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ABSTRACT

Concept Bottleneck Models (CBMs) aim to deliver interpretable and
interventionable predictions by bridging features and labels with human-
understandable concepts. While recent CBMs show promising potential, they suffer
from information leakage, where unintended information beyond the concepts
(either in probabilistic or binary-state form) is leaked to the subsequent label
prediction. Consequently, distinct classes are falsely classified via indistinguishable
concepts, undermining the interpretation and intervention of CBMs.
This paper alleviates the information leakage issue by introducing label supervision
in concept prediction and constructing a hierarchical concept set. Accordingly, we
propose a new paradigm of CBMs, namely SUPCBM, which stands for Structured
Understanding of leakage Prevention Concept Bottleneck Model, achieving label
prediction via predicted concepts and a deliberately structural-designed intervention
matrix. SUPCBM focuses on concepts that are mostly relevant to the predicted
label and only distinguishes classes when different concepts are presented. Our
evaluations show that SUPCBM’s label prediction outperforms SOTA CBMs over
diverse datasets, and its predicted concepts also exhibit better interpretability. With
proper quantification of information leakage in different CBMs, we demonstrate
that SUPCBM significantly reduces the information leakage.

1 INTRODUCTION
Deep neural networks (DNNs) have achieved remarkable success in many real-life tasks. However,
their black-box nature makes the extracted features obscure, hindering users from interpreting DNN
predictions. To address this issue, concept bottleneck models (CBMs) have recently emerged with
the purpose of delivering high-quality explanations for DNN predictions (Koh et al., 2020). CBMs
are a type of DNN that make predictions based on human-understandable concepts. CBMs typically
have a Concept-Bottleneck (CB) layer located before the last fully-connected (FC) layer. The CB
layer takes features extracted (by preceding layers) from the input and maps them to a set of concepts.
This effectively aligns the intermediate layers of a DNN with some pre-defined expert concepts, and
the last FC determines the final label over those concepts. Often, CBMs require first training the CB
layer to align each neuron to a concept that is pre-defined and understandable to humans.

Based on the output concepts of the CB layer, CBMs deliver two key benefits: interpretability and
intervenability. First, users can interpret the predicted labels by inspecting the involved concepts.
Second, users can intervene the predicted labels by determining which concepts are involved in the
prediction. Technically, CBMs are often categorized as soft CBMs and hard CBMs. The CB layer in
soft CBMs outputs a probability (i.e., a number between 0 and 1) for each concept, whereas the hard
CB layer outputs a binary state (i.e., 0 or 1) to indicate if a concept exists in the input. Then, a label
predictor (often the last FC layer) predicts the final label based on the concept probabilities or states.

Despite the encouraging potential of CBMs in delivering human-understandable explanations, their
interpretability and intervenability are largely undermined in de facto technical solutions due to
information leakage, where unintended information beyond the concepts is leveraged by the label
predictor. Specifically, the concept probabilities in soft CBMs may encode class distribution
information, such that the label predictor can classify distinct class labels based on indistinguishable
concepts (Havasi et al., 2022). For instance, the label predictor may leverage the probability
differences of “head” and “tail” to classify dog vs. cat and achieve high accuracy, despite
that these two concepts are insufficient to distinguish dog and cat. While hard CBMs were previously
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believed resilient to information leakage, a recent study (Mahinpei et al., 2021) has pointed out that
hard CBMs can leverage unrelated hard concepts to convey class distributions to the label predictor.
For example, (Mahinpei et al., 2021) demonstrates that hard CBM’s performance can be improved by
adding meaningless hard concepts.

To faithfully achieve CBM’s design objectives, it is urgent to mitigate information leakage in CBMs.
Therefore, this paper proposes a novel CBM paradigm, dubbed SUPCBM. Unlike prior CBMs that
treat concept prediction and label prediction as two separate tasks, we fuse them into a unified form
by additionally supervising the concept prediction with class labels. Specifically, SUPCBM does not
implement a label predictor, but employs an intervention matrix for label prediction. The intervention
matrix is formed when constructing the concept set; it is implemented as a sparse binary matrix of
shape #concepts×#classes, where the (i, j)-th entry indicates whether the i-th concept should be
leveraged to recognize the j-th class.

When training SUPCBM, the CB layer is forced to only predict concepts that are relevant to the
ground truth label, which is jointly decided by the intervention matrix and a novel concept pooling
layer (which further selects the most important concepts for each input; see Sec. 3.2). Then, to
obtain the final predicted label, we multiply the CB layer’s output, a #concepts-dimensional vector
indicating the predicted concepts, with the intervention matrix. This computation is equivalent to
summing up the involved concepts’ probabilities for each label and treating the summed probability
as the label’s prediction confidence. Hence, SUPCBM only distinguishes classes if different concepts
are presented, significantly alleviating the information leakage (see Sec. 3.3 and Sec. 5.2).

Similar to previous post-hoc CBMs (Oikarinen et al., 2023), SUPCBM is post-hoc as it only trains a
light-weight CB layer (without training the label predictor) for any pre-trained feature-based model.
Moreover, since our label prediction is achieved by multiplying the predicted concepts with the
intervention matrix, SUPCBM also ensures the intervenability: users can directly let the i-th concept
involved in predicting the j-th class by setting the (i, j)-th entry in the intervention matrix as 1, and
vice versa.

Besides reforming the CBM technical pipeline, we further augment CBM interpretability and
intervenability from the concept aspect. Our concept set prioritizes perceptual concepts that can be
directly perceived by humans without further reasoning, e.g., “‘tail” instead of “animal”. Also,
to fully use the rich semantics of these perceptual concepts (which are mostly nouns), we assign each
of them multiple descriptive concepts (i.e., adjectives) and build a two-level hierarchical concept set.
With our novel concept set, SUPCBM delivers more interpretable concept prediction and accurate
label prediction; it outperforms all SOTA CBMs and even reaches the vanilla feature-based model
(w/o converting features into concepts) when evaluated using diverse datasets and backbones (see
Sec. 5). Overall, this paper makes the following contributions:

• We propose a new paradigm of CBMs, SUPCBM, which supervises concept prediction with class
labels and employs an intervention matrix for label prediction. SUPCBM significantly reduces
information leakage and delivers post-hoc, intervenable, and more interpretable CBMs.

• To further enhance CBM interpretability, we advocate that the concept set should be primarily built
with perceptual concepts (which can be directly perceived by humans without further reasoning).
Accordingly, to utilize rich semantics in perceptual concepts, we build a two-level hierarchical
concept set by assigning each perceptual concept with multiple descriptive concepts.

• Evaluations show that SUPCBM’s label prediction outperforms previous SOTA CBMs and achieves
comparable performance to the vanilla, feature-based models; it also significantly alleviates the
information leakage in label prediction. With large-scale human studies, we demonstrate that
SUPCBM’s concept prediction is more interpretable than that of SOTA CBMs.

Code Availability: Our code is released at https://sites.google.com/view/supcbm.

2 CONCEPT BOTTLENECK MODELS AND INFORMATION LEAKAGE

This section introduces CBMs and the information leakage issue that motivates this paper. Without
losing the generality, we take image classification as an example in this section.

Dataset Construction. Given a conventional dataset D = {x(i), y(i)}Ni=1 consisting of N pairs of
input image x(i) ∈ Rd and its ground truth label y(i) ∈ N, CBMs require augmenting the dataset
D with annotated concepts for all images. Specifically, for a set of pre-defined concepts C, each
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image x(i) is annotated using c(i) ∈ {0, 1}|C|. If the j-th element of c(i) is 1, it indicates that the j-th
concept in C is presented in x(i), and vice versa.

The concept set C is often manually defined and the annotations of c(i) require extensive human
efforts, limiting the applicability of CBMs. Recent works (Oikarinen et al., 2023; Yang et al., 2023)
have employed LLMs to automatically generate concepts, bringing richer and more expressive
concept sets to CBMs. However, we note that their concepts are often obscure, which impedes
interpreting and intervening on CBMs. This paper alleviates this issue by focusing on perceptual
concepts and their descriptions.

CBM Pipeline. CBMs divide the label prediction y = argmax f(x) into two main steps: the concept
prediction c = g(x), which is achieved by appending the penultimate layer in f with the CB layer,
and the label prediction y = argmaxh(c). Accordingly, CBMs require additionally training the
concept predictor, which can be conducted prior to or jointly with training the label predictor. The
training of concept predictor is often formulated as multiple concurrent binary classification tasks,
with each one for one concept. During CBM’s inference, the concept predictor outputs a probability
for each concept. If the follow-up label prediction directly takes these probabilities, the CBM is
categorized as soft CBM. In contrast, if the CBM first converts the probabilities to binary states (i.e.,
0 or 1) and then feeds them to the label predictor, the CBM implements hard CBM.

CBM Conversion. When converting a backbone feature-based model into CBMs, the common
practice is to tune the whole model. Nevertheless, this incurs a high training cost due to the large
number of parameters in the backbone model. Several post-hoc conversions of CBMs have been
proposed in recent works (Yuksekgonul et al., 2022; Oikarinen et al., 2023; Yang et al., 2023; Yan
et al., 2023). In short, they align features (from the backbone model) with concepts (described in
text) using similarity scores from multimodal alignment models (e.g., CLIP), and only train the label
predictor, thereby reducing the conversion cost. Nevertheless, one recent work pointed that concepts
generated in this post-hoc manner compromise the intervention of CBMs (Marcinkevičs et al., 2024).
This paper ensures the intervenability using an intervention matrix during label prediction.

Information Leakage. As continuously studied in prior works (Havasi et al., 2022; Mahinpei et al.,
2021; Marconato et al., 2022), the interpretability and intervenability, two key design objectives of
CBMs, are undermined by the information leakage issue.

Definition 2.1 (Information Leakage). Information leakage in CBMs indicates that unintended and
additional information beyond the predicted concepts is leveraged for the follow-up label prediction.

Leakage in Soft CBMs: In soft CBMs, the information leakage is induced by the concept
probabilities (Havasi et al., 2022). Consider a CBM-based animal classifier with the concept set
{fur,tail}, suppose it predicts fur with a higher probability than tail when recognizing dogs,
but assigns tail a higher probability than fur when identifying cats. Although the concepts fur
and tail are insufficient to distinguish dog vs. cat, the label predictor (which is also a black-box
DNN) may compare concept probabilities to decide the final label. Apparently, the CBM-based
classifier does not only rely on fur and tail to classify cat and dog, and the interpretation and
intervention based on fur and tail are consequently invalid. Here, the difference between concept
probabilities encodes the class distribution information that is beyond the concepts themselves.

Leakage in Hard CBMs: While hard CBMs were previously believed resilient to information
leakage, one recent work pointed out that hard CBMs can encode/leak additional information via
irrelevant (hard) concepts (Mahinpei et al., 2021). As demonstrated in (Mahinpei et al., 2021), merely
adding meaningless hard concepts to hard CBMs can improve their label prediction performance,
indicating that these added concepts bring additional information to the label prediction.

Essentially, the information leakage is primarily induced by yia irrelevant concepts and/or yib
additional information encoded in concept probabilities. SUPCBM eliminates these two leakage
sources by deliberately reforming the adoption of concepts in the label prediction, as will be introduced
in Sec. 3. SUPCBM also achieves post-hoc CBM conversion by only training a light-weight one-layer
CB layer for each backbone model, and compared with prior post-hoc conversions, SUPCBM exhibits
better generality when applied to different backbone models (see evaluations in Appx. D).
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3 SUPCBM’S DESIGN

Technical Pipeline. Fig. 1 illustrates the workflow of SUPCBM, which consists of four main stages.
When constructing the concept set, we leverage GPT (version 4.0) to generate a comprehensive set of
concepts and organize them in a two-level hierarchical manner. We also maintain an intervention
matrix I to record each concept’s relevant concepts (see Fig. 1(d)). During the training stage, we
train the CB layer to map the feature extracted by the backbone model into our prepared concepts; the
training is supervised by the ground truth label and a concept pooling layer (see Fig. 1(c)). Finally,
when predicting the class labels, we multiply the concept prediction with our intervention matrix; the
final label is obtained by applying argmax on the multiplication result.

Long

Bird

TailBeak

Blue Red Thin

1st level: Perceptual

2nd level:
Descriptive

features

(b) Concept conversion (c) Concept pooling(a) Two-level concept set
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Figure 1: Workflow of SUPCBM. I is the intervention matrix.

3.1 CONCEPT SET CONSTRUCTION

Perceptual Concepts. One key observation made in this paper, is that some concepts in previous
works are often too holistic to be easily perceivable by humans and require manual reasoning. For
instance, the concept “animal” is involved in classifying cats. Although animal is a genuine super-
class of cat, it cannot be perceptually observed; prior knowledge is required to reason that cat is an
animal. Also, such concepts impede the intervention of CBMs: it is obscure to add or remove the
concept “animal” for the follow-up label prediction. Thus, we advocate that the concept set should
be formed with perceptual concepts that can be directly observed by humans without reasoning.

Hierarchical Concepts. Since CBMs are designed to only describe whether certain concepts are
involved in the label prediction, the rich semantics of concepts often cannot be faithfully reflected from
CBMs. Considering the case of classifying different breeds of fish in CIFAR100, while the concept
“tail” can be leveraged for predicting labels, the information it contributes is far beyond than simply
indicating its involvement. For example, a “fan tail” is critical to identify goldfish, whereas
the “veil tail” is vital to identify betta fish. Thus, we form a two-level hierarchical
concept set, where the first level contains nounal perceptual concepts and flags if a concept is involved
in the label prediction, whereas the second level includes adjectival concepts for each first-level
concept and describes which semantics of the visual concepts contribute to the label prediction.

Prompt Design. We use GPT to automatically build the concept set. Since we require perceptually
perceivable concepts to enhance CBM interpretability and intervenability, we first query the GPT
model with the following prompt:

“To identify {CLS} visually, please list the most important {p} visual parts which
a {CLS} has.”

Here, the token {CLS} can be replaced by any classes the original feature-based model can predict.
The GPT returns a set of nounal visual parts in {CLS} as our first-level concept {CEP}. Then,
for each concept {CEP} of a class {CLS}, we query the GPT model with the following prompt to
uncover semantics associated with different concepts.

“To visually identify {CLS}, please describe the {q} most common characteristics
of {CLS}’s {CEP} from the three dimensions of shape, color, or size.”

With the above prompt, the GPT model can return to us a set of adjectival concepts as our second-level
concepts that describe the semantics of the first-level nounal concepts. We limit the adjectival concepts
to follow the three orthogonal dimensions of shape, color, and size, thereby reducing ambiguity. We
also remove any concept that is longer than 40 characters to make the descriptions simple. This way,
we obtain a two-level concept set containing concepts represented in a ⟨{CEP},{DESCR} ⟩ form,
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as illustrated in Fig. 1, e.g., ⟨Beak,Long⟩ constitutes one ⟨{CEP},{DESCR} ⟩ pair for the input
bird image. Accordingly, we also know each ⟨{CEP},{DESCR} ⟩’s relevant class {CLS}.

Extendability. Our concept set is highly extendable. To convert backbone models whose supported
classes are not included in our concept set, users can simply replace the {CLS} in the first prompt
and query GPT models to obtain the corresponding concepts, and accordingly update the {CLS} and
{CEP} in the second prompt to augment the concept set with new ⟨{CEP},{DESCR} ⟩ pairs.

3.2 TRAINING SUPERVISION

intervention matrix. We maintain an intervention matrix I to represent which concept (i.e., a pair
of ⟨{CEP},{DESCR} ⟩) should be involved in predicting a class label. The intervention matrix is a
binary matrix of shape #concepts × #classes, as shown in Fig. 1(d). Each Ii,j ∈ {0, 1} and Ii,j = 1
indicates that the i-th concept should be involved in predicting the j-th class; otherwise, Ii,j = 0.
The I is obtained after querying the GPT with the second prompt mentioned in Sec. 3.1.

To show the effectiveness of the intervention matrix, we conduct an intervention experiment
following (Oikarinen et al., 2023) in Appx. C.

Label-Aware Concept Annotation. A fundamental difference between SUPCBM and previous
CBMs is the supervision of class label when training the CB layer. As illustrated in Fig. 1, for each
training image x whose ground truth label is y, we annotate it only with concepts that are involved in
predicting y (as indicated by the intervention matrix). This annotation, to some extent, can supervise
the CB layer to “fuse” the concept prediction and label prediction; it improves the performance of
CBMs and also reduces the information leakage due to irrelevant concepts ( yia ).

Concept Pooling. To further rule out potentially irrelevant concepts, we implement a selective
strategy as shown in Fig. 1(c). Similar to the max pooling mechanism in conventional computer
vision which selects most important features, we choose to annotate x with those most important
concepts. We name our selection procedure as concept pooling as it is equivalent to applying an
1-dimensional max pooling of kernel size p and stride q on all second-level concepts. Specifically,
we first compute x’s similarities with all concepts ⟨{CEP},{DESCR} ⟩ involved in predicting y (as
indicated by the intervention matrix), which is measured via the cosine similarity between the CLIP
embeddings of x and ⟨{CEP},{DESCR} ⟩. Then, for concepts ⟨{CEP},{DESCR} ⟩ sharing the same
{CEP}, we choose those having the top-k similarity as the ground truth concepts. This way, we have
total p× k concept annotations for each input image.

Training Objectives. Unlike previous post-hoc CBMs that directly train the follow-up label predictor
over concept similarities (which undermines the intervenability as pointed out by (Marcinkevičs
et al., 2024)), we do not train a label predictor. Instead, we train the CB layer (without training the
backbone model) since label supervision is unavailable for test images. Specifically, for each input
image, we set the selected p× k concepts as hard labels and form p× k binary classification tasks
following the conventional training procedure. These binary classification tasks are optimized with
binary cross-entropy loss ℓBCE(c,GTc), where c is the concept probabilities predicted by the CB
layer and GTc is the ground truth concepts. Both c and GTc are pq-dimension vectors.

The predicted label is decided as argmax c ∗ I, as shown in Fig. 1(d), where ∗ denotes matrix
multiplication. That is, the j-th class’s prediction confidence is computed as

lj =

pq∑
i=1

ci ∗ Ii,j (1)

Since Ii,j indicates whether the i-th concept should be involved in predicting the j-th class, the
label j’s confidence lj equals the sum of probabilities of those involved concepts. Consistent with
conventional CBM training, we have a cross-entropy loss ℓCE(l, GTl), where l is a #classes-
dimensional vector and GTl is an integer indicating the ground truth class label. It’s worth noting
that the intervention matrix I is always fixed (unless users intervene SUPCBM), and ℓCE(l, GTl) is
only leveraged to optimize the CB layer. Therefore, the overall training objective is to minimize:

ℓBCE(c,GTc) + ℓCE(c ∗ I, GTl). (2)

Post-hoc Concept Mapper. It’s worth noting that SUPCBM also achieves post-hoc CBMs. Similar
to existing post-hoc CBMs, to convert a new backbone model, SUPCBM only requires training a
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light-weight layer. Differently, previous works train the label predictor using their pre-built concept
set, while SUPCBM only trains a one-layer CB layer without training any label predictor.

3.3 ELIMINATING INFORMATION LEAKAGE

SUPCBM eliminates information leakage from both sources mentioned in Sec. 2. First, for leakage
due to irrelevant concepts ( yia ), we mitigate it during the concept annotation: SUPCBM only
focuses on concepts that should be involved in predicting the label. Second, we further select those
most important descriptive concepts {DESCR} via our concept pooling mechanism, thus trimming
irrelevant concepts. With these two steps, irrelevant concepts are rarely kept in label predictions.

Moreover, for leakage where the concept probabilities encode distribution of class information ( yib ),
we justify how our intervention matrix can eliminate such leakage. Consider two classes a and
b whose involved concepts (according to I) constitute sets Ca and Cb, respectively. We define
S = Ca ∩ Cb, A = Ca \ S, and B = Cb \ S. That is, S consists of concepts shared by both classes,
and A and B denote the sets of concepts that are only involved in predicting a and b, respectively.

① If S = ∅, i.e., the two classes do not share any concepts, it should be clear that classifying a and
b only relies on their disjoint concepts A and B, and SUPCBM finds concepts that uniquely exist
in classes a and b. Note that our concept pooling mentioned above can help reduce the size of S,
increasing the chance of S = ∅.

And in case S ̸= ∅, i.e., the two classes share some concepts, we analyze the following two cases.

② If A = B = ∅, i.e., predicting class a and b rely on the same indistinguishable concepts. Since our
label prediction confidence (i.e., c ∗ I) is the sum of concept probabilities, it cannot distinguish a and
b, and no information beyond the concept is leveraged to falsely conduct classification.

③ If A ̸= ∅ or B ̸= ∅, i.e., either class a or b, or both, have their unique concepts. Thus, given
an input, the difference between the two label prediction confidences (w.r.t. class a and b) is only
induced by the concepts uniquely belonging to A and B. Apparently, no information beyond a and
b’s unique concepts is leveraged to classify them.

4 IMPLEMENTATION AND HYPERPARAMETERS

Concept Set Construction. The size of our concept set is decided by two hyperparameters p and q.
In general, it is often expected to build a large concept set for completeness. However, a large concept
set will make the CBM conversion and inference costly. Hence, we suggest setting moderate values
for p and q. Our current setup uses a set of default settings p = 5 and q = 6; although relatively small,
it is sufficient to cover a wide range of concepts, as supported by our promising label prediction
performance (see Sec. 5.1). Our concept pooling has a hyperparameter k to control the number of
selected concepts. We set k = 2 in our experiments. Overall, SUPCBM constantly outperforms
SOTA CBMs and eliminates information leakage when using different k.

In Appx. E, we have included a comprehensive ablation analysis that examines the effects of
parameters p, q, and k on SUPCBM. This analysis explains the rationale behind our default choices
of these parameters.

GPT Versions. SUPCBM employs GPT-4 (2023-07-01) to generate (textual) concepts. As will be
shown in Sec. 5, SUPCBM outperforms prior CBMs that are based on GPT-3. To justify that the
superiority of SUPCBM is not brought by GPT-4, we also adopt GPT-3 (2023-03-15) to generate
concepts for SUPCBM. Overall, SUPCBM’s performance on GPT-4 and GPT-3 is almost identical,
and constantly outperforms SOTA CBMs to a large extent; see details in Appx. F.

Prompt Design. Our explorations show that tuning the prompts (e.g., the wording, grammatical
structure, etc.) does not affect the generated concepts, due to the simple and straightforward
requirements (i.e., generating descriptions for concepts and classes) of our prompts.

CB Layer & Training. The CB layer in SUPCBM is a single-layer fully-connected neural network.
We train the CB layer using the Adam optimizer with 100 epochs, which takes approximately 30
minutes. We consider learning rates of 0.00001, 0.0001, 0.001, and 0.002, and report the mean and
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standard deviations of our results in Sec. 5. All experiments are performed on AMD Ryzen 3970X
CPU with 256GB RAM and one Nvidia GeForce RTX 3090 GPU.

5 EVALUATIONS

We evaluate SUPCBM’s performance in Sec. 5.1, and assess information leakage in Sec. 5.2. We
also conduct large-scale human studies to evaluate the interpretability of different CBMs in Sec. 5.3.
Sec. 5.4 presents case studies of SUPCBM’s concepts and interpretations.

5.1 PERFORMANCE COMPARISON

Following previous works (Yuksekgonul et al., 2022; Oikarinen et al., 2023; Yang et al., 2023),
we consider the following representative datasets to evaluate the performance of different models.
These datasets are representative and cover three major computer vision domains including general
classification (CIFAR10, CIFAR100), specialized classification (CUB-Bird), and medical image
analysis (HAM10000).

CIFAR-10 (Krizhevsky et al., 2009) consists of 32×32 RGB-color images of 10 classes and each
class has 6,000 images. CIFAR-100 (Krizhevsky et al., 2009) consists of 32×32 RGB-color images
of 100 classes and each class has 600 images. CUB-Bird (Wah et al., 2011) consists of 11,788
RGB-color images of 200 bird species. HAM10000 (Tschandl et al., 2018) consists of 10,015
dermatoscopic images of pigmented skin lesions.

For CIFAR10 and CIFAR100, all CBMs use the same backbone CLIP-RN50 following (Yuksekgonul
et al., 2022; Oikarinen et al., 2023; Yang et al., 2023). For CUB-Bird, following (Yang et al., 2023),
we use CLIP-ViT14 as the backbone model to obtain a high performance. For HAM10000, we use
the standard HAM-pretrained Inception (Daneshjou et al., 2021) as the backbone.

We compare our method with the SOTA CBMs, P-CBM (Yuksekgonul et al., 2022), Label-free
CBM (Oikarinen et al., 2023), LaBo (Yang et al., 2023), and Yan (Yan et al., 2023). Their
implementation details are introduced in Sec. 6. Besides the above CBMs, existing works also
evaluate a setting (referred to as Feat) that directly uses features extracted by the backbone model for
the subsequent label prediction. In short, Feat can be deemed to offer the “upper bound” performance
of CBMs.

Table 1: Performance comparison with SOTA CBMs and the vanilla setting Feat. We mark the best
performance in bold. “N/A” indicates that they do not support the related concept generation.

MODEL CUB-BIRD CIFAR10 CIFAR100 HAM10000

FEAT 86.41 88.80 70.10 84.07

P-CBM 78.18±0.23 81.23±0.22 60.00±0.01 72.37±0.21

LABEL-FREE 78.84±0.10 85.50±0.64 65.19±0.06 81.78±0.18

LABO 83.22±0.43 87.30±0.42 66.99±0.01 82.06±0.02

YAN 81.20±0.02 80.56±0.04 67.55±0.02 N/A
SUPCBM 86.00±0.04 88.97±0.18 69.79±0.23 83.69±0.30

Table 1 reports the performance of all SOTA CBMs, the vanilla feature representation (Feat), and
SUPCBM, on the four datasets. We see that SUPCBM constantly outperforms all SOTA CBMs across
all datasets. Moreover, SUPCBM exhibits comparable performance with Feat, and even outperforms
it on the CIFAR10 datasets. We interpret the findings as highly encouraging, demonstrating the
superiority of our new CBM paradigm.

5.2 INFORMATION LEAKAGE

Metrics & Intuitions. Prior works have proposed metrics (e.g., OIS (Zarlenga et al., 2023)) to
measure impurities in CBM’s predicted concepts. However, these metrics cannot reflect information
leaked in label prediction. Therefore, inspired by (Mahinpei et al., 2021), (Raman et al., 2024),
and (Sinha et al., 2023), we assess information leakage through three concept-wise perspectives:
1) Concept Removal (Mahinpei et al., 2021), 2) Concept Locality (Raman et al., 2024), and 3)
Concept Perturbation (Sinha et al., 2023).

7
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Due to limited space, detailed setups and results of Concept Locality and Concept Perturbation are
provided in Appx. A.

5.2.1 THE CONCEPT REMOVAL

The intuition behind the The Concept Removal (Mahinpei et al., 2021) evaluation is that, if a concept
set is insufficient, the label prediction has to exploit additional information to fulfill the training
objective (e.g., achieving high accuracy) (Mahinpei et al., 2021). In that sense, if a CBM suffers
from information leakage, removing concepts that contribute most to the label prediction should not
notably undermine the CBM performance. Following this intuition, for each evaluated CBM, we start
by training it with the full concept set. Then, during the inference, we rank concepts based on their
importance and gradually remove top-ranked concepts. We expect that the performance of CBMs
which exhibit better resilience to information leakage should drop more quickly when more concepts
are removed. Here, we use our constructed concept set for a fair comparison.

Setup. Sec. 5.1 shows that LaBo has the best performance among all our competitors. Therefore,
this section assesses the information leakage in LaBo and our method. We use CUB-Bird, given
the large number of distinct classes this dataset has. We also consider the Flower dataset (Nilsback
& Zisserman, 2008); it is a phytology knowledge specific dataset with 102 visually close semantic
classes, making it handy to quantify the information leakage problem.

Baselines. We set the baseline as a dummy linear model which does not have concept alignment
as CBMs (i.e., the “concepts” are purely random) and should have the most severe information
leakage issue. Also, as an ablation, we replace the intervention matrix in SUPCBM with a learned
fully-connected layer. We denote the ablated version of SUPCBM as SUPCBMFC . Besides, we also
include all the current mainstream CBM baselines in our evaluation under Appx. B.

SupCBM
29%

Yan
18%

Label-Free
21%

Labo
23% P-CBM

9%

(a) Results of information leakage evaluation (b) Human study results

Percentage of removed high-prob. concepts

A
cc
ur
ac
y

Figure 2: Evaluation results. In Fig. 2(a), if a CBM manifests higher resilience to information leakage,
its performance should drop more quickly when more concepts are removed.
Results. As shown in Fig. 2(a), we can see that the dummy model exhibits the lowest resilience to
information leakage, as its performance drops slowly when more concepts are removed. Specifically,
even when top 10% important concepts are removed, the dummy model still has ∼80% and ∼90%
accuracy for the CUB-Bird and the Flower datasets, respectively. Fig. 2(a) also shows that SUPCBM’s
performance drops the fastest when more concepts are removed in both two datasets, indicating its
highest resilience towards information leakage. In addition, when cross-comparing SUPCBMFC with
LaBo, SUPCBMFC is lowered to random guess more quickly than LaBo. We interpret that the gap is
due to our label-supervised concept prediction, which rules out irrelevant concepts and thus improves
the resilience to information leakage (Mahinpei et al., 2021). Moreover, when cross-comparing
SUPCBM with SUPCBMFC , it is evident that the label prediction conducted via the intervention
matrix also improves the resilience to information leakage, which has been justified in Sec. 3.3.

5.3 HUMAN STUDY

To evaluate the interpretability of SUPCBM’s concept predictions, we conduct a large-scale human
study on the Amazon Mechanical Turk platform (AMT). Our study is formed using 100 questions, and
each question consists of one image from the CUB-Bird dataset and concept predictions of four SOTA
CBMs and SUPCBM. For each question, we ask 11 Ph.D. students experienced in computer vision
projects to select the most interpretable concept prediction. The interpretability is assessed from three
aspects: 1) the relevance to the image content, 2) the completeness of covered image semantics, and

8
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3) the clarity of the described concepts. The most frequently selected concept prediction is deemed
as the answer for the question. We also prepare a 20-minute teaching before the study.

Results are shown Fig. 2(b). SUPCBM is selected as the most interpretable in 29 of 100 cases, largely
outperforming other CBMs. LABO has the second-best result, presumably due to its large concept
set (i.e., 10000 concepts) compared with other SOTA CBMs. SUPCBM, in contrast, has only 3,236
concepts in the concept set, while achieving the best interpretability.

In addtion, The p-value of our human study results is around 0.0003. Since p-value < 0.05 usually
indicates a statistical significance, our results should be statistically significant.

Beak: Hooked tip
Tail: Wedge-shaped
Wing: Long
Eye: Intense gaze
Feather: White underparts

Beak: Nostrils on sides
Tail: Narrow
Wing: Narrow
Eye: Intense gaze
Feather: Narrow and pointed

Beak: Narrows towards end
Tail: White at base
Wing: Slight dihedral shape
Eye: Intense gaze
Feather: White underparts

Bill: Cone-shaped
Tail:  Squared-shaped
Wing: Green-yellow
Eye: Clear and bright
Feather: Red underparts

Bill: Cone-shaped
Tail:  Dark blue
Wing: Red underwing
Eye: Surrounded by greenish-yellow 
Feather: Bright blue head

Bill: Cone-shaped
Tail:  Squared-shaped
Wing: Bright-blue
Eye: Clear and bright
Feather: Bright blue head

Flower: Funnel-shaped
Petal:  Often ruffled or fringed edges
Stamen: Surrounding the central pistil
Calyx: Pointed tips
Leaf: Smooth or slightly wavy

Flower: Funnel-shaped
Petal:  Medium-sized (1-4 inches)
Stamen: Surrounding the central pistil
Calyx: Pointed tips
Leaf: Small to medium

Flower: Funnel-shaped
Petal:  pink, purple, red, white
Stamen: Surrounding the central pistil
Calyx: Five sepals
Leaf: Smooth or slightly wavy

Leaf: Green-color
Tendril:  Flexible and elongated
Petal: purple, pink, white, blue
Sepal: purple, pink, white, blue
Stamen: Filaments slender

Leaf: Toothed or entire margins
Tendril: Flexible and elongated
Petal: Large, showy
Sepal: silky or velvety
Stamen: Filaments slender

Leaf: Compound leaves
Tendril: Green to brown color
Petal: Large, showy
Sepal: silky or velvety
Stamen: Filaments slender

Figure 3: Case study of SUPCBM on CUB-Bird and FLOWER datasets.

5.4 CASE STUDIES

This section presents SUPCBM’s concept predictions. We focus on CUB-Bird and Flower datasets
since they are finer-grained. Empowered by our concept pooling technique, SUPCBM can deliver
precise intra-class concept identification. As in Fig. 3, for each image, we first present the perceptual
concepts (i.e., the first-level concepts) identified by SUPCBM. Then, for each perceptual concept, we
show its most important (whose probability is the highest) descriptive concept. Considering the first
row of Fig. 3, where three different black-footed albatrosses have visually different wings due to their
flying postures, SUPCBM can accurately distinguish them by recognizing the distinct semantics of
their wings. Specifically, the third albatross differs from the other two with spreading wings, and
SUPCBM can identify such differences by predicting the “Slight dihedral shape” wing.
Also, the second albatross folds its wings; SUPCBM captures it and predicts the adjectival concept
“narrow” for “tail” and “wing”.

Regarding the Flower dataset shown in the last two rows of Fig. 3, we find that unlike the CUB
dataset where birds have diverse motions, the concepts (both perceptual and descriptive) are mostly
similar for flows from the same class. However, SUPCBM can still capture the subtle differences.
Considering the Petunia images (the third row) shown in Fig. 3, where three images are highly similar
in terms of the color and shape, SUPCBM can precisely recognize “five sepals” for “calyx”
in the third image, and identify the “Pointed tips” in the other two images. Overall, these cases
demonstrate the effectiveness of SUPCBM in capturing diverse concepts and rich semantics, and
interpreting its predictions.

6 DISCUSSION, LIMITATIONS, AND RELATED WORKS

CBM Development. CBMs have been prosperously developing in recent years w.r.t. different aspects.
Representative CBMs schemes include T-CAV (Kim et al., 2018), ACE (Ghorbani et al., 2019),
Completeness-aware CBM (Yeh et al., 2020), CEMs (Zarlenga et al., 2022), GlanceNets (Marconato
et al., 2022), and probabilistic CBMs (Kim et al., 2023). Effective training objectives of CBMs are
also proposed, such as in coop-CBMs (Sheth & Ebrahimi Kahou, 2023). Several metrics have been
designed to assess the concept prediction, such as Oracle Impurity Score (Zarlenga et al., 2023)
and Niche Impurity Score (Zarlenga et al., 2023). Some recent works also focus on optimizing the
intervention of CBMs (Espinosa Zarlenga et al., 2023; Marcinkevičs et al., 2024).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Information Leakage. Previous works adopt hard CBMs to alleviate information leakage induced
by concept probabilities. Since hard CBMs usually exhibit limited performance compared with soft
CBMs, a “side channel” mechanism is implemented in hard CBMs. Side-channel CBMs (Havasi
et al., 2022) use a residual connection to link the concept predictor and the label predictor, and pass
additional information to the label predictor. Although hard CBM’s performance is improved, such
side channels compromise the interpretability and intervenability. Moreover, hard CBMs themselves
cannot alleviate information leakage due to irrelevant concepts (Mahinpei et al., 2021).

Post-hoc Concept Conversion. P-CBM (Yuksekgonul et al., 2022) is the first post-hoc CBM that uses
the CLIP embeddings to align images and concepts. P-CBM first projects an image embedding onto
the concept subspace and then computes its similarities with different concepts. These similarities
are adopted for label prediction. The label predictor in P-CBM is connected with image embeddings
via a residual connection. Label-free CBM (Oikarinen et al., 2023) is mostly similar to P-CBM,
but computes similarity between images and concepts using the dot product of their embeddings.
Label-free CBM is the first work that employs GPT models to generate textual concepts. LaBo (Yang
et al., 2023) builds semantic vectors with a large set of attributes from LLMs. It uses GPT-3 to
produce factual sentences about categories to form candidate concepts, and then employs a so-called
submodular utility to effectively explore potential bottlenecks that facilitate the identification of
distinctive information. Yan et al. (Yan et al., 2023) use concise and descriptive attributes extracted
from LLMs. Specifically, it adopts a learning-to-search method to extract a descriptive subset of
attributes from LLMs by pruning the large attribute set.

Limitations and Mitigations. Concept annotation is the primary obstacle in developing CBMs.
Similar to prior post-hoc concept conversion, SUPCBM leverages LLM and CLIP to automatically
annotate concepts. Two limitations shared by all post-hoc methods are yia LLM’s inability to generate
concepts and yib the incorrect similarity scores delivered by CLIP. Our current results over diverse
datasets show that yia is not a concern for natural images; that said, when using SUPCBM for domains
that are largely different from natural images, we suggest generating concepts via corresponding
domain-specific LLMs. yib is mitigated by our intervention matrix and the concept pooling mechanism.
Note that our label prediction only uses relevant concepts for each label and the concept pooling only
selects concepts of the top-k probabilities.

7 CONCLUSION

This paper has proposed SUPCBM, a novel approach to improve the interpretability of CBMs with
supervised concept prediction, hierarchical concepts, and a post-hoc design. Evaluations show that
SUPCBM can effectively outperform existing CBMs to offer high interpretability and competitive
performance (which reaches the vanilla, feature-based models) across various settings.
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APPENDIX

A MORE BENCHMARKS FOR EVALUATING INFORMATION LEAKAGE

Besides the Concept Removal in Sec. 5.2, in this section,we aim to provide a more thorough
evaluation of information leakage by conducting two metrics with Concept Locality (Raman et al.,
2024) and Concept Perturbation (Sinha et al., 2023). These metrics are designed to assess the
robustness and security of our models against potential information leaks.

We present the results of the two evaluations for all baseline Concept Bottleneck Models (CBMs) and
our proposed SUPCBM in Table 2 and Table 3. These results highlight the comparative performance
and effectiveness of our approach in mitigating information leakage.

A.1 CONCEPT LOCALITY

Table 2: Leakage evaluation using Concept Locality (Raman et al., 2024)

BEAK EYE WING
LABO 1.43 1.194 1.35
YAN 1.03 0.902 1.74
LABEL-FREE 0.853 0.824 1.12
SUPCBM 0.0104 0.009 0.014

The first metric Concept Locality (Raman et al., 2024) checks whether modifying image regions
outside a concept will affect its corresponding probability predicted by the CBM. Since this metric
requires annotated concepts (i.e., image regions) in images, we applied it to the CUB-Bird dataset.
All CBMs are equipped with the CLIP-ViT14 vision backbone to present a fair evaluation.

For this experiment, we set up the evaluation using the CUB-Bird dataset, which provides
comprehensive annotations for the concepts of beak, wings, and eyes. The dataset includes 79
images with full concept annotations, making it ideal for evaluating leakage. In our evaluation, every
time a CBM predicts one concept c for an image x, we select another different concept c∗ from the
annotated ones and remove all pixels belonging to c∗ from x. We then feed the modified x (where c∗

is removed) to the CBM and record the absolute change of c’s probability. The less change in the
concept c’s probability, the less information is leaked.

As illustrated in Table 2, SUPCBM exhibits significantly lower information leakage compared to
other CBMs, with locality values of 0.0104, 0.009, and 0.014 for beak, eye, and wing, respectively.

Table 3: Leakage evaluation using Concept Perturbation (Sinha et al., 2023)

ϵ=2/255,α=1/255 ϵ=4/255,α=1/255 ϵ=8/255,α=2/255
LABO 0.305 0.44 0.55
YAN 0.437 0.767 1.09
LABEL-FREE 0.414 0.64 0.872
SUPCBM 0.023 0.034 0.054
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A.2 CONCEPT PERTURBATION

Concept Perturbation (Sinha et al., 2023) identifies irrelevant (i.e., leaked) information by checking
whether the label prediction result is unchanged when perturbing concept prediction results. If
modifying some concepts does not change the predicted label, the modified concepts denote irrelevant
information. (Sinha et al., 2023) proposes to find such cases (i.e., altered concept prediction but
retained label prediction) via gradient-based optimization.

We implemented the Concept Perturbation metric based on PGD’s pipeline and updated the PGD’s
objective as simultaneously minimizing label prediction loss (i.e., retaining the label prediction) and
maximizing the concept prediction loss (i.e., differing the concept prediction). Since the ground truth
concepts are unavailable, for each input, we record the maximal concept probability variation that
does not change the original label prediction result. The maximal variations are represented in the
form of L2 distance norm and averaged for all inputs.

We set up the PGD pipeline with various configurations for the step size α and the perturbation
bound ϵ, and reported the L2 norm values in Table 3, where a lower value indicates less leakage. It is
apparent that SUPCBM’s information leakage is significantly lower than other CBMs.

B MORE BASELINES FOR EVALUATING INFORMATION LEAKAGE

0 2 4 6 8 10
Percentage of removed high-prob. concepts
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Figure 4: Evaluation results. The extension of the leakage evaluation in Fig. 2(a).

To further evaluate the information leakage of all baseline CBMs, we provide the results (i.e., an
extension of our Fig. 2(a) in the main paper) of the current mainstream baseline CBMs and SUPCBM
in Fig. 4. Overall, SUPCBM largely outperforms all baselines.

C INTERVENTION

In this section, we choose to adopt the common intervention process following (Oikarinen et al.,
2023) that corrects a mispredicted concept for a specific sample. The intervention process allows
to determine which concepts should be used for the follow-up label prediction (e.g., removing a
predicted concept if is not in the ground truth concepts).

Essentially, this process and its objective are consistent with our intervention matrix where a binary
matrix is employed to decide which concepts are used for predicting labels. The intervention matrix
in SUPCBM is a binary matrix where each (i, j)-th entry indicates whether the i-th concept is set
as involved in predicting the j-th class. The intervention matrix also does not have any trainable
parameters; its binary entries are set up by users.

To perform intervention for an input x, users only need to accordingly update entries in the intervention
matrix. For instance, setting the (i, j)-th entry as 1 can let the i-th concept be involved in predicting
the j-th label for x.
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When ground truth concepts for the j-th class are available, to intervene in the label prediction of
SUPCBM accordingly, users only need to set the corresponding entries (of the ground truth concepts)
in the intervention matrix’s j-th column as 1 and let other entries in the j-th column be 0.

C.1 EVALUATIONS

Table 4: Intervention evaluation results; it shows the number of correctly fixed label predictions by
each CBM.

LaBo Yan Label-Free SUPCBM P-CBM
#correctly fixed predictions 28 24 16 88 32

To show that SUPCBM supports local intervention and exhibits better intervenability, we follow the
setup in (Oikarinen et al., 2023), and conducted the experiments in this subsection to evaluate the
intervenability of prior CBMs and SUPCBM.

We first collect 300 test inputs from the CUB-Bird dataset that all prior CBMs and SUPCBM
misclassify. Then, we check whether the incorrect label predictions of these inputs can be fixed
by removing the top-0.5% (in terms of concept probabilities) concepts predicted by each CBM. In
SUPCBM this can be directly done by setting the corresponding entries in the intervention matrix as
0. For all prior CBMs, since they do not provide an intervention mechanism, we manually set the
top-0.5% concepts’ probabilities as 0.

We show the number of correct label predictions in Table 4. Our SUPCBM performs the best, with
88 correct predictions, which is more than double the second-best result of 28 by LaBo.

D GENERALITY OF DIFFERENT POST-HOC CBMS AND SUPCBM

While recent post-hoc CBMs achieve promising performance, they all take the text encoder of CLIP
to label concepts (i.e., obtaining the text embeddings of concepts); however, the goal of CBMs is to
understand the pair-wised visual backbone model (i.e. the corresponding image encoder). Hence, it is
unclear whether the concept knowledge learned by the text-encoder will be fully aligned or unbiased
with the pair-wised image encoder. Therefore, we conduct a generality evaluation in this section to
benchmark these CBMs from the “post-hoc” perspective. Specifically, we incorporate three types of
pair-wised text-vision backbone models, including RN-50, ViTB-32, ViTL-14, into these CBMs and
evaluate their performance.

Figure 5: Generality evaluation.

Baselines. We consider two baselines to compare with SUPCBM Feat and CBM-proj. As
aforementioned, Feat is the vanilla feature representation, which offers the “upper bound”
performance toward targeted vision backbones. CBM-proj is a direct projection of the CLIP
text-image cosine similarity score onto the label space, which deems the most straightforward way
to validate the bias from the CLIP Text-encoder for visual-model prediction and subsumes prior
post-hoc CBMs. For a fair comparison, we use the same concept set in CBM-proj as in our method.

Results are shown in Fig. 5; it is seen that SUPCBM constantly outperforms all competitors on all
datasets with different backbone models. Also, these competitors’ performance may change largely
with backbone models, whereas SUPCBMś performance is stable when using different backbones,
indicating its better generality.
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E ABLATION STUDY OF SUPCBM’S HYPERPARAMETERS

In this section, we analyze how different settings of SUPCBM’s hyperparameters affect its
performance. We specifically look at the effects of the kernel size p, stride q, and top-k similarity
used as the ground truth concepts in the Concept Pooling mechanism.

E.1 THE CHOICE OF KERNEL SIZE q AND STRIDE p

Table 5: Ablation study of p

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Avg
p = 2 2 2 2 2 2 2 2 2 2 2 2
p = 5 5 4 5 5 5 5 5 5 5 4 4.8
p = 10 7 4 7 4 6 7 5 5 4 4 5.3
p = 20 7 5 6 7 5 7 4 5 5 4 5.5

Table 6: Ablation study of q

Wing Tail Door Wheel Headlight Avg
q = 3 3 3 3 3 3 3
q = 6 6 6 5 6 6 5.8
q = 9 7 6 5 7 6 6.2

In this section, we evaluate the impact of hyperparameters p and q in SUPCBM. In particular, we
evaluated the number of unique textual concepts generated by GPT when using different p and q. We
deem a textual concept as unique if 1) it is not generated by GPT twice and 2) its synonyms are also
not in GPT’s outputs. We used CIFAR10 to speed up the experiment and fixed the prompt and GPT’s
temperature.

The results for p are shown in Table 5: although all textual concepts are valid when p = 2, they do
not cover all necessary concepts compared with cases of higher values. On the contrary, increasing p
makes GPT generate more concepts; however, the number of unique concepts gets saturated around
5. Hence, we deem our setting p = 5 is proper.

We also evaluated q following the same setup above. As shown in Table 6, the stride q is saturated
around 6. Hence, we deem our setting q = 6 is proper.

To sum up, we set p = 5 and q = 6 in the main paper because using lower thresholds would result in
the loss of useful concept information, while higher thresholds would cause GPT to repeat its outputs
or generate many unhelpful concepts.

E.2 THE IMPACT OF THE TOP-k CONCEPT-SIMILARITY

Percentage of removed high-prob. concepts

A
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FLOWER CUB-Bird

Percentage of removed high-prob. concepts
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Figure 6: Information leakage evaluation of SUPCBM w.r.t. different k.
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Table 7: Area Under Curve results of Fig. 6.
Number of K 1 2 3 4 5

CUB-Bird 26.73 26.94 27.34 28.06 29.05

Flower 27.50 27.72 28.07 28.55 29.20

In this section, we focus on the impact of different k values in the concept pooling. Following
Sec. 5.2, we assess the information leakage and results are illustrated in Fig. 6; the Area Under Curve
(AUC) value of each curve in Fig. 6 is reported in Table 7.

Since our concept set is maintained at a moderate level, varying k does not notably affect the
information leakage, indicating the resilience of our concept pooling towards hyperparameters. Note
that the concept pooling mechanism primarily aims to rule out irrelevant to reduce hard-concept
leakage, this result can justify that our concept set is condensed and unlikely to have redundance.
Consider that more predicted concepts ease the interpretation (as suggested in (Yang et al., 2023)),
and to reduce the training complexity, we therefore recommend k = 2, as adopted in the main body of
this paper. Having that said, we suggest practitioners to adjust k based on their specific applications.

F IMPACT OF GPT VERSIONS

To justify that SUPCBM’s superiority over prior GPT-3-based CBMs is not due to GPT-4, this section
evaluates SUPCBM’s performance with GPT-3.

We use the same hyperparameters as in Sec. 5, namely k = 2, p = 5 and q = 6. Results are
shown in Table 8 below: SUPCBM’s constantly outperforms prior SOTA CBMs when using different
GPT versions, rendering the superiority of SUPCBM’s design and our novel mechanisms in CBMs.
Different GPT versions may lead to (slightly) different performances on different datasets, though the
overall performance of SUPCBM is stable across different GPT versions.

Table 8: Performance comparison of SUPCBM with different GPT versions (GPT3 and GPT4).

MODEL CUB-BIRD CIFAR10 CIFAR100 HAM10000

FEAT 86.41 88.80 70.10 84.07

P-CBM 78.18±0.23 81.23±0.22 60.00±0.01 72.37±0.21

LABEL-FREE 78.84±0.10 85.50±0.64 65.19±0.06 81.78±0.18

LABO 83.22±0.43 87.30±0.42 66.99±0.01 82.06±0.02

YAN 81.20±0.02 80.56±0.04 67.55±0.02 N/A
SUPCBM + GPT4 86.00±0.04 88.97±0.18 69.79±0.23 83.69±0.30

SUPCBM +GPT3 85.42±0.10 89.21±0.18 68.32±0.11 83.85±0.02
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