrows ↑), and the executor’s loss LEX (compu-
tation shown with gray arrows ↑). The symbols ‘=’
and ‘=’ denote stopgrads, where backpropagation is
halted. Each input modality m is embedded using a
modality-specific encoder ϕm. Video demonstration
embeddings g̃, Ĩ1:T , and (optionally) R̃1:T are used to
train the planner with the prediction loss LPL in the
embedding space. Visuomotor trajectory embeddings
Ĩ1:T , p̃1:T , ã1:T are passed to the executor to compute
the inverse dynamics loss LEX . Note that if the image
encoder ϕI isn’t frozen, LEX ’s gradients will update
ϕI . In contrast, the planner’s own loss LPL never af-
fects ϕI (see stopgrad symbol =).

PLEX (shown in Figure 1) separates the model132

into two transformer-based submodules: 1) a133

planner that plans in the observation embed-134

ding space based on a task specification, and135

2) an executor that takes the embeddings of136

the historical and the planned future observa-137

tions and outputs an action to control the robot.138

This design is motivated by structures of Dmtvd,139

Dvmt, and Dttd dataset categories, which as we140

explain below make them suitable for three141

complementary learning objectives.142

1. Learning to execute state transitions. The143

visuomotor trajectories from Dvmt, collected144

on the target robotic manipulator or a145

similar one, show the robot how to ex-146

ecute a wide variety of state transitions.147

By sampling an observation-action tuple148

⟨ot−H , . . . , ot, at, ot+L⟩, the agent can learn149

to infer at from ot−H , . . . , ot, and ot+L us-150

ing inverse dynamics, where t is the cur-151

rent time step, H is an observation history152

length, and L is a lookahead parameter.153

2. Learning to plan for tasks. In order to154

recommend a meaningful action at each155

step, inverse dynamics inference needs the156

(embedding of) the desired future observa-157

tion. Determining the desired future obser-158

vation given a task description is something159

that can be learned from multi-task video-160

only data Dmtvd, since this data shows what161

progress towards a successful completion of162

a specified task should look like.163

3. Improving target-task performance.164

While learning to plan and execute on165

diverse Dmtvd and Dvmt data can result in a166

robotic manipulation foundation model [3]167

with strong zero-shot performance, on many168

tasks it may be far from perfect. Small169

datasets Dttd of high-quality target-task demonstrations (e.g., through teleoperation) can provide170

additional grounding to the target domain to further improve a pretrained model.171

3.2 Architecture172

Following the above intuitions, we train PLEX’s executor using data Dvmt and PLEX’s plan-173

ner using data Dmtvd, in addition to a small dataset Dttd of target-task trajectories (which,174

if available, can be used to train both the planner and executor). Specifically, let τ =175

g,R1, I1, p1, a1 . . . , RT , IT , pT , aT = g,R1:T , I1:T , p1:T , a1:T denote a trajectory, where g is a176

task specification, It is a tuple of camera image observations, pt is a proprioceptive state, at is an177

action, and Rt is a return-to-go at time t; the length T can vary across trajectories. As Figure 1178

shows, PLEX processes these input modalities using corresponding encoders ϕg , ϕI , ϕp, ϕa, and179

ϕR to obtain an embedded sequence g̃, R̃1:T , Ĩ1:T , p̃1:T , ã1:T . When a modality is missing, it is180

replaced by trainable placeholder vectors during embedding. Missing modalities are common in181

robotic manipulation datasets; e.g., few datasets have rewards. Since PLEX’s executor and planner182
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are designed to be trainable on task-agnostic visuomotor Dvmt data and task-conditioned video-only183

demonstrations Dmtvd, respectively, each of these components is specialized to operate only on the184

(embeddings of) modalities available in their prevalent training data. In particular, per Figure 1, task185

description and return embeddings g̃ and R̃1:T don’t get routed to the executor, since they are miss-186

ing from Dvmt data. Similarly, the planner only receives g̃, Ĩ1:T and, optionally, R̃1:T embeddings,187

since they are present in Dmtvd data. This separation holds even at the deployment time, when the188

trajectory generated by the robot has all modalities.189

Planner The planner’s sole purpose is to determine where the agent should go in the observation190

embedding space. As shown in Figure 1, given embeddings g̃, Ĩ1:T of a task-conditioned video-only191

training demonstration, the planner outputs a sequence ÎL:T+L of embeddings corresponding to the192

observations the agent should ideally see L steps in the future from its current time step; L is a193

hyperparameter. The planner’s training minimizes the prediction loss194

LPL(g̃, R̃1:T , Ĩ1:T ) =
∑T+L

t=1+L ∥Ĩt − Ît∥22. (1)

where we set Ĩt = ĨT for t = T + 1, ..., T + L.195

Crucially, LPL’s gradients don’t backpropagate into the encoders ϕg and ϕI , to prevent representa-196

tion collapse of the image embedding space (denoted as Eo); note the stopgrad symbols on LPL’s197

computation paths in Figure 1. The embedding space Eo either comes from pretrained and frozen198

encoders or is learned along with inverse dynamics during executor training.199

Executor Like the planner, the executor has a specific role at the deployment time. Given the200

observation-action sequence o1:t, a1:t so far, as well as the target observation embedding Ît+L pro-201

duced by the planner, the executor infers an action ât for the current step. The executor should do202

this in a task-agnostic way, as the knowledge of the task is already incorporated by the planner into203

the Ît+L prediction. For an input trajectory from Dvmt, we optimize the executor via the inverse204

dynamics loss205

LEX(I1:T , p1:T , Î1+L:T+L, a1:T , ) =
∑T−1

t=1 ∥at − ât∥22 (2)

A major difference between LEX and LPL optimization is that the former’s gradients can backprop-206

agate into the encoders ϕI , ϕo, ϕp, and ϕa: the computation path for LEX through these encoders207

in Figure 1 doesn’t have a stopgrad. This allows executor training to shape the embedding space Eo.208

Relative positional encoding Like the Decision Transformer (DT) [37], PLEX’s planner and ex-209

ecutor transformers are derived from GPT-2. However, DT’s use of global positional encoding210

implicitly assumes that all training trajectories have the same length T . PLEX, in contrast, uses rel-211

ative encoding from Dai et al. [13] as the default. As we show empirically, in robotic manipulation212

settings where tasks are usually goal-oriented and training demonstrations vary a lot in length, global213

positional embedding performs poorly and even the fixed absolute positional encoding common in214

NLP [1] performs much better. Especially, for human-collected demonstrations where variability is215

significant, our experimental results show that relative encoding [13] perform significantly better.216

3.3 Training PLEX217

Training PLEX generally involves both pretraining and finetuning, though the experiments in Sec-218

tion 4.2 show that pretraining alone already gives PLEX solid zero-shot performance.219

Pretraining PLEX consists of two sub-stages:220

1. Pretraining the executor by optimizing the LEX loss (Equation (2)) over a Dvmt dataset.221

2. Pretraining the planner by optimizing the LPL loss (Equation (1)) over a Dmtvd dataset.222

If the observation encoders are expected to be trained or finetuned by the inverse dynamics loss223

LEX , rather than pretrained and frozen beforehand, it is critical for executor pretraining to be done224

before training the planner. Indeed, the planner is expected to make predictions in the observation225

encoders’ embedding space, which will change if the inverse dynamics loss affects the encoders. If226

the encoders are frozen from the start, however, the pretraining stages can proceed asynchronously.227
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Figure 2: PLEX’s generalization experiments. The confidence intervals are computed with 10 seeds.

Finetuning involves adapting PLEX using a target-task demonstration dataset Dttd. As with any228

finetuning, this involves deciding which part of PLEX to adapt.229

Since Dttd can be viewed both as a small Dmtvd and a small Dvmt dataset, it can be used to train230

any component of PLEX—executor, planner, and observation encoders. As with pretraining, if Dttd231

is used for finetuning the encoders, it is critical to complete their finetuning before finetuning the232

planner. In Section 4.2, we show that finetuning just the last layer of the planner’s transformer,233

which constitutes 5% of the parameters of the PLEX instance in the experiment, is sufficient for234

significantly boosting a pretrained PLEX’s performance.235

Dttd can also be employed for optimizing a behavior cloning loss LBC , which is equivalent to a236

stopgrad-free version of LEX , whose gradients are allowed to backpropagate through the entire237

PLEX model, including the planner and/or the encoders. The experiments in Section 4.3 demon-238

strate the efficiency of BC-based finetuning thanks to the use of a relative position encoding.239

4 Experiments240

We conduct two sets of experiments to answer the following questions: (i) Does PLEX pretrained241

on task-agnostic sensorimotor data and task-annotated video data generalize well to downstream242

tasks? (ii) How does the use of relative positional encodings affect PLEX’s policy quality? Ap-243

pendix C provides the details about our PLEX implementation.2244

4.1 Benchmarks and training data245

Meta-World: Meta-World [34] is a collection of 50 tasks featuring a Sawyer arm. We use Meta-246

World-v2 with image observations (see details in Appendix D.1). We consider the ML50 split247

consisting of 45 training and 5 target tasks (door-lock, door-unlock, hand-insert, bin-picking, and248

box-close). We use these 5 target tasks for evaluation. Meta-World comes with high-quality scripted249

policies for all tasks. To get video demonstration data (Dmtvd), we use these scripted policies to250

generate 100 successful video-only demonstrations for each of the 45 training tasks, i.e., |Dmtvd| =251

4500. To generate visuomotor trajectories (Dvmt), for the 5 target tasks’ environments, we add zero-252

mean Gaussian noise with standard deviation 0.5 to the actions of the scripted policies and record253

the altered actions. We collect 50 trajectories per task, i.e., |Dvmt| = 250. Finally, for target-task254

demonstrations (Dttd), we employ the original scripted policies to produce 75 demonstrations per255

target task and sample 10 of them in a finetuning experiment run, i.e., |Dttd| = 10.256

Robosuite: Robosuite benchmark [35], compared Meta-World, has robotic manipulation tasks with257

a significantly more complicated dynamics and action space. We use 9 of its tasks involving a258

single robot arm (Panda) (Lift, Stack, Door, NutAssemblyRound, NutAssemblySquare, PickPlace-259

Bread PickPlaceCan, PickPlaceMilk, and PickPlaceCereal). Robosuite’s details are provided in260

Appendix D.1. Importantly, the training data for Robosuite was collected from human demonstra-261

tions, not generated by scripted policies as in Meta-World. See Appendix D.4 for details.262

4.2 Generalization experiments263

In these experiments, we focus on pretraining PLEX with multi-task Meta-World data. The results264

are shown in Figure 2. We train a 16,639,149-parameter PLEX instance (including the ResNet-18-265

based image encoder) from scratch with random initialization. We use the success rate on the 5 target266

2We implement PLEX using the GPT-2 of the DT codebase [37] but without return conditioning.
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tasks as the performance metric. For baselines, we experiment with PLEX with a frozen ResNet-267

50-based R3M [12], an observational representation pretrained on the large Ego4D dataset [6]. We268

denote it as PLEX +R3M. In addition, we use an adapted Learning from Play (LfP) approach [17].269

The hyperparameters and details can found Appendices C and D. In summary, the experimental270

results show that PLEX can perform well without seeing a single sensorimotor expert demonstration271

during pretraining and finetuning.272

PLEX demonstrates strong zero-shot performance We show that PLEX pretrained on as few273

as 4500 video demonstrations (Dmtvd) from the training environments and 250 dynamics trajectories274

(Dvmt) from the target environments (denoted as Pretr. PLEX, zero-shot in Figure 2) exhibits good275

downstream performance zero-shot. To show this performance is really due to planning learned from276

video-only data as opposed to the executor inadvertently exploiting biases in the data, we consider277

a PLEX variation (denoted as Pretr. EX only, zero-shot), where we only pretrain the executor (on278

Dvmt) not the planner.3 The results of Pretr. EX only, zero-shot shows the baseline performance279

one can get with knowledge in the dynamics data Dvmt alone. We see Pretr. EX only, zero-shot280

underperforms Pretr. PLEX, zero-shot, which shows the importance of learning from Dmtvd via the281

PLEX’s planner. As a baseline, we also report Learning from Play performance, which is in the282

middle of the two PLEX models above. This is expected: LfP has planning capability and therefore283

outmatches Pretr. EX only, zero-shot; however, LfP doesn’t use either the video-only data Dmtvd or284

the target-task demonstrations Dttd, the ability to utilize which gives PLEX a large advantage.285

PLEX can fast adapt to samll video-only demonstrations We further show that finetuning only286

5% of PLEX’s parameters (the last transformer layer of the planner) on just 10 video-only demon-287

strations for a given task significantly boosts PLEX’s success rate there. For all 5 downstream tasks,288

this policy outperforms Pretr. EX only, zero-shot by ≥ 2×. The improvement is drastic especially289

in the case of hand-insert-v2, bin-picking-v2, and box-close-v2.290

Video-only demonstrations is all PLEX needs during finetuning Interestingly, we find that full291

demonstrations (with both video and action sequences) don’t increase PLEX’s performance beyond292

video-only ones. This can seen from the experimental results of Pretr. PLEX, ft. on 10 full demos,293

where we finetune PLEX (the action head and last transformer layer of PLEX’s planner, executor;294

≈ 11% of PLEX) on 10 full (sensorimotor) demonstrations for each task. We think this is due to295

PLEX’s image encoder being pretrained only on observations from Dvmt and frozen during fine-296

tuning. Because of this, finetuning couldn’t help the encoder learn any extra features for modeling297

inverse dynamics over the observation space region covered by Dttd, even if such features would298

improve PLEX’s performance.299

The issue of impoverished observation coverage in Dvmt dataset can be addressed by using a frozen300

encoder pretrained on an independent large dataset, as the results of single-task PLEX +R3M, BC301

and of pretrained PLEX +R3M in Figure 2 suggest. There, PLEX’s R3M encoder was never trained302

on any Meta-World observations but enables PLEX to perform reasonably well. This experiment303

also shows two other aspects of using observation-only representations like R3M: (1) The senso-304

rimotor representation that PLEX learns on top of R3M clearly helps generalization — pretrained305

PLEX +R3M performs much better than the single-task one, despite seeing just video-only demon-306

strations at finetuning. (2) Fully frozen somewhat R3M limits PLEX’s performance – PLEX that307

pretrained its own encoder outperforms PLEX +R3M on 3 of 5 tasks.308

4.3 Positional encoding experiments309

In the Meta-World experiments, all training data was generated by scripted policies. In real settings,310

most such data is generated by people teleoperating robots or performing various tasks themselves.311

A hallmark of human-generated datasets compared to script-generated ones is the demonstration312

variability in the former: even trajectories for the same task originating in the same state tend to be313

different. In this section, we show that in low-data regimes typical of finetuning on human-generated314

3At run time we feed the embedding of the task’s goal image as the predictions that the executor conditions
on (since no planner is trained).
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Figure 3: Data efficiency of PLEX’s relative positional encoding in single-task mode on Robosuite’s
single-arm tasks with |Dttd| varying from 5 to 75. PLEX (with relative encodings) in most cases
significantly outperforms and at worst matches the performance of its version PLEX-abs with ab-
solute positional encodings. Both versions significantly outperform DT.

demonstrations, PLEX with relative positional encoding yields superior policies for a given amount315

of training data than using absolute encoding. The results are in Figure 3.316

Baselines, training and evaluation protocol. To analyze data efficiency and compare to prior317

results on Robosuite, we focus on an extreme variant of finetuning – training from scratch. For318

each of the 9 Robosuite tasks and each of the evaluated encodings, we train a separate 36,242,769-319

parameter PLEX instance using only that task’s Dttd dataset of full sensorimotor human-generated320

demonstrations. We compare PLEX with relative positional encoding to PLEX with absolute one321

and to two flavors of the Decision Transformer (DT) [37], which use global positional embedding.322

Appendix D.5 and Figure 3 provide more details about model training dataset collection, and the323

baselines. For each task/dataset size/approach, we train on 10 seeds.324

Results. As Figure 3 shows, PLEX learns strong policies using at most 75 demonstrations, despite325

having to train a 36M-parameter model including randomly initialized vision models for tasks, most326

of which have complex dynamics and broad initial state distributions. Moreover, PLEX with relative327

positional encoding (denoted simply as PLEX in the legend) outperforms the alternatives by as much328

as 20 percentage points (pp) on Robosuite’s human-generated demonstration data while never losing329

to them. In particular, DT-global(+rew) and, especially, DT-global perform far worse of both PLEX330

and PLEX-abs. Since all models share most of the implementation and are trained similarly when331

PLEX and PLEX-abs run in BC mode, we attribute PLEX’s advantage only to the combined effect332

of using human-generated training data and positional encodings. We have also trained PLEX and333

PLEX-abs for Meta-World’s 5 target tasks from the previous experiment for various amounts of the334

available – scripted – demonstrations for these tasks and noticed no significant performance differ-335

ence between PLEX and PLEX-abs on any task. This provides additional evidence that the utility of336

relative positional enconding manifests itself specifically on human-generated demonstration data.337

In fact, relying on relative positional encoding allows PLEX to achieve state-of-the art performance338

on all Robosuite tasks in this experiment, as we show and analyze empirically in Appendix D.4.339

5 Conclusion and limitations340

We have introduced PLEX, a transformer-based sensorimotor model architecture that can be pre-341

trained on robotic manipulation-relevant data realistically available in quantity. Our experimental342

results show that PLEX demonstrate strong zero-shot performance and can be effectively finetuned343

with demonstrations to further boost its performance. In particular, PLEX shows superior perfor-344

mance on human-collected demonstrations because of its usage of relative positional encoding.345

Limitations We believe that PLEX has great potential as a model architecture for general robotic346

manipulation, but in most of our experiments so far, the training data came from the same robot347

on which the trained model was ultimately deployed. In reality, most available multi-task video348

demonstration data Dmtvd is generated by other robots or even people. This can cause a mismatch349

between the demonstrations and the target robot’s capabilities and setups. Planning hierarchically350

first in the skill space as, e.g., in Lynch et al. [38], and then in the observation embedding space may351

address this issue. In addition, so far we have trained PLEX on simulated data. Pretraining it on a352

large or even internet-scale data corpus will be a more conclusive test of PLEX’s capabilities. Also,353

with the rise of powerful LLMs such as Ouyang et al. [39], switching PLEX to language for task354

specification can help it generalize much better across tasks.355
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Appendix524

A Related work525

Our work lies at the intersection of scalable multi-task representation learning for robotic manipula-526

tion, learning from observations, and decision-making using transformers.527

Representation learning for robotic manipulation. Most approaches of this kind focus on pre-528

training purely non-motor, usually visual, representation models (see, e.g., [12, 14, 15, 40, 41], and529

references therein). These models don’t output actions; they are meant to be foundations on top of530

which a policy network is to be learned. Thus, in contrast to PLEX, by themselves they can’t enable531

zero-shot generalization to unseen tasks even in the limit of pretraining data coverage and amount.532

However, they are synergistic with PLEX: PLEX can use them as frozen observation encoders, as533

we show in Section 4.2 on the example of R3M [12].534

Techniques that train sensorimotor models – i.e., full-fledged generalist policies, like PLEX – have535

also been rising in prominence. Some of them [42–44] are based on meta learning [45]. However,536

Mandi et al. [46] have shown multi-task pretraining followed by finetuning to be more effective when537

the task distribution is broad, and several approaches [10, 17–22] follow this training paradigm538

as does PLEX. At the same time, most of them need pretraining data consisting of high-quality539

demonstrations in the form of matching videos and action sequences. While the quality requirement540

can be relaxed using offline RL, as, e.g., in Singh et al. [47], in order to enable generalization across541

broad task distributions these sensorimotor training demonstrations need correspondingly broad task542

coverage. This assumption is presently unrealistic and ignores the vast potential of the available543

video-only data — the weakness PLEX aims to address.544

Among the sensorimotor representation learning methods that, like PLEX, try to learn from both545

video-only and sensorimotor data are Schmeckpeper et al. [48], Lynch and Sermanet [17], and Mees546

et al. [26]. Schmeckpeper et al. [48] consider single-task settings only and require the video-only547

and sensorimotor data to provide demonstrations for the same tasks. Lynch and Sermanet [17]548

and Mees et al. [26] allow the sensorimotor data to come from exploratory policies rather than549

task demonstrations but insist that this data must be generated from meaningful skills, a strong550

assumption that PLEX avoids.551

Architecturally, most aforementioned approaches use monolithic models that don’t have separate552

components for planning and execution like PLEX. Notable exceptions are methods that mine skills553

from pretraining data, embed them into a latent space, and use the latent skill space for accelerated554

policy learning of new tasks after pretraining [21, 23–26]. This is akin to planning in the skill555

space. PLEX can accommodate this approach hierarchically by having, e.g., a CVAE-based high-556

level planning model [38] produce a task-conditioned sequence of skill latents and feeding them into557

a skill-conditioned planning model that will plan in the observation embedding space. However, in558

this work’s experiments, for simplicity PLEX plans in the observation embedding space directly.559

Learning and imitation from observations (I/LfO) I/LfO has been used in robotic manipulation560

both for single-task tabula-rasa policy learning [27, 28] and pretraining [29]. Pathak et al. [29] is561

related to PLEX in spirit but lacks a counterpart of PLEX’s planner. As a result, it can’t complete562

an unseen task based on the task’s goal description alone: it needs either a sequence of subgoal563

images starting at the robot’s initial state or a sequence of landmarks common to all initial states of564

a given task. Beyond robotics, a type of LfO was also employed by Baker et al. [30] and Venuto565

et al. [49] to pretrain a large sensorimotor model for Minecraft and Atari, respectively. This model,566

like Pathak et al. [29]’s, doesn’t have a task-conditioned planning capability and is meant to serve567

only as a finetunable behavioral prior. Xu et al. [31] investigate an LfO method akin to PLEX in568

low-dimensional environments, where it side-steps the question of choosing an appropriate repre-569

sentation for planning, the associated efficiency tradeoffs, and pretraining a generalizable planning570

policy.571
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Overall, the closest approach to PLEX is the concurrently proposed UniPi [11]. It also has a univer-572

sal planner meant to be pretrained on a large collection of available videos, as well as an executor573

that captures inverse dynamics. However, UniPi ignores the issue of data efficiency and plans in574

the space of images (observations), using diffusion [5], rather than in the latent space of their em-575

beddings. This is expensive to learn and potentially detrimental to plan quality. Latents even from576

statically pretrained image encoders are sufficient to capture object manipulation-relevant details577

from videoframes [14], whereas diffusion models can easily miss these details or model their 3D578

structure inconsistently [5]. Indeed, despite being conceptually capable of closed-loop control, for579

computational efficiency reasons UniPi generates open-loop plans, while PLEX interleaves planning580

and execution in a closed loop.581

Transformers for decision making and their data efficiency. After emerging as the dominant582

paradigm in NLP [2] and CV [50], transformers have been recently applied to solving general long-583

horizon decision-making problems by imitation and reinforcement learning [37, 51–54], including584

multi-task settings [55] and robotic manipulation [20, 22, 26, 32, 33]. Mees et al. [26] provide585

evidence that in robotic manipulation transformers perform better than RNNs [17] while having586

many fewer parameters. Of all these works, only Reed et al. [20] uses relative positional encoding,587

and only by “inheriting” it with the overall Transformer-XL architecture [13], without motivating its588

effectiveness for decision-making.589

Task specification formats. Task specification modality can significantly influence the generaliza-590

tion power of models pretrained on multi-task data. Common task conditioning choices are images591

of a task’s goal [10], videos of a task demonstration by a person [18, 42] or by a robot [19, 45], and592

language descriptions [17, 18, 22, 26, 56]. PLEX is compatible with any of these formats; in the593

experiments, we use goal images.594

B Problem formalization595

Formally, the problem PLEX aims to solve can be described as a partially observable Markov de-596

cision process (POMDP) ⟨G, E ,S,O, z,A, p, r⟩ with a special structure. Here, G is the space of597

possible manipulation tasks and E the space of possible embodiments (i.e., robots) that we may598

want to carry out the tasks in G. S = P × W is a state space consisting of a space P of robots’599

proprioceptive states (e.g., poses, joint speeds, etc.) and a space W of world states. A state s’s600

proprioceptive part p ∈ P is known at execution time and in some of the training data, whereas the601

world state w ∈ W is never observable directly. A latent state s can be probabilistically inferred from602

its observations o ∈ O and a state- and embodiment-conditioned distribution z : E × S → ∆(O)603

that describes how latent states in S manifest themselves through observations, where ∆ denotes the604

space of distributions. For robotic manipulation, each observation can consist of several modalities:605

camera images (possibly from several cameras at each time step), depth maps, tactile sensor read-606

ings, etc. The distribution z is unknown and needs to be learned. A is an action space, e.g., the space607

of all pose changes the robotic manipulator can achieve in 1 time step, and p : E × S ×A → ∆(S)608

is a transition function describing how executing an action affects a current state, which potentially609

is stochastic. A reward function r : G × S × A × S → R can provide additional detail about task610

execution by assigning a numeric reward to each state transition, e.g., 0 for transitions to a task’s611

goal state and -1 otherwise. Our objective is to learn a policy π : G × E × O|H → A that maps a612

robot embodiment e ∈ E’s history of observations O|H over the previous H steps to an action so as613

to lead the robot to accomplish a task g ∈ G.614

C PLEX implementation details615

The transformers PLEX uses as its planner and executor are derived from the GPT-2-based version616

of the Decision Transformer (DT) [37]. Like in DT, we feed inputs into PLEX by embedding each617

modality instance (e.g., an image or an action) as a single unit. This is different to the way, e.g.,618
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Gato [20] and Trajectory Transformer [51] do it, by splitting each input into fragments such as image619

patches and embedding each fragment separately.620

We condition PLEX’s planner on embeddings of goal images. Low-dimensional inputs (actions and621

proprioceptive states) are mapped to Rh, the transformer’s h-dimensional input space, using a 1-622

layer linear neural network. High-dimensional inputs – videoframes from one or several cameras623

at each time step as well as goal images – are processed using a ResNet-18-based [57] encoder624

from Robomimic [36]. It applies a random crop augmentation to each camera’s image, passes it625

through a separate ResNet18 instance associated with that camera, then passes the result through626

a spatial softmax layer [58], and finally through a small MLP. The resulting embedding is fed into627

PLEX’s planner. If the robot has several cameras, the encoder has a separate ResNet instance for628

each. For each time step, PLEX’s planner outputs an h-dimensional latent state representing the629

predicted embedding of PLEX’s visual observations k time steps into the future, where k is a tunable630

parameter. These latents are then fed directly into the planner as predictions of future observation631

embeddings. The output latents from the planner transformer are fed through a tanh non-linearity,632

which outputs action vectors in the [−1, 1] range. The hyperparameters can be bound in Tables 3633

and 4.634

Our PLEX implementation is available at ⟨ TO BE RELEASED ⟩.635

D Additional details about the experiments636

D.1 Meta-World and Robosuite details637

Meta-World. In our Meta-World-v2 setup, at each time step the agent receives an 84 × 84 image638

from the environment’s corner camera and the Sawyer arm’s 18D proprioceptive state. The agent’s639

actions have 4 dimensions, each scaled to the [−1, 1] range. Although Meta-World also provides640

privileged information about the state of the environment, including the poses of all relevant objects,641

our PLEX agent doesn’t access it.642

Robosuite. The observation and action space in our experiments is exactly as in the best-performing643

high-dimensional setup from the Robomimic paper [36]. Namely, actions are 7-dimensional: 6 di-644

mensions for the gripper’s pose control (OSC POSE) and 1 for opening/closing it. Visual observa-645

tions are a pair of 84× 84 images from agentview (frontal) and eye-in-hand (wrist) cameras at each646

step. Proprioceptive states consist of a 3D gripper position, a 4D quaternion for its orientation, and647

2D gripper fingers’ position.648

D.2 Details of the baselines from prior work649

PLEX +R3M [12]. We experiment with two combinations of PLEX with a frozen ResNet-50-650

based R3M [12], an observational representation pretrained on the large Ego4D dataset [6] In these651

experiments, R3M replaces Robomimic’s ResNet-18, and we use versions of our Meta-World Dvmt,652

Dmtvd, and Dttd datasets with 224x224 image observations instead of the 84x84 ones.653

One combination, PLEX +R3M, BC in Figure 2, learns a single-task policy on 10 full sensorimo-654

tor demonstrations for each Meta-World target task. It operates in behavior cloning (BC) mode,655

whereby PLEX is optimized solely w.r.t. its action predictions’ MSE loss, whose gradients back-656

propagate though the whole network (except the frozen R3M). The other combination, pretr. PLEX657

+R3M in Figure 2, follows the same PLEX pretraining and finetuning process as described previ-658

ously, except the R3M encoder stays frozen throughout.659

Learning from Play [17]. Our final baseline is an adapted Learning from Play (LfP) approach [17].660

As in Lynch and Sermanet [17], LfP doesn’t use video-only Dmtvd data or target-task demonstrations661

Dttd; it trains one model for all target tasks from the “play” dataset Dvmt only. Instead of using662

language annotations to separate “meaningful” subsequences in Dvmt, we give LfP the ground-truth663

knowledge of where trajectories sampled from different tasks begin and end. Accordingly, we don’t664

use language during training either. As n the case of PLEX, We train Learning from Play to plan665
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conditioned only on goal images and present it with goal images from successful trajectories of the666

target tasks during evaluation.667

D.3 Success rate evaluation protocol668

In the generalization experiments on Meta-World, all success rate evaluations are done on 50669

500-step rollouts starting from initial states sampled from the test distributions of Meta-World’s670

ML50 target tasks (door-lock, door-unlock, hand-insert, bin-picking, and box-close).671

To evaluate the zero-shot success rate of the pretrained EX and PLEX models, we compute the672

average across 50 rollouts generated by these models on each of the 5 target tasks at the end of673

pretraining.674

To evaluate the success rate of the finetuned models, we adopt the procedure from Mandlekar et al.675

[36]. The finetuning lasts for N epochs (see Table 4). After each epoch, we measure the average676

success rate of the resulting model across 50 rollouts, and record the maximum average success rate677

across all finetuning epochs.678

In the positional encoding experiments on Robosuite, the evaluation protocol is the same as in679

Meta-World finetuning and in Robomimic [36]: we train each model for N epochs (see Table 4),680

after each epoch compute the success rate across 50 trajectories (with 700-step horizon), and record681

the best average success rate across all epochs.682

D.4 Robosuite datasets and model training683

Training data for Robosuite was collected from human demonstrations, not generated by scripted684

policies. Robosuite provides a keyboard and SpaceMouse interfaces for controlling the Panda arm685

in its environments, and Robomimic supplies datasets of 200 expert (“professional-human”) trajec-686

tories collected using the SpaceMouse interface for the NutAssemblySquare, PickPlaceCan, and Lift687

tasks. For each of the tasks without pre-collected Robomimic datasets, we gather 75 high-quality688

trajectories via Robosuite’s keyboard interface ourselves. We employ Robosuite tasks only for ex-689

periments that involve training single-task policies from scratch, so all of these trajectories are used690

as target-task demonstration data (Dttd). Typical demonstration trajectory lengths vary between 50691

and 300 time steps.692

Accordingly, to show the difference between relative and absolute positional encodings’ data ef-693

ficiency, we train PLEX for |Dttd| = 5, 10, 25, 50, and 75, sampling Dttd’s from the set of 75694

demonstrations without replacement. The results are presented in the main paper in Figure 3.695

For Lift, PickPlaceCan, and NutAssemblySquare, Robomimic [36] similarly provides 200 high-696

quality human-collected demonstrations each, as well as the results of BC-RNN on subsets of697

these datasets with |Dttd| = 40, 100, and 200. Therefore, for these problems we train PLEX for698

|Dttd| = 5, 10, 25, 50, 75, as well as 40, 100, and 200. The results are shown in Table 2 and Table 1.699

The only difference of PLEX model instances for Robosuite from those for Meta-World is the former700

having two ResNet-18s in the observation encoder, one for the eye-in-hand and one for the agentview701

camera. As for Meta-World, the encoder in the Robosuite is trained from scratch, in order to make702

our results comparable to Robomimic’s [36], where models use an identical encoder and also train703

it tabula-rasa. In this experiment, we train PLEX in behavior cloning (BC) mode, like Meta-World’s704

single-task PLEX +R3M, whereby PLEX is optimized solely w.r.t. its action predictions’ MSE loss,705

whose gradients backpropagate though the whole network. All hyperparameters are in Table 4 in706

Appendix E.707

We compare PLEX with relative positional encoding to PLEX with absolute one and to two flavors708

of the Decision Transformer (DT) [37], which use global positional embedding. One flavor (DT-709

global in Figure 3) is trained to condition only on task specification (i.e., goal images), like PLEX.710

We note, however, that Chen et al. [37] used rewards and returns when training and evaluating DT.711

Therefore, we also train a return-conditioned version of DT (DT-global(+rew) in Figure 3), with712

returns uniformly sampled from the range of returns in Dttd during evaluation.713
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D.5 Additional Robosuite results714

Comparison to BC-RNN. Relying on relative positional encoding allows PLEX to achieve state-715

of-the art performance on all Robosuite tasks in our experiments. To establish this, in addition to716

the baselines in Figure 3, we compare to the results of a BC-RNN implementation from the work717

that introduced some of these Robosuite problems [36]. Interestingly, running BC-RNN on the tasks718

for which we have collected demonstrations ourselves resulted in 0 success rate, while running it719

on tasks with Robomimic-supplied 200 trajectories (Lift, PickPlaceCan, and NutAssemblySquare)720

reproduced Mandlekar et al. [36]’s results. PLEX’s comparison to BC-RNN’s results on those prob-721

lems are in Table 1 in Appendix D.4. PLEX and BC-RNN are at par on the easier problems but722

PLEX performs better on the harder NutAssemblySquare.723

Lift PickPlaceCan NutAssemblySquare
|Dttd| 40 100 200 40 100 200 40 100 200
PLEX 100± 0 100± 0 100± 0 82.8± 8.9 95.8± 2.8 96.6± 4.1 40.4± 6.9 69.6± 4.1 86.0± 3.1

BC-RNN 100± 0 100± 0 100± 0 83.3± 1.9 97.3± 0.9 98.0± 0.9 29.3± 4.1 64.7± 4.1 82.0± 0.0

Table 1: Performance of PLEX and BC-RNN on three Robosuite tasks from Mandlekar et al. [36]
on |Dttd| = 40, 100, and 200 demonstrations. BC-RNN’s results come from Figure 3b and Table 27
in Mandlekar et al. [36]). On the easier Lift and PickPlaceCan, PLEX and BC-RNN are at par, but
on the harder NutAssemblySquare PLEX performs better. On the remaining 6 problems for which
we have gathered the demonstration data, BC-RNN’s success rate is 0.

Better data efficiency or higher performance? Given Figure 3, one may wonder: does PLEX-724

abs’s performance plateau at a lower level than PLEX’s with relative positional encoding, or does725

PLEX-abs catch up on datasets with |Dttd| > 75? For most tasks we don’t have enough training data726

to determine this, but Table 2 in Appendix D.4 provides an insight for the tasks with Robomimic-727

supplied 200 training demonstrations. Comparing the performance gaps between PLEX and PLEX-728

abs on 75-trajectory and 200-trajectory datasets reveals that the gap tends to become smaller. The729

same can be seen for Stack, PickPlaceCereal, NutAssemblyRound already at |Dttd| = 75 in Figure 3,730

suggesting that with sufficient data PLEX-abs may perform as well as PLEX. However, the amount731

of data for which this happens may not be feasible to collect in practice.732

Lift PickPlaceCan NutAssemblySquare
|Dttd| 75 200 75 200 75 200
PLEX 100± 0 100± 0 80.4± 5.7 96.6± 4.1 64.0± 4.6 86.0± 6.1

PLEX-abs 100± 0 100± 0 72.8± 8.0 93.0± 4.7 45.2± 5.7 76.8± 4.9

Table 2: Performance of PLEX and PLEX-abs as the amount of training data |Dttd| increases from
75 to 200 trajectories. The performance gap between the two is narrower on the larger dataset. For
Lift and several other Robosuite tasks, this trend becomes visible for datasets smaller than 200 (see
Figure 3.

E Hyperparameters733
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Parameter name Meta-World
(PLanner/EXecutor)

Robosuite
(PLanner/EXecutor)

# layers 2/2 3/3
context size K 30/30 time steps 30/30 time steps

hidden dimension 256/256 256/256
# transformer heads 4/4 4/4

# evaluation episodes 50 50
# max. evaluation episode length 500 700

Table 3: Hyperparameters of PLEX’s transformer-based planner and executor components for the
Meta-World and Robosuite benchmarks. In each case, the planner and executor use the same param-
eters, but for most problems the executor’s context length K can be much smaller than the planner’s
without loss of performance, e.g., KEX = 10. For the Decision Transformer on Robosuite, we use
4 transformer layers and otherwise the same hyperparameters as for PLEX.

Meta-World Robosuite

Parameter name pretraining
(PLanner/EXecutor)

last-layer finetuning
(PLanner/EXecutor)

behavior cloning
(PLanner/EXecutor)

lookahead steps 1/ – 1/ – 1/ –
learning rate 5 · 10−4 5 · 10−4 5 · 10−4

batch size 256 256 256
weight decay 10−5 10−5 10−5

# training epochs 10/30 10/10(?) 10
# training steps per epoch 250/250 250/250(?) 500

Table 4: Hyperparameters of PLEX training for the generalization experiments on Meta-World and
positional encoding experiments on Robosuite. The former use PLEX in pretraining and finetuning
modes; the latter only in behavior cloning mode (training the entire model from scratch for a single
target task). In finetuning mode, we adapt only the last transformer layer of the planner and, in one
experiment, of the executor as well. The (?) next to the executor’s hyperparameters indicate that
they were used only in the experiment where the executor was actually finetuned. For the Decision
Transformer on Robosuite we use the same hyperparameters as for PLEX.
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