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1 Additional Experiments1

Ablation on GP Kernels: While GUARD requires minimal tuning of GP kernel parameters due2

to online kernel learning, the type of kernel is still a design choice. In GUARD we employ Matern323

kernels to model each parameter and take the product of individual kernels to obtain the final kernel.4

In Table 1 we conduct an ablation that also considers 1) RBF kernels, 2) Using sum instead of5

product, and 3) no composition, using one RBF or Matern32 kernel for all parameters. We first find6

that without modeling each parameter separately, the results are poor. Also, using a sum operation7

to aggregate kernels is ineffective as well. The best results are obtained from a product of RBF or8

Matern32 kernels. We choose product of Matern32 as the lower false positive rate is critical for9

ensuring safety. Furthermore, this choice also exhibits much lower variance in the metrics, making10

it more reliable for testing.11

BO Acquisition Functions: As mentioned in Section 2 of the main manuscript, many adversarial12

example generation methods use Bayesian Optimization(BO) [1] and employ acquisition functions13

that minimize some adversarial objective. Since BO also leverages GPs and active learning sim-14

ilar to GUARD, we can adopt these acquisition functions. In particular we use lower confidence15

bound (LCB), expected improvement (EI), and probability of improvement (PI). For EI and PI we16

adjust them to decrease the objective (expected decrease and probability of decrease). The results17

in Table 2 show that these alternatives can achieve strong results but is not as effective as using the18

Straddle acquisition function. This is because cost minimization oversample very negative points19

and Straddle oversamples boundary points, but the former is more useful in partioning pass / fail20

regions. The performance is however very close, and we hypothesize this is because the parameter21

space is dominated by positive (passes). With very small negative regions, severe negatives are close22

to boundary points.23
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Figure 1: Runtime

Runtime Comparison A major implementation detail regard-24

ing our baselines is the discretization resolution. For grid search25

and t-way testing, there is a direct tradeoff between coverage26

and balanced accuracy, error recall, false positive rate. Thus,27

we select a resolution which can cover most of the parameter28

space. For HiddenGems [2], the resolution does not affect cover-29

age since it uses a levelset estimation [3] algorithm to determine30

which bins are covered. The limitation for our choice of reso-31

lution of 6 is due to how the computation budget increases ex-32

ponentially with resolution. This is because the method requires33

running the GP on all discretized bins at every iteration. And34

while running the GP a single time is neglible compared to run-35

ning simulation, the exponential scaling makes the GP queries a36

bottleneck at higher resolutions. As we show in Figure 1, at this resolution the runtime roughly37

equals GUARD.38

2 Algorithm Details39

We provide a more detailed overview of the algorithm used for GUARD in Algorithm 1. The40

argmax operations are done via gradient based optimization as described in the main manuscript.41
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Kernel Type Composition Coverage(%) Bal. Acc(%) Pos Acc(%) Neg Acc(%) Err. Recall(%) FPR(%)

RBF - 96.1 ± 0.8 80.2 ± 5.7 98.1 ± 0.5 62.4 ± 11.2 56.0 ± 10.6 10.6 ± 3.3
Matern32 - 87.3 ± 1.5 78.5 ± 4.2 99.3 ± 0.2 57.7 ± 8.4 36.8 ± 7.7 6.15 ± 1.1
RBF Sum 88.0 ± 6.7 58.6 ± 3.2 89.1 ± 11.4 28.2 ± 11.5 21.4 ± 12.0 20.2 ± 5.7
Matern32 Sum 90.4 ± 3.3 58.4 ± 3.3 88.0 ± 10.7 28.7 ± 13.7 23.6 ± 12.7 21.0 ± 3.1
RBF Product 96.8 ± 0.7 83.3 ± 7.0 97.9 ± 0.6 68.7 ± 13.9 62.6 ± 13.1 7.83 ± 4.0
Matern32 Product 94.3 ± 0.9 84.2 ± 5.3 99.2 ± 0.2 70.3 ± 10.6 58.9 ± 5.3 5.89 ± 3.1

Table 1: Ablation of different kernel choices for GUARD
Aquisition Fn. Coverage(%) Bal. Acc(%) Pos Acc(%) Neg Acc(%) Err. Recall(%) FPR(%)

PI 90.7 ± 1.6 82.2 ± 3.9 99.4 ± 0.1 64.9 ± 7.8 49.0 ± 7.5 8.23 ± 2.4
EI 91.8 ± 1.3 82.6 ± 2.3 99.4 ± 0.2 65.7 ± 0.5 50.7 ± 5.2 6.99 ± 1.4
LCB 91.5 ± 1.5 83.4 ± 1.8 99.6 ± 0.1 67.3 ± 3.6 52.4 ± 4.7 5.99 ± 1.4
Straddle 94.3 ± 0.9 84.2 ± 5.3 99.2 ± 0.2 70.3 ± 10.6 58.9 ± 5.3 5.89 ± 3.1

Table 2: Comparison of cost minimization acquisition functions versus Straddle acquistion function.

Algorithm 1: Detailed Algorithm for GUARD
Input: Test function f∗, test Threshold γ, budget N , initial batch size M , initial kernel param-

eters κ0, kernel update frequency K, Gaussian CDF Φ(·)
G← GP (κ0) . initialize GP
µ(·), σ(·)← mean of G, standard deviation of G
for t in 1, ..., M do

θt ← argmaxθ σ(θ) . Initial batch for exploration
G← UPDATEGPSAMPLES(G,θt, f

∗(θt))
end
κM ← argmaxκ P (f(θ1) . . . f(θt) | θ1 . . .θt;κ) . Probability under GP prior
G← UPDATEGPKERNEL(G,κM )
for t in M+1, ..., N do

θt ← argmaxθ βσ(θ) + |µ(θ)− γ| . Explore or be close to boundary
G← UPDATEGP(G,θt, f

∗(θt))
if t ≡ 0 mod K then

κt ← argmaxκ P (f(θ1) . . . f(θt) | θ1 . . .θt;κ) G← UPDATEGPKERNEL(G,κt)
end

end
function PASSFAILESTIMATION(θ, α) is

p+ ← Φ

(
µ(θ)−γ
σ(θ)

)
. Probability value at θ is greater than threshold

p− ← Φ

(
γ−µ(θ)
σ(θ)

)
. Probability value at θ is less than threshold

if p+ ≥ α then
return 1 . Pass

else if p− ≥ α then
return −1 . Fail

else
return 0 . Uncertain

end
return PASSFAILESTIMATION

3 Test Scenarios42

Details on our parameterized scenarios are provided in Table 3 where we give a high level description43

of each scenario, associated parameters configuring the traffic agents or road, and parameter bounds.44
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Scenario Parameter Bounds

AV follows lane, actor cuts in
from neighboring lane

AV initial speed [20, 40] m/s
Actor initial speed relative to AV [-10, 10] m/s
Cut-in lane change duration [1, 10] s
Time to collision at initialization assuming constant speed [1, 6] s
Road curvature [-0.002, 0.002] m−1

AV follows lane, multiple
actors merge in from on-ramp

AV time-to-arrival to merge point [0.5, 5.0] s
AV initial speed relative to speed limit [-10.0, 10.0] m/s
Actors speed relative to AV [-10.0, 10.0] m/s
Time interval between actors [1.0, 4.0] m/s
Actors time-to-arrival to merge point [0.5, 5.0] s

AV follows lane, lead actor
brakes

Time-to-collision at initialization assuming constant speed [1.0, 10.0] s
Actor initial distance relative to AV [20.0, 200.0] m
AV initial speed relative to speed limit [-10.0, 0.0] m/s
Actor target speed relative to AV initial speed [-30.0, 10.0] m/s
Road curvature [-0.003, 0.003] m−1

AV follows lane, actor
overtakes from neighboring
lane

Actor initial follow distance [1.0, 30.0] m/s
Actor headway for lane change [-10.0, 10.0] m
Actor overtake acceleration [0.1, 5.0] m/s2

Actor lane change duration [0.5, 3.0] s
Road curvature [-0.002, 0.002] m−1

AV follows lane, actor cuts in
from shoulder

Actor initial speed relative to AV [-29.0, -15.0] m/s
Actor initial distance from lane boundary [0.1, 0.3] m
Time-to-collision at initialization assuming constant speed [1.0, 6.0] s
Actor cut-in duration [1.0, 8.0] s
Road curvature [-0.002, 0.002] m−1

AV merges from on-ramp, with
an actor on its target lane

AV time-to-arrival to merge point [0.5, 6.0] s
Actor time-to-arrival to merge point [0.5, 6.0] s
AV initial speed relative to speed limit [-10.0, 10.0] m/s
Actor initial speed relative to AV initial speed [-10.0, 10.0] m/s
Lane encroachment threshold for actor to react to AV [-5.0, 5.0] m

AV merges from parallel
on-ramp, with an actor on its
target lane

AV time-to-arrival to merge point [0.5, 6.0] s
Actor time-to-arrival to merge point [0.5, 6.0] s
AV initial speed relative to speed limit [-10.0, 10.0] m/s
Actor initial speed relative to AV initial speed [-10.0, 10.0] m/s
Lane encroachment threshold for actor to react to AV [-5.0, 5.0] m

AV merges from on-ramp, with
multiple actors on its target
lane

AV time-to-arrival to merge point [0.5, 6.0] s
Actors time-to-arrival to merge point [-8.0, 4.0] s
AV initial speed relative to speed limit [-10.0, 10.0] m/s
Actors initial speed relative to AV initial speed [-10.0, 10.0] m/s
Time interval between actors [1.0, 6.0] s

AV changes lane, with an actor
on its target lane

Road curvature [-0.002, 0.002] m−1

Actor initial speed relative to AV initial speed [-10.0, 10.0] m/s
AV initial speed relative to speed limit [-10.0, 10.0] m/s
Time-to-collision at initialization assuming constant speed [1.0, 15.0] s
Lane encroachment threshold for actor to react to AV [-2.0, 2.0] m

AV changes lane, with multiple
actors merging from on-ramp

AV time-to-arrival to merge point [0.5, 6.0] s
Actor time-to-arrival to merge point [0.5, 6.0] s
AV initial speed relative to speed limit [-10.0, 10.0] m/s
Actor initial speed relative to AV initial speed [-10.0, 10.0] m/s
Time interval between actors [1.0, 6.0] s

Table 3: Test scenario details
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