Under review as a conference paper at ICLR 2022

A HYPERPARAMETERS

Parameter Value
Learning rate 2e-5
Adam warmup steps 150
Batch size 16
Adam € le-6
Adam (1 0.9
Adam (2 0.98
Weight decay 0.01

Table 9: Transformer hyperparameters

Transformer models were fine-tuned for a fixed 1,000 steps, evaluating on the dev set every 100 steps
and using the checkpoint with best dev accuracy to obtain the final test set accuracy. We found from
preliminary experiments that the hyperparameters in Table 9 generally worked well on all models and
datasets. The learning rate followed a sloped triangular schedule, warming up over the first several
steps and then linearly decreasing until the end of training. The maximum sequence length for models
was set per-dataset based on the length of input texts. In general it was set so that at least 99% of
examples fit completely within the sequence length, and those that did not fit were pruned.

For BALD, the number of Monte Carlo dropout samples was set to 5, and we found in preliminary
experiments on CSQA and MRP that increasing the number of samples to 20 did not substantially
improve results. We performed the Monte Carlo dropout using the normal dropout probabilities in the
dropout layers of the models (generally 0.1); increasing the dropout probabilities to 0.5 (just for the
BALD step, not model training) added noise due to the large number of dropout layers and actually
caused performance to slightly decrease in our preliminary tests.

The experiments were run on servers with Nvidia RTX 2080 Ti and GTX 1080 gpus. We estimate
that all reported experiments together represent about 3,000 gpu-hours for an RTX 2080 Ti.

Our experiments are implemented using Pytorch (Paszke et al., 2019) and code is available in the
supplementary material. We used version 2.4.1 of the HuggingFace Transformers library (Wolf et al.,
2020), which has a small bug in the ROBERTa implementation. Testing two of our datasets with a
newer version suggests that this doesn’t change our conclusions.

B DATASET SIZES

See Table 10.

C PRUNING LEVEL

For our main experiments we pruned the 50% of examples most likely to be collective outliers, as
that threshold is what appeared to work best in the work of Karamcheti et al. (2021). However, as we
did not find pruning to be as effective as in that work, we also tried a 25% threshold with just one AL
method (BatchBALD) to see if the pruning threshold made a difference. The results are displayed in
Table 11. We observe that both the relative gain from AL and the absolute performance fall between
the corresponding numbers for 0% and 50% on average, and therefore conclude that while the pruning
threshold could be adjusted to trade relative and absolute gains, it would not produce a boost in both
at once across our datasets.

D LABEL BUDGET

We primarily focus on a low-budget setting in this work, but it is interesting to consider how
performance might improve with more labels. In Table 12 we show the results of experiments with

14

Under review as a conference paper at ICLR 2022

Dataset Train Dev Test
AGN-SB-c 2000 2500 5000
DBpedia-SB-c 2000 2000 2000
CODAH 2376 100 200
CODAH-c 4752 200 400
CSQA 9141 300 1221
MRP-c 8614 512 1024
MRS-c 9000 500 500
PIQA 14113 1000 1838
PIQA-c 28226 2000 3676

HellaSWAG 39905 1000 8042
HellaSWAG-c | 65198 1988 15508

SWAG 65354 4096 20006
AGN-c 100000 5000 10000
SWAG-c 130708 8192 40012
aNLI 150000 1036 1532
aNLI-c 300000 2072 3064

Table 10: Dataset sizes. “Train” is the set we used as the unlabeled pool for active learning. Note
also that the numbers add up to slightly less than the official sizes of these datasets, as we held out
some additional data that ultimately went unused in this work.

0% pruned (from Table 1) 25% pruned 50% pruned (from Table 2)
Dataset \ Method BatchBALD-MC Random BatchBALD-MC Random BatchBALD-MC Random
AGN-c 87.5(0.2) 86.6 (0.2) 87.0 (0.2) 86.6 (0.2) 85.4(0.3) 84.6 (0.3)
AGN-SB-¢ 97.4 (0.0) 96.7 (0.1) 97.4 (0.1) 96.8 (0.1) 97.5(0.1) 96.9 (0.1)
aNLI 58.9 (0.2) 58.8(0.2) 58.1(0.1) 58.4(0.1) 57.4(0.1) 57.5(0.2)
CODAH 58.5(0.3) 59.0 (0.6) 58.9(0.5) 60.2 (0.5) 59.2 (0.4) 58.4(0.6)
CSQA 43.9 (0.4) 43.8(0.2) 45.8 (0.3) 45.2(0.3) 46.0 (0.2) 46.1(0.2)
DBPedia-c 98.9 (0.0) 98.8 (0.1) 99.1 (0.0) 99.0 (0.1) 99.1 (0.0) 99.0 (0.0)
HellaSWAG 38.5(0.2) 38.7(0.2) 37.4 (0.4) 37.2(04) 35.7(0.5) 35.7(0.3)
MRP-c 83.3(0.2) 83.0(0.3) 82.6 (0.2) 81.8(0.2) 80.2 (0.3) 79.0 (0.6)
MRS-¢ 95.3 (0.1) 94.0 (0.2) 95.0 (0.1) 94.0 (0.1) 94.9 (0.1) 94.1(0.2)
PIQA 55.9(0.2) 56.8 (0.3) 55.8(0.3) 56.2(0.2) 55.7(0.3) 56.1(0.3)
SWAG 62.7 (0.2) 63.5(0.2) 61.1 (0.2) 60.7 (0.3) 59.4 (0.5) 59.8 (0.3)
Average 70.96 (0.07) 70.88 (0.08) 70.75 (0.08) 70.54 (0.08) 70.06 (0.09) 69.76 (0.10)

Table 11: Roberta-base with different levels of pruning.

15

Under review as a conference paper at ICLR 2022

Q=1000, |AL|=50 Q=500, | AL|=25 (from Table 1)
Dataset \ Method | BatchBALD-MC Random BatchBALD-MC Random
AGN-c 88.6 (0.1) 88.2(0.1) 87.5(0.2) 86.6 (0.2)
AGN-SB-c 97.7 (0.1) 97.3(0.1) 97.4 (0.0) 96.7 (0.1)
aNLI 60.4 (0.2) 60.5 (0.2) 58.9 (0.2) 58.8(0.2)
CODAH 62.6 (0.4) 62.1 (0.4) 58.5(0.3) 59.0 (0.6)
CSQA 47.8 (0.4) 47.7(0.2) 43.9 (0.4) 43.8 (0.2)
DBpedia-SB-c 99.1 (0.0) 99.1 (0.0 98.9 (0.0) 98.8 (0.1)
HellaSWAG 41.2(0.1) 41.2(0.1) 38.5(0.2) 38.7(0.2)
MRP-c 85.6 (0.1) 84.5(0.3) 83.3(0.2) 83.0(0.3)
MRS-c 95.8 (0.1) 95.2 (0.0) 95.3 (0.1) 94.0 (0.2)
PIQA 57.7 (0.1) 57.4(0.3) 55.9(0.2) 56.8 (0.3)
SWAG 65.7 (0.3) 65.8 (0.2) 62.7 (0.2) 63.5(0.2)
Average 72.92 (0.06) 72.63 (0.07) 70.96 (0.07) 70.88 (0.08)

Table 12: RoBERTa-base AUC results with @ = 1000 and |AL| = 50. Original results from Table 1
are reprinted for comparison. AL has higher relative performance on the results with greater label
budget and batch size.

budget Q=1000 and batch size* | AL|=50. The results show that a higher budget generally results in
better relative AL performance. This result is encouraging, as it suggests the instability of AL-selected
datasets is mitigated simply by collecting more labels. Of course, it does not help in cases where the
labels are costly and the budget cannot easily be increased, so an interesting question for future work
is how to determine the minimum viable label budget needed for AL to become effective.

*Unfortunately we cannot avoid changing multiple variables here, as either the batch size or the number of
batches must increase when we use a larger budget. Due to our earlier batch size ablation we consider it unlikely
that the batch size plays a large role, and generally attribute the results here to the budget increase.

16

