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1 Implementation Details1

In this section, we give a detailed description of the model architecture and training/inference set-2

tings. The overall workflow of the training and inference process are provided in Alg. 1 and Alg. 2.3

Algorithm 1 Training
Input total diffusion steps T , datasetsD = {(I,Mfine,Mcoarse)

K}
repeat

Sample (I,Mfine,Mcoarse) ∼ D

Sample t ∼ Uniform(1, . . . , T )

Initialize m0 = Mfine, xi,j
0 = [1, 0]

q(xi,j
t |xi,j

0 ) = xi,j
0 Q̄t

Sample xi,j
t ∼ q(xi,j

t |xi,j
0 ), get xt ∈ {0, 1}2×H×W

Pixels Transition mt = xt[0]⊙Mfine + xt[1]⊙Mcoarse

Take gradient descent step on ∇θL(fθ(I,mt, t),Mfine)

until convergence

4

Algorithm 2 Inference
Input total diffusion steps T , image and coarse mask (I,Mcoarse)

Initialize xT = [0, 1], mT = Mcoarse

for t in {T, T − 1, . . . , 1} do
m̃0|t, pθ(m̃0|t) = fθ(I,mt, t)

pθ(x
i,j
t−1|x

i,j
t ) = xi,j

t P i,j
θ,t

Sample xi,j
t ∼ pθ(x

i,j
t−1|x

i,j
t ), get xt ∈ {0, 1}2×H×W

Pixels Transition mt−1 = xt−1[0]⊙ m̃0|t + xt−1[1]⊙Mcoarse

return m0

Model Architecture Following [9], we use a U-Net with 4-channel input and 1-channel output.5

Both input and output resolution is set to 256 × 256. Considering computational load and memory6

usage, we set the intermediate feature channels to 128 and only conduct self-attention in strides 167

and 32.8
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Training Settings All experiments are conducted on 8 NVIDIA RTX3090 GPUs with Pytorch.9

During training, we first train the LR-SegRefiner on the LVIS dataset [4] with 120k iterations. The10

AdamW optimizer is used with the initial learning rate of 4×10−4. We use a multi-step learning rate11

schedule, which decays by 0.5 in steps 80k and 100k. Subsequently, the HR-SegRefiner is obtained12

from 40k-iterations fine-tuning based on the 80k checkpoint of LR-SegRefiner. Batch size is set to 813

in each GPU.14

Inference Settings In instance segmentation, we use the LR-SegRefiner to perform refinement in15

instance level. For each instance, we extract the bounding box region based on the coarse mask and16

expand it by 20 pixels on each side. The extracted region is then resized to match the input size of17

the model. After a complete reverse diffusion process, the output is resized to the original size.18

In semantic segmentation and dichotomous image segmentation, because of the high resolution of19

images, we employ the HR-SegRefiner and conduct a global-and-local refinement process. In order20

to identify the local patches that require refinement, we filter out pixels with low state-transition21

probabilities from the globally refined mask and use them as the center points for the local patches.22

We apply Non-Maximum Suppression (NMS, with 0.3 as threshold) to these patches to remove23

excessive overlapping.24

2 More Visual Comparisons25

In this section, we provide more visual results in semantic segmentation, instance segmentation, and26

dichotomous image segmentation. Fig. 1 shows the comparisons of SegRefiner and other models (in-27

cluding instance segmentation models and refinement models) on COCO [8] validation set. Fig. 228

shows more comparisons between the coarse masks and refined masks on COCO validation set.29

These results demonstrate that the proposed SegRfiner can robustly correct inaccurate predictions in30

coarse masks. Fig. 3 and Fig. 4 show visual results on BIG dataset [2] and DIS5K dataset [10]. Seg-31

Refiner shows a strong capability for capturing extremely fine details on these two high-resolution32

datasets.33
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(a) Image

(b) Mask R-CNN [5]

(c) SOLO [13]

(d) QueryInst [3]

(e) CondInst [12]

(f) PointRend [7]

Figure 1: Visual comparisons with other instance segmentation and refinement methods on COCO
dataset. Our SegRefiner can robustly correct prediction errors both outside and inside the coarse
mask. (Please refer to the next page for the remaining portion of this figure.)
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(g) RefineMask [15]

(h) Transfiner [6]

(i) Mask R-CNN + SegFix [14]

(j) Mask R-CNN + BPR [11]

(k) Mask R-CNN + SegRefiner (Ours)

Figure 1: Visual comparisons with other instance segmentation and refinement methods on COCO
dataset. Our SegRefiner can robustly correct prediction errors both outside and inside the coarse
mask.
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(a) Coarse Mask (b) Refined Mask

Figure 2: More visual results on COCO dataset. Coarse masks are obtained from Mask R-CNN [5].
Our SefRefiner corrects the errors of coarse masks (see Refined Mask).
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(a) Image (b) Coarse Mask (c) Refined Mask

Figure 3: More visual results on BIG dataset [2]. Coarse masks are obtained from Deeplab v3+ [1].
Our SefRefiner greatly enhances the mask quality (see Refined Mask). Please kindly zoom in for a
better view.
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(a) Image (b) Coarse Mask (c) Refined Mask

Figure 4: More visual results on DIS5K dataset [10]. Coarse masks are obtained from ISNet [10].
Our SefRefiner captures extremely fine details (see Refined Mask). Please kindly zoom in for a
better view.
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