
A Appendix

A.1 Motivation to build a general KD framework

Modern detectors are roughly divided into two-stage detectors [32, 14, 3] and dense prediction
detectors (e.g., anchor-based one-stage detectors [24, 26, 31] and anchor-free one-stage detectors
[11, 37, 43]). Each family has its own advantages and weakness. In particular, two-stage detectors
usually have higher performance, while being slower in inference speed and harder to be deployed
due to the region proposal network (RPN) and RCNN head. On the other hand, dense prediction
detectors are faster than two-stage detectors while being less accurate. In practice, it is a natural idea
to use two-stage detectors as teachers to enhance dense prediction detectors.

Moreover, knowledge distillation between heterogeneous dense prediction detector pairs is also
promising. In some scenarios, only the detectors with a specific architecture can be deployed
due to hardware limitations. For example, compared with Batch Normalization [18] and Instance
Normalization [39], Group Normalization [42] is hard to deploy. However, the most powerful
teachers may belong to different categories. Furthermore, object detection is developing rapidly and
algorithms with better performance are proposed continuously. Nevertheless, it is not easy to change
detectors frequently in terms of stability and hardware runtime limitations in practical applications.
So it is helpful if knowledge distillation can be conducted between the latest high-capacity detectors
and the widely-used compact detectors.

Hence, we are motivated to design a general distillation method capable of distilling knowledge
between both homogeneous and heterogeneous detector pairs.

A.2 Details of Training Recipe

We conduct experiments on different detection frameworks, including two-stage models, anchor-
based one-stage models and anchor-free one-stage models. [19] proposes inheriting strategy which
initializes the student with the teacher’s neck and head parameters and gets better results. Here we
use this strategy to initialize the student which has the same head structure as the teacher and find
that it helps students converge faster.

All experiments are performed on 8 Tesla A100 GPUs with 2 images in each. Our implementation is
based on mmdetection [7] and mmrazor [9] with Pytorch framework [30]. ’1x’ (namely 12 epochs),
’2x’ (namely 24 epochs) and ’2x+ms’ (namely 24 epochs with multi-scale training) training schedules
with SGD optimizer are used. Momentum and weight decay are set to 0.9 and 1e-4. The initial
learning rate is set to 0.02 for Faster RCNN and 0.01 for others. We train FCOS [37] with tricks
including GIoULoss, norm-on-bbox and center-sampling which is the same as FGD [44] and GID
[10]. For distillation, only one hyper-parameter α is introduced to balance the supervised learning
loss and distillation loss, and it is set to 6 when using a two-stage detector as the teacher and 10 when
using a one-stage one as the teacher. The teacher network is well-trained previously and fixed during
training.

A.3 Connection of PCC and KL divergence

Section 3.4 in the main text shows the connection between PCC and KL divergence. We conduct
two experiments on RetinaNet and GFL to verify this empirically. For both experiments, we set loss
weight α = 10 and temperature T = 50. As shown in Table 7, minimizing KL divergence between
post-normalized features in the high-temperature limit can also achieve similar results.

A.4 Details of feature imitation with MSE

As shown in Table 5 in the main text, we compare the results of MSE with our proposed PKD. As the
gradient of MSE loss depends on feature value magnitude and it is usually different among different
detectors, we have to tune the loss weight carefully to achieve relatively good results, as shown in
Table 8. And we put the best results down in Table 5.
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Table 7: Results of the KL divergence with normalization mechanism.
Method schedule mAP AP50 AP75 APS APM APL

Retina-ResX101 (T) 2x 40.8 60.5 43.7 22.9 44.5 54.6
Retina-Res50 (S) 2x 37.4 56.7 39.6 20.0 40.7 49.7
Norm+KL 2x 40.9 60.3 43.6 22.9 45.2 55.1

GFL-Res101 (T) 2x+ms 44.9 63.1 49.0 28.0 49.1 57.2
GFL-Res50 (S) 1x 40.2 58.4 43.3 23.3 44.0 52.2
Norm+KL 1x 43.1 60.9 46.7 25.1 47.8 55.9

Table 8: Results of MSE on various detector pairs.
Teacher Student Schedule Baseline Loss Weight mAP

FCOS-ResX101 Retina-Res50 1x 36.5
5 33.9

10 31.4
20 29.7

FCOS-ResX101 Retina-Res50 2x 37.4
5 36.3

10 35.6
20 34.9

GFL-Res101 FCOS-Res50 1x 36.6 50 38.7
70 39.2

GFL-Res101 FCOS-Res50 2x 39.1

10 41.5
30 42.5
50 42.7
70 43.0
80 42.9

Retina-ResX101 Retina-Res50 2x 37.4
5 40.0

10 40.4
15 40.3

MaskRCNN-Swin FasterRCNN-Res50 2x 38.4

3 41.7
5 41.7
6 41.6

10 41.7

A.5 Effectiveness of Pearson Correlation Coefficient

In this paper, we argue that the magnitude difference, dominant FPN stages and channels can
negatively interfere with the training phase of the student. To clearly show that these three issues
do exist, we elaborately visualize the FPN feature responses of the teacher and student detectors
before distillation, as shown in Figure 4, Figure 5, Figure 6 and Figure 7. We follow the visualization
method in Section 1.

Through these comparisons, we obtain the following three observations:

(1) The feature value magnitude of different detectors could be significantly different, especially
for heterogeneous detectors, as shown in Figure 4. Directly aligning the feature maps between the
teacher and the student may enforce overly strict constraints and do harm to the student (see Table 5
top in the main text).

(2) As shown in Figure 5, compared with features in FPN stage ’P3’ and ’P4’, features in stage ’P5’
and ’P6’ are less activated in both GFL-Res101 and FCOS-Res50. And it is a common case among
different detector pairs. FPN stages with larger values could dominate the gradient of the distillation
loss, which will overwhelm the effects of other features in KD.
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(3) As shown in Figure 6 (right), the feature magnitude of the 210-th channel of MaskRCNN-Swin
FPN stage ’P6’ is significantly larger than others. Similar phenomena also exist in other detectors
such as RetinaNet (see Figure 7). The small gradients produced by those less activated channels
can be drowned in the large gradients produced by dominant ones, thus limiting further refinement.
Furthermore, there is much noise in the object-irrelevant area, as depicted in Figure 6 (left). Directly
imitating the feature maps may introduce much noise.

Comparing Table 8 and Table 5 in the main text, we find that our proposed PKD addresses the above
three issues and achieves better performance. Hence, an effective distillation loss function should
have the ability to handle the above three problems. We hope PKD could serve as a solid baseline
and help ease future research in knowledge distillation community.

Figure 4: Visualization of the activation patterns and activation distribution of FPN stage ’P3’.
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Figure 5: Visualization of dominant FPN stages. From left to right, they correspond to the activation
patterns in FPN stage ’P3’ to ’P6’. The leftmost corresponds to the lowest stage of FPN, and the
rightmost corresponds to the highest stage of FPN.

Figure 6: Visualization of dominant channels in MaskRCNN-Swin and FasterRCNN-Res50. Left: Vi-
sualization of the activation patterns of FPN stage ’P3’. Right: Dominant channels in pre-normalized
FPN stage ’P3’. Let sl,u,v ∈ RC denote the feature vector located in pixel (u, v) from l-th FPN stage
and omit l for clarity. Then numberi =

∑
u,v 1[argmaxc s

(c)
u,v = i] where i is the channel index.

We define channels with a larger number as dominant channels.
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Figure 7: Visualization of dominant channels in Retina-ResX101 and Retina-Res50.

Figure 8: Visualization of the activation patterns and activation distribution of GFL-Res101 and
FCOS-Res50. From left to right, they correspond to the activation patterns and activation distribution
in FPN stage ’P3’ to ’P6’. The leftmost corresponds to the lowest stage of FPN, and the rightmost
corresponds to the highest stage of FPN. The feature value magnitude of GFL and FCOS is similar.
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