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Abstract

In this paper, we study gradient methods for training deep linear neural networks
with binary cross-entropy loss. In particular, we show global directional conver-
gence guarantees from a polynomial rate to a linear rate for (deep) linear networks
with spherically symmetric data distribution, which can be viewed as a specific
zero-margin dataset. Our results do not require the assumptions in other works
such as small initial loss, presumed convergence of weight direction, or overparam-
eterization. We also characterize our findings in experiments.

1 Introduction

Local v.s. non-local analysis. Deep neural networks have been successfully trained with simple
gradient-based methods, despite the inherent non-convexity of the objective function. Recently, a
number of works proved the convergence of gradient methods to global minima for ultra-wide neural
networks [1, 4, 12, 13, 20, 31]. These works essentially performed “local analysis” because in their
proofs the parameters stay close to initialization during training. In the large width setting, there
exists a global minimum near a random initial point, thus staying in the local region can still result
in convergence to global minima. Despite the technical convenience of handling a local region, in
practical training, the parameters often travel far from initialization (see, e.g., [15]). To understand
the practical optimization trajectory, it is important to develop a non-local convergence analysis.

Deep linear nets with quadratic loss: “local analysis”. To understand the behavior of gradient
descent (GD) for general neural nets, we need to understand GD for deep linear nets. A number of
works analyzed linear networks with the square loss. Bartlett et al. [7] provided that gradient descent
converges to the target matrix at a linear rate from identity initialization, while assuming the target
matrix is either close to identity or positive definite. Arora et al. [2] proved linear convergence of deep
linear networks if the initialization has a positive “deficiency margin" and is nearly balanced. Later,
a few works followed a similar idea to neural tangent kernel (NTK) [20] to establish convergence
analysis. Du and Hu [11] showed GD with Gaussian random initialization converges to a global
minimum at a linear rate if the width of every hidden layer is large enough. Hu et al. [19] improved
the width requirement to be independent of depth, by utilizing orthogonal weight initialization, but
they assume each layer to have the same width. All the above works are not non-local analysis.

Deep linear nets with quadratic loss: non-local analysis. Eftekhari [14] provided non-local
convergence analysis for deep linear nets with quadratic loss. When one layer has only one neuron
(including scalar output case) and assumming that the input data are whitened, they proved that
gradient flow converges to global minimizers starting from balanced initialization.
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In this work, we are interested in the classification task with binary cross-entropy loss. To our
knowledge, there was no non-local convergence analysis of gradient flow for deep linear nets in such
a scheme.

Deep linear nets with logit loss: final-phase analysis. Several recent works [17, 38, 23, 21, 37]
studied the exponential-type loss for deep linear networks. Specifically, Gunasekar et al. [17], Nacson
et al. [38] proved the convergence to max-margin solution, but under the assumption that the weight
direction and the loss have converged to global optima, which is a “final-point analysis”. Lyu and
Li [37], Ji and Telgarsky [21, 23] also proved the convergence to max-margin solution under the
assumption that the initial point has already obtained zero classification error (weaker assumption than
[17, 38]), i.e., they analyzed the “final phase” of training. In this work, we would like to understand
the entire training dynamics, not just the “late training” period.

1.1 Our Contributions

In this paper, we analyze gradient flow for deep linear networks with logit loss (i.e. binary cross-
entropy loss). The main contributions of this paper are summarized as follows:

• Convergence result. We prove the global convergence of gradient flow for minimizing
a population logit loss with deep linear nets, under the assumption that the input data
is spherically symmetric (Theorem 3). This assumption covers the standard Gaussian
distribution and uniform distribution on the sphere. To our knowledge, this is the first global
analysis of gradient flow on deep linear nets with logit loss, though under certain strong
assumptions. We emphasize that our analysis is beyond the “lazy training” scheme.

• Convergence rate. We also establish explicit convergence rate of gradient flow (Theorem 3).
Denote θ(t) as the angle between we(t) and v, where we(t) is the collection of parameters
at time t following gradient flow, and v is the directional global minimizer. In the first phase,
we have polynomial convergence rate of cos(θ(t)), that is, cos(θ(t)) ≥ 1−O

(
(N1t)

− 2
N1π
)
,

where N1 + 2 is the depth of the deep linear network. In the second phase, we have linear
convergence rate of cos(θ(t)), that is, cos(θ(t)) ≥ 1− eO(−t). And the second phase begins
when the induced weight norm changes from descending to ascending mentioned below.

• Weight norm change pattern. We prove that the induced weight norm goes through
descending and ascending periods. If the initial induced weight norm starts with descending
behavior, then after finite time, it will change to ascending and continues increasing to
infinity. If the initial induced weight norm begins with ascending behavior, then it would
increase to infinity directly.

We also verify our results in numerical experiments including the descending and ascending behavior
of weight norm and the convergence rates in our setting.

1.2 Additional Related work

Directional convergence for exponentially-tailed loss. Previously, we mentioned a few works on
deep linear nets for classification. Next, we discuss convergence results on classification for more
general settings (not just deep linear nets). For binary classification problems, oftentimes it is the
direction of the predictor that matters, while the norm is less important. For a finite number of linearly
separable data, there can be infinitely many directions that lead to zero loss, and classical optimization
results do not show which one GD converges to. In many recent works [22, 24, 25, 38, 39, 46, 16], it
is shown that for binary classification problems with exponential-type loss (which can be viewed as
the 1-layer 1-linear-neuron net case) and linearly separable data, GD converges to the `2 maximum
margin direction. These works assume there is a positive margin. Ji and Telgarsky [22], Ji et al.
[25] also consider a non-separable case, but still requires a positive margin in the “separable part”.
Moreover, some works [21, 23, 17, 38] study the convergence of GD for training deep linear nets.
Lyu and Li [37] further studied deep homogeneous networks (covering deep linear nets and deep
ReLU nets). Yun et al. [51] provided a unified framework that connects several existing results under
a general tensor formulation of linear networks. A few other works study wide non-linear neural
nets, e.g., Chizat and Bach [9], Bach and Chizat [5] improved previous results in the infinitely wide
two-layer case, identifying the learned classifier as the solution of a convex max-margin problem.
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There are two differences between those works and ours. First, none of these works have performed
non-local convergence analysis for deep linear nets as the current work does. Second, they consider
finite data with a positive margin, and we consider infinitely many data with a zero margin. We
underline that previous convergence rates are inversely proportional to such a margin, which is
vacuous in our zero-margin setting.

More discussions on non-local analysis of deep linear nets with quadratic loss. We mentioned
Eftekhari [14] earlier; here we add more discussions. Besides the main difference in the loss functions,
there are two other differences between Eftekhari [14] and our work. First, they assume whitened
data, while we assume spherically symmetric data. Second, their convergence rate result requires
an extra assumption that the inverse spectral gap of the target matrix is small ([14, Theorem 4.4]),
while our convergence rate result does not require extra assumption. Besides the work [14], another
earlier work [6] performed “non-local analysis”, but as pointed out by [14], their work only ensures
convergence to the minimizer in a constrained subset, not necessarily the global minimizer (see
Appendix F in [14] for detail).

Global landscape analysis. In our work, the term “non-local analysis” should actually be called
“non-local convergence analysis”. There is another line of works on “non-local landscape analysis”
(see, e.g., [26, 36, 27, 42, 52, 41, 30, 10, 34, 33, 35, 49, 44] and the surveys [48, 47]) which analyze
the properties of stationary points, local minima, strict local minima, etc. These works do not directly
analyze the convergence of GD, thus are different from our work.

2 Preliminaries

We consider a binary classification problem where the data are generated as follows. Let v ∈ Rd be a
fixed vector satisfying ‖v‖ = 1. The input data point x ∈ Rd is sampled from a distribution D and
the label for each x is y(x) = sgn(v>x) ∈ {−1,+1} 1.

Suppose we want to learn the parameter w for a predictor φ(·,w) : Rd → R (the specific form of φ
will be discussed later). We use the population logit loss `(z) := ln(1 + e−z) (binary cross-entropy)
with z(x,w) = y(x) · φ(x,w). The parameter is learned by solving the optimization problem

min
w

L(w) := Ex∼D ln
(

1 + e−y(x)φ(x,w)
)
. (1)

We focus on the following standard gradient methods.

1) Gradient flow: We initialize w(0), and for every t > 0 let w(t) be the solution of the differential
equation: ẇ(t) = −∇L(w(t)).

2) Gradient descent: We initialize w(0) and set a sequence of positive learning rates {ηk}∞k=1.
At each iteration n > 0, we do a single step in the negative direction of the gradient, that is,
w(k + 1) = w(k)− ηk∇L(w(k)).

Notation. We denote vectors by lowercase bold letters (e.g., u,x,v). Moreover, ‖ · ‖ denotes the
standard `2-norm for a vector, or the spectral norm for a given matrix. Let Σ = Ex∼Dxx

> be the
population covariance matrix, and λmax(A) be the maximum eigenvalue of a real symmetric matrix
A. We by Sd−1 denote the surface of an d-dimensional unit sphere, and by Ik the k-dimensional
identity matrix.

We let w := w/‖w‖ whenever ‖w‖ 6= 0. Given vectors w = (w1, . . . , wd)
> ∈ Rd and v =

(v1, . . . , vd)
> ∈ Rd, we let θ(w,v) := arccos

[
w>v/ (‖w‖ · ‖v‖)

]
∈ [0, π] denote the angle

between w and v, θ(t) := θ(w(t),v) and θ(n) := θ(w(n),v). We let Dw,v be the marginal
distribution of x = (x1, . . . , xd)

> on the subspace spanned by two linearly independent vectors
w,v (as a distribution over R2), and Dv similarly. Let D2 := De1,e2

where e1, . . . , ed are the
d-dimensional coordinate directions, and c0 := Ex∼D2

‖x‖.
Additionally, we use the standard O(·),Ω(·) and Θ(·) to hide universal constant factors. We say the
algorithm achieves superpolynomial convergence if it takes O (lnα(1/ε)) iterations (for a constant
α > 0) to achieve ε-error.

1Here, sgn(z) = 1 if z ≥ 0, otherwise −1.
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2.1 Data distribution assumption

Assumption 1 D is a spherically symmetric distribution, i.e., if x ∼ D, then for any orthogonal
matrix A, we have Ax ∼ D.

Unlike the common finite dataset, our main assumption on the data is the above. Such construction
gives a zero-margin separable dataset in our scheme. Moreover, our assumption includes the standard
Gaussian distribution (adopted in [8, 53, 45, 54, 32]), and uniform distribution on a sphere Sd−1.
Under this assumption, Dw,v shares the same distribution for different pairs of w,v ∈ Rd as long as
w and v are not parallel (i.e., w ∦ v).

3 Warm-up: Logistic Regression Case

In this section, we analyze the logistic regression setting, i.e., φ(x,w) = w>x. All proofs of this
section are given in Appendix A. For the linear classifier, we have the gradient expression as follows

∇L(w) = −Ex∼D
y(x)x

1 + ey(x)w>x
. (2)

3.1 Convergence of gradient flow for logistic regression

Our main result about logistic regression is the following. The proof is given in Appendix A.6.

Theorem 1 Consider gradient flow for solving the problem (1). Denote T = inf{t : ∂‖w(t)‖2
∂t ≥ 0}.

Under Assumption 1, we have

cos θ(t) ≥


1− 2

eA1t+B1 + 1
, t ≤ T,

1− 2

eA2

√
t−T+C2+B2 + 1

, t > T.

Here A1 = 2c0
π‖w(0)‖ > 0, B1 = −2 ln

∣∣∣tan θ(0)
2

∣∣∣, A2 = 4c0√
0.6π

> 0, B2 = −2 ln
∣∣∣tan θ(T )

2

∣∣∣ −
4c0‖w(T )‖

0.6π , and C2 = ‖w(T )‖2
0.6 .

This result shows that as t→∞, the error metric 1−cos θ(t) converges to 0, which implies w(t)→ v,
i.e., the weight converges to the globally optimal direction. Additionally, the training goes through two
stages: in the first stage, 1− cos θ(t) ≤ O(e−A1t); in the second stage, 1− cos θ(t) ≤ O(e−A2

√
t).

Next, we present an interesting characterization of the optimization trajectory: the weight norm goes
through a descending stage and an ascending stage. This “descending-ascending pattern” can be
established for deep linear nets as well (see Theorem 3 later).

Lemma 1 Denote T := inf{t : ∂‖w(t)‖2
∂t ≥ 0}. Under Assumption 1, we have T <∞, and

∂‖w(t)‖2

∂t

{
≥ 0, ∀ t ≥ T.
< 0, ∀ t < T.

(3)

This lemma shows that the training dynamics can be divided into two stages: in the first stage, the
norm ‖w(t)‖ is decreasing; in the second stage, the norm ‖w(t)‖ is increasing. The first stage might
be non-existent if ∂‖w(0)‖2/∂t ≥ 0, and the second stage is always existent (i.e., T <∞ as stated
in the lemma). The existence of the second stage implies that there is a lower bound of the weight
norm throughout training.

Remark 1 The lower bound of weight norm is not needed for establishing Theorem 1 (the conver-
gence result in the logistic regression case), but will be crucial for multi-layer linear nets. The reason
we present Lemma 1 is that its analysis is essentially similar to the multi-layer nets case while easier
to understand.
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3.2 Basic properties for the proof of Theorem 1

In this subsection, we describe a few technical propositions that will be used in the proof of Theorem 1.
Readers who care about the proof sketch can skip this part, and turn back to check these propositions
if we mention subsequently.

Proposition 1 Denote c := Ex∼D ‖x‖. Suppose φ(x,w) = w>x and P ({x : v>x = 0}) = 0.
Then the function L(w) defined in Eq. (1) is c-Lipschitz continuous, 1

4λmax(Σ)-smooth, and convex
but not strongly convex.

Generally speaking, gradient methods do not exhibit linear convergence rate for non-strongly convex
functions [40]. However, the training dynamic enjoy faster convergence rates in terms of directional
convergence, due to certain invariant properties (such as Proposition 2 below).

Proposition 2 Suppose φ(x,w) = w>x and P ({x : v>x = 0}) < 1.

Then the gradient flow for the problem in Eq. (1) satisfies the following properties: (i) v>∇L(w) < 0
for any w ∈ Rd. (ii) v>w(t) is increasing as t increases; (iii) {‖w(t)‖}t≥0 is unbounded;

Similarly, the gradient descent for the problem in Eq. (1) satisfies the following properties: (iv) if the
learning rates are lower bounded, i.e., ηn ≥ η− > 0, then v>w(n) is increasing as n increases, and
{‖w(n)‖}∞n=0 is unbounded.

When Assumption 1 holds, we can provide a more precise description of v>w(t) and∇L(w) below:

Proposition 3 Under Assumption 1, we have: (i) ‖∇L(w)‖ ≤ c0 = Ex∈D2
‖x‖; (ii) ∇L(av) =

Et∼Dv

|t|
1+ea|t|

v; (iii) limt→∞ v>w(t) = +∞. (iv) If the learning rates are lower bounded, i.e.,
ηn ≥ η− > 0, then limn→∞ v>w(n) = +∞.

Remark 2 This proposition shows that in the logistic regression case, we do not need to consider
the case w(t) ‖ v (including 0), since we have ∇L(w(t)) ‖ v when w(t) ‖ v by (ii) in Proposition
3. Therefore, we only need to consider the case w(t) 6= 0 and w(t) ∦ v,∀t ≥ 0.

3.3 Proof sketch of Theorem 1

We mainly consider the dynamics of cos θ(w,v), which is also employed in [29, 28, 50, 43].

∂ cos θ(t)

∂t
= − 1

‖w(t)‖︸ ︷︷ ︸
I1

·
(
v −

(
w(t)>v

)
w(t)

)>∇L(w(t))︸ ︷︷ ︸
I2

. (4)

Step 1: We have the analytic expression of I2 shown in Lemma 2 below. This expression relies on
Assumption 1, because the symmetry eliminates the collision among data points.

Lemma 2 Under Assumption 1 and if w 6= 0, then

−
(
v −

(
w>v

)
w
)>∇L(w) = −v>

(
Id −w w>

)
∇L(w) =

c0 sin2 θ(w,v)

π
. (5)

Moreover, if additionally w ∦ v, the above result implies

−
(
Id −w w>

)
∇L(w) =

c0
π

(
Id −w w>

)
v. (6)

From Lemma 2 and Eq. (4), we obtain that ∂ cos θ(t)
∂t > 0 when w(t) 6= 0 and w(t) ∦ v.

Step 2: Next, we analyze the remaining term ‖w(t)‖ in Eq. (4) by its derivative. Denote

g(w(t)) :=
1

2
· ∂‖w(t)‖2

∂t
= −w(t)>∇L(w(t)). (7)

The following lemma describes the behavior of g(w(t)). Some properties in Lemma 3 can be
explained visually from Figure 2 in the Appendix.
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Lemma 3 Under Assumption 1, the following hold:

(i) g(w) ≤ 0.3; (ii) If θ(w,v) > π/2, then g(w) < 0;

(iii) If θ(w,v) ≤ π/2, then ∂g(w)/∂θ(w,v) < 0.

(iv) If 0 < ‖w‖ ≤ c0|cos θ(w,v)|
2πL with L := 1

8Ex∼D2
‖x‖2, then g(w) cos θ(w,v) > 0.

Step 3: Finally, we bound ‖w(t)‖ ≤ ‖w(0)‖ if t ≤ T , and ‖w(t)‖2 − ‖w(T )‖2 ≤ 0.6(t − T ) if
t > T from (i) in Lemma 3, which shows two-phase directional convergence in Theorem 1.

3.4 Convergence of gradient descent for linear regression

Now we turn to the gradient descent setting based on the previous results. The difficulty we encounter
is that the arbitrary choice of learning rates in each step may break the directional monotonicity in
Lemma 2 as Eq. (8) reveals (See Appendix A for the proof).

cos θ(n+ 1)− cos θ(n) =
1

‖w(n+ 1)‖

[
− ηn

(
v − (w(n)>v)w(n)

)>∇L(w(n))

−
(
‖w(n+ 1)‖ −w(n)>w(n+ 1)

)
cos θ(n)

]
.

(8)

Fortunately, when v>w(n) ≤ 0, we have g(w) ≤ 0 by (ii) in Lemma 3, implying that the first-phase
directional convergence in the gradient flow case still holds.

Lemma 4 Under Assumption 1, suppose θ(0) 6= π and v>w(0) < 0. Then we have that

cos θ(n) ≥ 1− (1− cos θ(0)) e−BS
−
n (9)

until cos θ(n) ≥ 0, where S−n :=
∑n−1
k=0

ηk√
A+

∑k
i=0 η

2
i

, A = ‖w(0)‖2
c20

and B = 1+cos θ(0)
π .

Hence, when w(n) stays in the “wrong” region that θ(n) > π/2, larger learning rate gives faster
directional convergence to the region {w : θ(w,v) ≤ π/2}. Unfortunately, when θ(n) ≤ π/2, the
directional dynamic becomes unstable and heavily relies on the current learning rate. However, after
simple calculation invoked from Lemma 2, we find that (Lemma 12 in Appendix)

‖w(n+1)‖2 =
(
w(n)>w(n+1)

)2
+
(c0ηn

π

)2
sin2 θ(n). (10)

Combining Eq. (10) and Eq. (8), we figure out

cos θ(n+1)− cos θ(n) =
1

‖w(n+1)‖

(
c0ηn sin2 θ(n)

π
− c20η

2
n sin2 θ(n) cos θ(n)/π2

‖w(n+1)‖+ w>nw(n+1)

)
.

Hence, we characterize a sufficient condition in the remaining training period to guarantee the
directional monotonicity. Moreover, we will show that such a condition can be satisfied when the
weight norm ‖w(n)‖ is large enough compared to the current learning rate.

Lemma 5 (A sufficient convergence condition) Under Assumption 1, if w(0) 6= 0, θ(0) 6= π, and
there exists a δ > 0, s.t.

‖w(n+1)‖+ w(n)>w(n+1) ≥ (1 + δ)c0ηn cos θ(n)

π
,∀ n ∈ N, (11)

then there exist constants A,B,C > 0 such that

cos θ(n) ≥ 1− (1− cos θ(0)) e−BS
+
n . (12)

Here S+
n :=

∑n−1
k=0

ηk√
A+

∑k
i=0(η

2
i+Cηi)

, A = ‖w(0)‖2/c20, B = δ(1+cos θ(0))
(1+δ)π , and C = 0.6/c20.

Furthermore, we can show the directional convergence with bounded learning rates as follows. Note
that when ‖w(n)‖ ≥ ηnc0 + (1 + δ)c0ηn/(2π), by (i) in Proposition 3, Eq. (11) can be satisfied
from

‖w(n+1)‖+ w(n)>w(n+1) ≥ 2 (‖w(n)‖ − ηn‖∇L(w(n))‖) ≥ (1 + δ)c0ηn/π.
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Once ηn ≤ η+, then ‖w(n)‖ ≥ R1 := η+c0 + c0η+/π is sufficient to derive the convergence. We
note that ‖w(n)‖ ≥ v>w(n), and from (ii) in Proposition 2 and (iii) in Proposition 3, the right term
v>w(n) monotonically increases to infinity. Thus, after finite iterations, the sufficient convergence
condition would be satisfied.

Theorem 2 Under Assumption 1, for a bounded learning rate sequence {ηn}∞n=1 with η+ ≥ ηn ≥
η− > 0, cos θ(n) first converges following Eq. (9) until cos θ(n0) ≥ 0 for some n0 ≥ 0. Then
there exists an n1 ≥ n0 such that v>w(n1) ≥ η+c0 + η+c0/π, and cos θ(n) converges to 1 from n1
following Eq. (12).

Remark 3 Generally, a β-smooth objective loss has the learning rate constraint (0 < η < 2
β ) to

guarantee convergence [40]. There is no such constraint because the purpose is learning the direction
instead of decreasing the loss. Furthermore, we need to underline that the loss still converges. Since
for large enough ‖w(n)‖, the smoothness coefficient of the objective becomes certainly small and
the bounded learning rate is naturally suitable to guarantee convergence.

Comparison. Our convergence bounds provide a faster and non-asymptotic directional convergence
rate exp

(
O(−
√
t)
)

(under constant learning rates, i.e., ηn = Θ(1)) compared to O
(
1/ log2 t

)
in

Soudry et al. [46, Theorem 5]. Additionally, previous results hold for a certain large t and the
finite dataset with a positive margin, but we show the behavior in the entire training dynamic. We
think that the possible explanation is the benefit of the structured data in Assumption 1. Moreover,
the prior technique of proofs mostly employs the decomposition: w(t) = ŵ log t + ρ(t) with
the max-margin solution ŵ and almost bounded residual term ρ(t). We can implicitly obtain an
analogous decomposition, but such a way would lose sight of variation during the early training, such
as the decreasing and increasing period of ‖w(t)‖. Furthermore, for gradient descent, directional
convergence in previous results is built on the loss convergence [22, 24, 38, 39, 46]. Hence they need
“small” learning rates with a data-related upper bound. When data are distributed well, we derive
the directional convergence directly under implicitly bounded learning rates and then obtain the loss
convergence from the directional convergence.

4 Deep Linear Networks

In this section, we extend the results of gradient flow to deep linear networks. For an N -layer linear
network φ(x,w) = WN . . .W1x where w := (WN , . . . ,W1), the objective is

min
w

L(N)(WN , . . . ,W1) := Ex∼D ln
[
1+e−y(x)WN ···W1x

]
.

Every such a network represents a linear mapping given by we = (WN · · ·W1)
> ∈ Rd:

L(N)(W1, . . . ,WN ) = L(1)(we) = Ex∼D ln
(

1+e−y(x)w
>
e x
)
.

4.1 Main results for deep linear networks

A key tool for analyzing the induced flow for we is established in Claim 2 of Arora et al. [3].
Specifically, if the initial balancedness conditions

Wj+1(0)>Wj+1(0) = Wj(0)>Wj(0), j = 1, . . . , N − 1 (13)

hold, then we have the induced gradient flow with we(t):

∂we(t)

∂t
= −‖we(t)‖2−

2
N

(
dL(1)(we(t))

dw
+ (N − 1)we(t)we(t)

> dL
(1)(we(t))

dw

)
. (14)

Such an initialization technique is common for linear networks [2, 3, 7, 18, 19]. Claim 4 in Arora
et al. [2] discusses the importance of (nearly) balanced initialization for deep linear networks. For
equal-width linear nets, orthogonal intialization is a special case of balanced initialization, and was
shown to perform better than Gaussian initialization [19].

Before presenting results of deep linear networks for general N , we first present the result for the
simple case N = 2:
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Proposition 4 Under Assumption 1 and the initial balancedness condition Eq. (13), if N = 2,
we(0) 6= 0 and θ(0) 6= π, we obtain the directional convergence as follows:

cos θ(t) = 1− 2

C1e2c0t/π + 1
, with C1 =

1 + cos θ(0)

1− cos θ(0)
.

Next, we present a lemma which is an extension of Lemma 1 to the deep linear case: both lemmas
present the “descending-then-ascending” pattern of the weight norm.

Lemma 6 Denote T := inf{t : ∂‖we(t)‖2/∂t ≥ 0}. We have T <∞, and

∂‖we(t)‖2

∂t

{
≥ 0, ∀ t ≥ T
< 0, ∀ t < T.

(15)

The main result for the deep linear net case provides the convergence rate of the gradient flow.

Theorem 3 Under Assumption 1 and the initial balancedness condition Eq. (13), ifN > 2, we(0) 6=
0 and θ(0) 6= π, we obtain two-phase convergence below. With the T defined in Lemma 6, we have

cos θ(t) ≥


1− 2

C1(A1t/B1 + 1)α + 1
, t ≤ T,

1− 2

eA2(t−T )+B2 + 1
, t > T.

Here A1 = (N − 2)c0, B1 = ‖we(0)‖ 2
N−1, C1 = 1+cos θ(0)

1−cos θ(0) , and A2 = 2c0‖we(T )‖1− 2
N /π,

B2 = −2 ln
∣∣∣tan θ(T )

2

∣∣∣, and α = 2/[(N − 2)π].

In addition, we have the upper bound that

cos θ(t) ≤ 1− 2

eF [(0.6t+D)N/2−DN/2]+E + 1
,

where D = ‖we(0)‖ 2
N , E = −2 ln

∣∣∣ tan θ(0)2

∣∣∣, and F = 4c0
0.6Nπ .

Theorem 3 implies cos θ(t) undergoes two stages: polynomial convergence stage and exponential
convergence stage. Finally, as for the initialization θ(0) = π, we have that θ(t) = π, ∀t ≥ 0, and
we(t)→ 0 but never hits the origin by the lower bound in Eq. (17).

Remark 4 We briefly discuss how different items affect the convergence rate of both stages. The
convergence speed of the second stage is positively correlated with A2, which is positively correlated
with c0 and ‖we(T )‖1−2/N (when the number of layers N ≥ 3). Scaling up the data can increase
the expected data norm c0, thus increasing A2 and the convergence speed. It is not clear, though,
how to increase ‖we(T )‖ since it depends on an unknown transition time T . The convergence speed
of the first stage is positively correlated with A1 and 1/B1. We skip the discussions of this stage.

Remark 5 Since we need to cover the worse case during optimization, our bound may seem loose in
two possible cases. First, when t ≤ T , we use the lower bound in Eq. (17) to capture the decreasing
period of ‖we(t)‖. Actually, ‖we(t)‖ may descend to a certain value that is higer than the lower
bound in Eq. (17) before ascending. Second, when t ≥ T , note that cos θ(t)→ 1 except we(0) = kv
for k ≤ 0 by Theorem 3. We can guarantee ‖we(t)‖ → ∞ because v>we(t) is increasing after
some time (but not always). Hence, the convergence could be faster when ‖we(t)‖ increases much,
but we only treat such a scheme lower bounded by ‖we(T )‖.

Comparison. Our global convergence rate results for deep linear networks neither require small
training loss [37, 21, 23] nor presume convergence of loss and weight direction [17, 38]. Moreover,
our results do not require overparameterization [9, 11, 19]. However, we need the exact initial
balancedness condition [3]. Previous works [37, 21, 51] mainly provided asymptotic directional
convergence to the maximum margin solution given zero classification error at the beginning. We
could obtain an explicit global directional convergence including the early training dynamic. Our
directional rates could be linear when the induced weight norm begins increasing, which is faster
than the polynomial convergence rate of the surrogate loss function obtained in [37, Theorem 4.3].
However, our results heavily depend on the benign training data assumption and the linear net
structure compared to Lyu and Li [37], Yun et al. [51].
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4.2 Technical lemmas for analyzing deep linear networks

We present a series of technical results that will be used for proving Lemma 6 and Theorem 3. Some
are extensions of those for logstic regression, and some are new for deep nets.

Lemma 7 Under Assumption 1 and the initial balancedness condition Eq. (13), if we(t) 6= 0, then

∂ cos θ(we(t),v)

∂t
=
c0 sin2 θ(we(t),v)

π
· ‖we(t)‖1−

2
N . (16)

The main difference from the logistic regression case is that the dependence of weight norm ‖we(t)‖
is reversed. Larger ‖we(t)‖ gives faster convergence for the deep linear networks whenN ≥ 3, while
no influence for N = 2, and for N = 1 it is opposite (i.e. larger ‖we(t)‖ gives slower convergence).

We then provide a few properties of the weight norm during training.

Lemma 8 Under Assumption 1 and the initial balancedness condition Eq. (13) with we(0) 6= 0, we
have the following two properties:

(i) Suppose N > 2. For any t ≥ 0, we have(
‖we(0)‖ 2

N + 0.6t
)N

2 ≥ ‖we(t)‖ ≥
(
‖we(0)‖ 2

N−1 + (N − 2)c0t
)− N

N−2

> 0. (17)

(ii) Suppose ∂‖we(t0)‖2/∂t = 0 with we(t0) 6= 0 for some t0 ≥ 0. Then ∂g(we(t0))/∂t > 0.

We briefly explain how to use Lemma 8 to prove Lemma 6, which consists of two properties: Eq. (15)
and T <∞. First, Eq. (15) is an immediate consequence of Part (ii) of Lemma 8, as well as a calculus
fact Lemma 10 (see Appendix). This proof approach is similar to that for the logistic regression case.
Second, T <∞ requires a different proof approach from the logistic regression case: the latter is due
to unbounded weight norm and the fact that zero-norm weight is non-stationary, but for deep linear
case the latter does not hold (the origin is a saddle point). Instead, we rely on Part (i) of Lemma 8 to
prove T <∞ by contradiction. More specifically, assume T =∞, i.e., ‖we(t)‖ is decreasing for all
t, then ‖we(t)‖ converges to a finite value. We will use Part (i) of Lemma 8 and Part (iv) of Lemma
3 to derive a contradiction. See details in Appendix B.2.

4.3 Proof of Theorem 3

Proof: Using Lemma 7 and the lower bound of ‖we(t)‖ in Lemma 8, we obtain

1

2
ln

1 + cos θ(t)

1− cos θ(t)
− 1

2
ln

1 + cos θ(0)

1− cos θ(0)
≥ 1

(N − 2)π
ln
A1t+B1

B1
.

This implies

cos θ(t) ≥ 1− 2

C1(A1t/B1 + 1)α + 1
,∀t ≥ 0. (18)

Notice that (18) holds for the whole training period, thus surely holds for t ≤ T .

Next, we will show a stronger convergence rate for the peoriod t > T , i.e., the second part of the
theorem. According to Lemma 6 we have

∂‖we(t)‖
2
N

∂t
≥ 0, ∀t ≥ T.

Hence ‖we(t)‖ ≥ ‖we(T )‖,∀t ≥ T . Therefore,

1

2
ln

1 + cos θ(t)

1− cos θ(t)
− 1

2
ln

1 + cos θ(T )

1− cos θ(T )
≥ c0

π
‖we(T )‖1− 2

N (t− T ).

=⇒ cos θ(t) ≥ 1− 2

eA2(t−T )+B2 + 1
,∀ t ≥ T.

For the third part, using the upper bound of ‖we(t)‖ in Lemma 8, we obtain

1

2
ln

1 + cos θ(t)

1− cos θ(t)
− 1

2
ln

1 + cos θ(0)

1− cos θ(0)
≤ 2c0

0.6Nπ

(
(0.6t+D)

N
2 −DN

2

)
.
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(a) Linear predictor
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(b) Four-layer deep linear network

Figure 1: Simulation of (deep) linear network with x ∼ U(S1),v = (0, 1)>. (a): Linear predictor.
We show our lower bounds in Theorem 1 at n = 0 and n = 5000. (b): Four-layer deep linear
network. We also show our lower and upper bounds in Theorem 3 at n = 0 and n = 18000. In each
experiment, we plot angle variation, loss and weight norm in sequence.

This implies

cos θ(t) ≤ 1− 2

eF [(0.6t+D)N/2−DN/2]+E + 1
.

�

5 Experiments

In this section we conduct experiments to verify our theoretical analyses. We consider training a
linear classifier and a 4-layer linear network under the logit loss as our theorems show. We construct
simple dataset with x ∼ U(S1) and y(x) = sgn(v>x) with v = (0, 1)>. We use common stochastic
gradient descent (SGD) with the batch size 1000 and the constant small learning rate 10−3. Moreover,
we choose an initial value w(0) = we(0) = (0.6,−0.8)>. In the deep linear network, we set
WN (0) = u>N , Wi(0) = ui+1u

>
i with ‖ui‖ = 1, i = 2, . . . , N and u1 = we(0) to satisfy the

balancedness conditions Eq. (13). The results are shown in Figure 1.

Figure 1a shows the optimization period for linear classifiers. We also plot the convergence bounds
obtained in Theorems 1. Although we do not give convergence for SGD, our bounds in gradient
flow still roughly match the directional convergence in practice, and the weight norm ‖w(n)‖ indeed
goes through a decreasing and increasing period. Figure 1b depicts the dynamic for the deep linear
networks. We also plot three convergence bounds in Theorems 3, which roughly match the actual
behavior. The weight norm ‖we(n)‖ still goes through the decreasing and increasing period, and we
could observe a distinct stuck period when 5 ≤ η · n ≤ 10 as the lower bound shown in Lemma 8.
Moreover, the loss decreases slowly when ‖w(n)‖ is small, but cos θ(t) still has considerable growth.
Thus previous loss-based analysis may neglect potential variation of the accuracy we most concern.
Furthermore, we can see a more rigorous understanding of ‖w(n)‖ may give more precise rates in
the late training period (t ≥ 20).

6 Conclusion

In this work, we have studied the training dynamic of (deep) linear networks in binary classification
tasks. Specifically, we focus on the gradient flow and gradient descent methods under population loss.
We have proved exact directional convergence for (deep) linear networks in the entire training process
on spherically symmetric data. Moreover, we have characterized the descent and ascent behavior of
the induced weight norm theoretically. Such a phenomenon also is observed in numerical experiments.
We hope that our limited view of directional convergence would bring a better understanding of
(linear) neural networks.
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A Missing Proofs in Section 3

A.1 Proof of Proposition 1

Proof: L(w) is Lipschitz continuous following from

‖∇L(w)‖
(2)
≤ Ex∼D

∥∥∥∥ y(x)

1 + ey(x)w>x
x

∥∥∥∥ ≤ Ex∼D ‖x‖ ≤
√
Ex∼D ‖x‖2 =

√
tr(Σ).

The convexity of L(w) is proved by

∇2L(w) = Ex∼D
1

1 + ey(x)w>x
· ey(x)w

>x

1 + ey(x)w>x
xx> � 0.

Moreover, for any u ∈ Rd with ‖u‖ = 1,

u>∇2L(w)u = Ex∼D
1

1 + ey(x)w>x
ey(x)w

>x

1 + ey(x)w>x
‖x>u‖2 ≤ 1

4
E‖x>u‖2 ≤ 1

4
λmax(Σ).

However, note that

0 ≤ 1

1 + ek|v>x|
· ek|v

>x|

1 + ek|v>x|
‖x‖2 ≤ ‖x‖

2

4
,

then from dominated convergence theorem, we have

lim
k→+∞

Ex∼D
1

1 + ek|v>x|
· ek|v

>x|

1 + ek|v>x|
‖x‖2 = Ex∼D lim

k→+∞

1

1 + ek|v>x|
· ek|v

>x|

1 + ek|v>x|
‖x‖2

= Ex∼D‖x‖21{v>x=0} = 0,
(19)

where the final equality uses the assumption P ({x : v>x = 0}) = 0. Then we get

lim sup
k→+∞,w=kv

‖∇2L(w)‖F ≤ lim sup
k→+∞

Ex∼D
1

1 + ek|v>x|
· ek|v

>x|

1 + ek|v>x|
‖x‖2 (19)

= 0.

Therefore
lim

w=kv
k→+∞

∇2L(w) = 0.

Thus L(w) is not strongly convex. �

A.2 Proof of Proposition 2

Proof: Proof of (i): Suppose ‖w‖ ≤M for some positive constant M , and notice that

−v>∇L(w) = Ex∼D
|v>x|

1 + ey(x)w>x
≥ 0.

More specifically,

−v>∇L(w) ≥ Ex∼D
|v>x|

1 + e‖w‖·‖x‖
≥

Ex∼D|v>x|1{‖x‖≤R}
1 + eMR

≥
r · P

(
‖x‖ ≤ R, |v>x| ≥ r

)
1 + eMR

.

Let ε := P
(
|v>x| > 0

)
, then ε > 0 from assumption P ({x : v>x = 0}) < 1. There exist R >

r > 0, such that P
(
‖x‖ ≤ R, |v>x| ≥ r

)
≥ ε/2, then −v>∇L(w(t)) ≥ 0.5rε/(1 + eMR) > 0.

Proof of (ii): According to (i), we have ∂(v>w(t))/∂t > 0 and v>(w(n+1)−w(n)) > 0, showing
that v>w(t) and v>w(n) are increasing.

Proof of (iii): Assume the contrary that ‖w(t)‖ ≤ M, ∀t ≥ 0 for certain M . Then v>w(t) ≤
‖w(t)‖ ≤M, ∀t ≥ 0. Hence, v>w(t) converges from (ii), showing that limt→∞ v>∇L(w(t)) = 0.
Using the previous argument again, we obtain a contradiction. Thus the assumption does not hold,
i.e., {‖w(t)‖}t≥0 is unbounded.

Proof of (iv): Assume the contrary that ‖w(n)‖ ≤ M, ∀n ≥ 0 for certain M . Then
v>w(n) ≤ ‖w(n)‖ ≤ M,∀n ≥ 0. Hence, v>w(n) converges from (ii), showing that
limn→∞ ηnv

>∇L(w(n)) = 0. Since ηn ≥ η− > 0, then limn→∞ v>∇L(w(n)) = 0, remaining
the same argument as the gradient flow case. �
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A.3 Proof of Proposition 3

Proposition 5 (Restatement of Proposition 3.) Under Assumption 1, we have: (i) ‖∇L(w)‖ ≤
c0 = Ex∈D2

‖x‖; (ii) ∇L(av) = Et∼Dv

|t|
1+ea|t|

v; (iii) limt→∞ v>w(t) = +∞. (iv) If the learning
rates are lower bounded, i.e., ηn ≥ η− > 0, then limn→∞ v>w(n) = +∞.

Proof: Recall thatDw,v denotes the marginal distribution of x = (x1, . . . , xd)
> ∼ D on the subspace

spanned by two linearly independent vectors w,v (a distribution over R2),

Since D is spherically symmetric, and y(x)

1+ey(x)w>x
= sgn(xTv)

1+esgn(xT v)w>x
is only decided by v>x and

w>x, we could marginalize the distribution to span{v,w}, leading to

∇L(w) = Ex∼D
y(x)x

1 + ey(x)w>x
= Ex∼Dw,v

y(x)x

1 + ey(x)w>x
∈ span(w,v). (20)

Proof of (i):

‖∇L(w)‖ (20)
=

∥∥∥∥Ex∼Dw,v

y(x)x

1 + ey(x)w>x

∥∥∥∥ ≤ Ex∼Dw,v‖x‖ = Ex∼D2‖x‖ = c0.

The second equality uses the property that D is spherically symmetric, then Dw,v is identical
distribution for any w,v. We choose the first two coordinate directions for example.

Proof of (ii): when w = av, Dw,v reduce to Dv. Thus, we only need to consider the expectation on
{x : x = tv, t ∈ R}, which leads to y(x)x = sgn(v>x)x = |t|v, and

∇L(av)
(20)
= Ex∼Dw,v

y(x)x

1 + ey(x)av>x
= Et∼Dv

|t|
1 + ea|t|

v.

Proof of (iii) and (iv): Finally, letting w = αv + βz, where z ⊥ v and ‖z‖ = 1, by dominated
convergence theorem, we have

lim
β→+∞

−v>∇L(w) = Ex∼D lim
β→+∞

|v>x|
1 + eβy(x)z>x+α|v>x|

= E(z>x)·(v>x)≤0|v>x| =
c0
π
, (21)

where the last equality uses the distribution assumption.

Now we denote w(t) = α(t)v + β(t)z(t). Assume the contrary, that v>w(t) = α(t) is bounded.
Then from (iii) in Proposition 2, ‖w(t)‖ is unbounded, which implies β(t) is unbounded. Since we
have assumed α(t) is bounded, and (ii) in Proposition 2 implies α(t) is increasing, we obtain that
α(t) converges to a certain finite value. This further implies that −v>∇L(w(t)) → 0, which is a
contradiction to (21). Thus the earlier assumption does not hold, i.e., limt→∞ v>w(t) = +∞.

The same argument holds for w(n) if the learning rates are lower bounded. �

A.4 Proof of Lemma 2

Proof: As mentioned earlier, we have

∇L(w) = −Ex∼D
y(x)x

1 + ey(x)w>x
(20)
= −Ex∼Dw,v

y(x)x

1 + ey(x)w>x
∈ span{w,v}.

Thus we only need to restrict our discussion to the two-dimensional linear space span{w,v}. With a
little abuse of notation, we assume w,v ∈ R2 from now and use w,v them as the representations of
w,v in the subspace span{w,v} 2. Similarly, we assume x ∈ R2 from now on as well, and assume
Dw,v is a distribution on R2 (corresponding to the original distribution on span{w,v}). Then we
have

ρ := −
(
v −

(
w>v

)
w
)>∇L(w) = Ex∼Dw,v

|v>x| − sgn(v>x)
(
w>v

) (
w>x

)
1 + esgn(v>x)w>x

. (22)

2Rigorously speaking, we would need to use different notations such as ŵ ∈ R2 to represent the coordinate
of w in span{w,v}. Anyhow, for simplicity we just reuse the notation w,v.
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Additionally, the expression above is invariant to the rotation of the coordinate frame on span{w,v}
due to the spherical symmetry of Dw,v, so we can assume without loss of generality that w =
(1, 0)>,v = (v1, v2)>. Then the numerator of (22) (for a given x inside the expectation) can be
simplified to

|v>x| − sgn(v>x)
(
w>v

) (
w>x

)
=sgn(v>x) (v1x1 + v2x2)− sgn(v>x)v1x1=sgn(v>x)v2x2.

Then (22) can be simplified to

ρ=Ex∼Dw,v

|v>x| − sgn(v>x)
(
w>v

) (
w>x

)
1 + esgn(v>x)w>x

=Ex∼Dw,v

sgn(v>x) (v2x2)

1 + esgn(v>x)‖w‖x1
=Ex∼Dw,vg(x)

where g(x) = sgn(v>x)(v2x2)

1+esgn(v>x)‖w‖x1
. Next, we analyze this expection.

If |v1x1| > |v2x2|, then sgn(v>x) = sgn(v1x1), and

g(x1, x2) + g(x1,−x2) = 0.

If |v2x2| ≥ |v1x1|, then sgn(v>x) = sgn(v2x2), and

g(x1, x2) + g(x1,−x2) =
|v2x2|

1 + e‖w‖x1
+

|v2x2|
1 + e−‖w‖x1

= |v2x2| ≥ 0.

Therefore, we have g(x1, x2) + g(x1,−x2) = |v2x2|1{|v2x2|≥|v1x1|}. Further due to the spherical
symmetry of the distribution D, the marginal distribution Dw,v satisfies the following property: the
probability density at any two points (x1, x2) and (x1,−x2) are the same. Then

ρ = Ex∼Dw,vg(x1, x2) =
1

2
Ex∼Dw,v |v2x2|1{|v2x2|≥|v1x1|}

=
|v2|
4π

∫ ∞
0

r

∫
| tan θ(w,v)·tan θ|≥1

| sin θ|dθdF (r)

=
sin2 θ(w,v)

π

∫ ∞
0

rdF (r)

=
c0 sin2 θ(w,v)

π
,

where F (r) is the cumulative distribution function of r := ‖x‖ and c0 = Ex∼Dw,v‖x‖ =∫∞
0
rdF (r).

Next, we prove Eq. (6). If θ(w,v) = 0, then Eq. (6) holds from (ii) in Proposition 3. From now on,
we assume θ(w,v) 6= 0. Denote

û :=
c0
π
v +∇L(w), Ŵ := Id −w w>. (23)

Based on Eq. (5), i.e, the first result in Lemma 2, we obtain

−v>
(
Id −w w>

)
∇L(w) =

c0
π
v>
(
Id −w w>

)
v.

=⇒ 0 = v>
(
Id −w w>

) (c0
π
v +∇L(w)

)
(23)
= v>Ŵû.

Therefore
Ŵû ⊥ v. (24)

We also have
w>Ŵ = 0 =⇒ w>Ŵû = 0 =⇒ Ŵû ⊥ w. (25)

Moreover, we notice that∇L(w) ∈ span{w,v}, thus û ∈ span{w,v}, which further implies

Ŵû ∈ span{w,v}. (26)

Combining Eqs. (24), (25) and (26), we obtain Ŵû = 0, i.e.,(
Id −w w>

) (c0
π
v +∇L(w)

)
= 0.

Thus we have proved Eq. (6). �
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Figure 2: Verification of sgn(g(w)) when x ∼ U(S1) and v = (0, 1)>. The sign of g(w) at each w
is estimated by 1000 random samples. “Red” means positive sign while “Green” is negative sign.

A.5 Proof of Lemma 3

Proof: Proof of (i): The first proposition follows from

g(w) = −w>∇L(w) = Ex∼D
y(x)w>x

1 + ey(x)w>x
.

Use the fact x/(1 + ex) < 0.3, then g(w) ≤ 0.3.

Proof of (ii) and (iii).

g(w)
(20)
= Ex∼Dw,v

y(x)w>x

1 + ey(x)w>x
. (27)

Using the spherically symmetric assumption, Dw,v has the same distribution as D2, which is also
spherically symmetric. Without loss of generality, we can assume v = (1, 0),w = (w̄1, w̄2), w2 > 0
(i.e., wi = vi = 0, i ≥ 3). Then

g(w)
(27)
= Ex∼D2

sgn(x1)‖w‖w>x
1 + esgn(x1)‖w‖w>x

. (28)

Note that w>x = w̄1x1 +
√

1− w̄2
1x2, which only related to w̄1 = cos θ(w,v). Hence, g(w) is a

function only decided by ‖w‖ and θ(w,v) from Eq. (28).

Now we reuse the spherically symmetric assumption, and assume w = (1, 0),v = (v1, v2). Then
|v2/v1| = | tan θ(w,v)|, and

g(w)

‖w‖
(27)
= Ex∼D2

h(x1, x2), where h(x1, x2) =
sgn(v>x)x1

1 + esgn(v>x)‖w‖x1
. (29)

Case 1. If |v1x1| > |v2x2|, i.e., |x1| > |x2 · tan θ(w,v)|, then sgn(v>x) = sgn(v1x1),

h(x1, x2) + h(x1,−x2) =
2 sgn(v1)|x1|

1 + e‖w‖sgn(v1)|x1|
> 0, if x1 6= 0.

Case 2. If |v2x2| ≥ |v1x1|, i.e., |x1| ≤ |x2 · tan θ(w,v)|, then sgn(v>x) = sgn(v2x2),

h(x1, x2) + h(x1,−x2) =
1− e‖w‖x1

1 + e‖w‖x1
x1 < 0, if x1 6= 0.

The marginal distribution Dw,v satisfies the following property: the probability density at any two
points (x1, x2) and (x1,−x2) are the same. Combining Case 1 and Case 2, we could obtain

g(w)

‖w‖
= Ex∼D2

sgn(v1)|x1|
1 + e‖w‖sgn(v1)|x1|

1{|x1|>|x2·tan θ|}︸ ︷︷ ︸
J1

+Ex∼D2

1− e‖w‖x1

1 + e‖w‖x1
· x1

2
1{|x1|≤|x2·tan θ|}︸ ︷︷ ︸

J2

,

(30)
where v1 = cos θ with θ = θ(w,v).

Proof of (ii): When θ(w,v) > π/2, then v1 < 0, J1 < 0 and J2 < 0, showing that g(w) < 0.
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Proof of (iii): When θ(w,v) ≤ π/2, i.e., v1 ≥ 0. Then J1 ≥ 0 and J2 < 0. Note that g(w) is a
function only decided by ‖w‖ and θ(w,v) from the above argument. We redefine g(w) = g(‖w‖, θ)
with θ = θ(w,v). Denoting u(x) := |x1|

1+e‖w‖·|x1|
− 1−e‖w‖x1

1+e‖w‖x1
· x1

2 , u(x) > 0 if x1 6= 0. Then for
θ ≤ π/2, and θ > δ > 0, and some R > r > 0,

g(‖w‖, θ − δ)− g(‖w‖, θ)
‖w‖

= Ex∼D2
u(x) · 1{|x2·tan θ|≥|x1|>|x2·tan(θ−δ)|}

= 2 · Ex∼D2
u(x) · 1{x2/x1=tanα,π/2−θ≤α<π/2−(θ−δ)}

≥ 2 · Ex∼D2
u(x) · 1{x2/x1=tanα,π/2−θ≤α<π/2−(θ−δ)} · 1{r2≤x2

1+x
2
2≤R2}

≥ 2 · Ex∼D2
ε · 1{x2/x1=tanα,π/2−θ≤α<π/2−(θ−δ)} =

2δε

π
,

(31)

where we adopt

ε = min
r2≤x2

1+x
2
2≤R

2

x2/x1=tanα
π/2−θ≤α≤π/2−(θ−δ)

|x1|
1 + e‖w‖·|x1|

− 1− e‖w‖x1

1 + e‖w‖x1
· x1

2
> 0,

since π/2− (θ − δ) < π/2, and ε is related to R, r, ‖w‖. Hence, we obtain

∂g(‖w‖, θ)
∂θ

= lim
δ→0

g(‖w‖, θ)− g(‖w‖, θ − δ)
δ

≤ −2ε

π
‖w‖ < 0.

We conclude
∂g(w)

∂θ(w,v)
< 0.

Proof of (iv): We fix θ(w,v) or w, and consider

g(r) :=
g(w)

‖w‖
= Ex∼D2

y(x)w>x

1 + ey(x)rw
>x
.

Then when r → 0, we obtain

g(0) = lim
r→0

g(r) =
1

2
Ex∼D2y(x)w>x =

c0 cos θ(w,v)

π
.

In addition,∣∣∣∣∂g(r)

∂r

∣∣∣∣ =

∣∣∣∣∣Ex∼D2 −
(
w>x

)2
ey(x)rw

>x(
1 + ey(x)rw

>x
)2
∣∣∣∣∣ ≤ 1

4
Ex∼D2

(
w>x

)2
=

1

8
Ex∼D2

‖x‖2 .

Then g(r) is L-Lipschitz continuous with L := 1
8Ex∼D2

‖x‖2, hence when r ≤ c0|cos θ(w,v)|
2πL , we

obtain

|g(r)− g(0)| ≤ rL ≤ c0| cos θ(w,v)|
2π

⇒ g(r) · g(0) > 0⇒ g(w) cos θ(w,v) > 0.

�

A.6 Proof of Lemma 1

Lemma 9 (Restatement of Lemma 1) Denote g(w) = 1
2 ·

∂‖w(t)‖2
∂t , and denote T = inf{t :

∂‖w(t)‖2
∂t ≥ 0}. Under Assumption 1, we have T <∞, and

g(w(t)) =
1

2
· ∂‖w(t)‖2

∂t

{
≥ 0, ∀ t ≥ T
< 0, ∀ t < T.

(32)

Proof of Lemma 1: The proof will be divided into three steps.

Step 1: We first present an auxiliary lemma, whose proof is given in Appendix A.6.1.
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Lemma 10 Consider a differentiable function h(t), t ≥ 0. Suppose for any t0 such that h(t0) = 0,
we must have h′(t0) > 0; in other words,

h(t0) = 0⇒ h′(t0) > 0. (33)

Denote T = inf{t : h(t) ≥ 0}. Then

h(t)

{
≥ 0, ∀ t ≥ T
< 0, ∀ t < T.

(34)

Step 2: Verify that h(t) := g(w(t)) satisfies the condition of the auxiliary lemma.

More precisely, we will show h(t) := g(w(t)) satisfies Eq. (33), i.e., h(t0) = 0 implies h′(t0) > 0.

Suppose h(t0) = 0. According to Lemma 3 (ii) that g(w) < 0 if θ(w,v) > π/2, we obtain that
g(w(t0)) = 0 implies

θ(w(t0),v) ≤ π/2. (35)

Recall that Lemma 3 (iii) states that θ(w,v) ≤ π/2 implies ∂g(w)/∂θ(w,v) < 0. By Eq. (35)

∂g(w)

∂θ

∣∣∣∣
w=w(t0)

< 0. (36)

From Lemma 2 and Eq. (4), we have

∂ cos θ(t)

∂t
=

c0
π‖w(t)‖

· sin2 θ(t),∀t ≥ 0.

As mentioned in Remark 2, we can assume the ‖w(t)‖ 6= 0,∀t ≥ 0. Then by Lemma 11, we obtain
∂ cos θ(t)/∂t > 0, thus

∂θ(t)

∂t
< 0,∀ t ≥ 0. (37)

As discussed in the Proof of Lemma 3, g(w(t)) can be viewed as a function only decided by ‖w(t)‖
and θ(t). Then by the chain rule we have

h′(t0) =
∂g(w(t0))

∂t
=
∂g(w(t0))

∂ ‖w‖
· ∂ ‖w(t0)‖

∂t
+
∂g(w(t0))

∂θ
· ∂θ(t0))

∂t

=
∂g(w(t0))

∂θ
· ∂θ(t0))

∂t
> 0.

Here the second equality follows from ∂‖w(t0)‖2
∂t = 2g(w(t0)) = 0 implies ‖w(t0)‖ · ∂‖w(t0)‖

∂t = 0
and the assumption that ‖w(t)‖ 6= 0,∀t ≥ 0 by Remark 2; the final inequality is due to Eqs. (36) and
(37). Therefore we have proved the condition Eq. (33).

Then by Lemma 10, we immediately obtain Eq. (32).

Step 3: prove T <∞. We prove by contradiction.

Assume the contrary, that T = ∞, then ∂‖w(t)‖2/∂t ≤ 0,∀t ≥ 0. This implies ‖w(t)‖ ≤
‖w(0)‖,∀t ≥ 0. However, ‖w(t)‖ is unbounded by (iii) in Proposition 2, a contradiction. Thus the
assumption does not hold, and we must have T <∞. This finishes the proof. �

A.6.1 Proof of Auxiliary Lemmas

Proof idea of Lemma 10: The condition Eq. (33) says that whenever the function value reaches 0, it
has to “bounce up” (strictly increasing at that point). As a result, once the function value goes above
0, it will never drop down below 0.

Proof of Lemma 10: If T = ∞, i.e., h(t) < 0,∀t ≥ 0, then Eq. (34) automatically holds. From
now on, we assume T <∞. By the continuity of h, we have h(T ) = 0; then by Eq. (33), we have
h′(T ) > 0.

We prove Eq. (34) by contradiction. Assume the contrary, that there exists t0 > T , such that
h(t0) < 0. Since h′(T ) > 0, there exists ε < t0 − T such that h(T + ε) > 0. In the interval
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[T + ε, t0], the left end has positive value and the right end has negative value. Thus there exists at
least one root. Denote the set of all roots in this interval as K, and denote tm := sup{t : t ∈ K}.
By the continuity of h, we must have tm ∈ K (otherwise, assume tm /∈ K, then there is a sequence
of roots converging to tm, implying tm is also a root and thus tm ∈ K, a contradiction). Then
h(tm) = 0 and, by Eq. (33), h′(tm) > 0. By the same argument as before, there exists a certain
εm < t0 − tm such that h(tm + εm) > 0, which further implies there is a root tp in the interval
[tm + εm, t0]. This is a contradiction to the definition that tm is the maximum root on [T + ε, t0].
This contradiction means that there does not exist any t0 > T such that h(t0) < 0; in other words,
h(t) ≥ 0,∀t > T . �

Lemma 11 Suppose f : [0,∞) → (0,∞) be a continuous function. Consider the initial value
problem

θ(0) = θ0,
∂ cos θ(t)

∂t
= f(t) · sin2 θ(t),∀t ≥ 0. (38)

If θ0 6= 0, π, then θ(t) 6= 0, π and ∂ cos θ(t)
∂t > 0,∀t ≥ 0.

Proof: The solution to Eq. (38) is

1

2
ln

1 + cos θ(t)

1− cos θ(t)
− 1

2
ln

1 + cos θ0
1− cos θ0

=

∫ t

0

f(s)ds <∞.

Since θ0 6= 0, π, then −∞ < ln 1+cos θ0
1−cos θ0 < ∞. Thus −∞ < ln 1+cos θ(t)

1−cos θ(t) < ∞, leading to

θ(t) 6= 0, π. Hence sin θ(t) 6= 0, showing that ∂ cos θ(t)
∂t > 0. �

A.7 Proofs of Theorem 1

Proof: When t ≤ T , by Lemma 2, we have

∂

∂t
cos(θ(t)) =

1

‖w(t)‖
· c0 sin2 θ(t)

π
≥ 1

‖w(0)‖
c0 sin2 θ(t)

π
.

We obtain
1

2
ln

1 + cos θ(t)

1− cos θ(t)
− 1

2
ln

1 + cos θ(t0)

1− cos θ(t0)
≥ c0
‖w(0)‖π

t.

Thus
cos θ(t) ≥ 1− 2

eA1t+B1 + 1
, t ≤ T.

When t ≥ T , based on (i) in Lemma 3,
∂

∂t
‖w(t)‖2 = 2g(w(t)) ≤ 0.6.

This implies ‖w(t)‖2 ≤ 0.6(t− T ) + ‖w(T )‖2. Together with Lemma 2, we have

∂

∂t
cos(θ(t)) =

1

‖w(t)‖
c0 sin2 θ(t)

π
≥ 1√

0.6(t− T ) + ‖w(T )‖2
c0 sin2 θ(t)

π
.

After taking the integral, we have

1

2
ln

1 + cos θ(t)

1− cos θ(t)
− 1

2
ln

1 + cos θ(T )

1− cos θ(T )
≥ 2c0

0.6π

(√
0.6(t− T ) + ‖w(T )‖2 − ‖w(T )‖

)
.

Thus
cos θ(t) ≥ 1− 2

eA2

√
t−T+C2+B2 + 1

, t ≥ T.

�

Remark 1: Based on Lemma 1, ‖w(t)‖ first decreases when t ≤ T , then increases when t ≥ T .
Thus the approach for analyzing the phase t ≤ T above cannot be applied to the phase t ≥ T .

Remark 2: The convergence rate analysis for the stage t ≥ T can be applied to any t ≥ 0. Anyhow,
we choose a different approach for the stage t < T since it leads to a stronger bound of the
convergence rate.
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A.8 Proof of Lemma 4

Lemma 12
‖w(n+ 1)‖2 =

(
w(n)>w(n+ 1)

)2
+
(c0ηn

π

)2
sin2 θ(n).

Proof:
‖w(n+ 1)‖2 = ‖w(n)‖2 − 2ηnw(n)>∇L(w(n)) + η2n‖∇L(w(n))‖2

=
(
‖w(n)‖ − ηnw(n)>∇L(w(n))

)2
+ η2n

∥∥(I −w(n) w(n)>
)
∇L(w(n))

∥∥2
(1)
=
(
‖w(n)‖ − ηnw(n)>∇L(w(n))

)2
+
(c0ηn

π

)2 ∥∥(I −w(n) w(n)>
)
v
∥∥2

=
(
‖w(n)‖ − ηnw(n)>∇L(w(n))

)2
+
(c0ηn

π

)2
sin2 θ(n)

=
(
w(n)>w(n+ 1)

)2
+
(c0ηn

π

)2
sin2 θ(n).

The equality in (1) follows from Lemma 2. �

Now we turn to the main proof of Lemma 4.

Proof: From (ii) in Lemma 3, when cos θ(n) ≤ 0, −w(n)>∇L(w(n)) ≤ 0, leading to

‖w(n+ 1)‖2 = ‖w(n)‖2 − 2ηnw(n)>∇L(w(n)) + η2n‖∇L(w(n))‖2 ≤ ‖w(n)‖2 + η2nc
2
0.

From Lemma 12, ‖w(n+ 1)‖ ≥
∣∣w(n)>w(n+ 1)

∣∣ ≥ ‖w(n)‖ − ηnw(n)>∇L(w(n)), then

cos θ(n+ 1)− cos θ(n) =
1

‖w(n+ 1)‖
(
v> (w(n)− ηn∇L(w(n)))− ‖w(n+ 1)‖v>w(n)

)
≥ 1

‖w(n+ 1)‖
(
v> (w(n)− ηn∇L(w(n)))−

(
‖w(n)‖ − ηnw(n)>∇L(w(n))

)
v>w(n)

)
=

1

‖w(n+ 1)‖

(
−ηn

(
v − (w(n)>v)w(n)

)>∇L(w(n))
)

=
1

‖w(n+ 1)‖
c0ηn sin2 θ(n)

π
≥ ηn

π
√
A+

∑n
i=0 η

2
i

sin2 θ(n) > 0.

Thus θ(n) decrease when n increase. i.e. π2 ≤ θ(n+ 1) ≤ θ(n) and 0 ≥ cos θ(n+ 1) ≥ cos θ(n) ≥
cos θ(0) > −1. Then we obtain

cos θ(n+ 1)− cos θ(n) ≥ ηn(1− cos θ(n))(1 + cos θ(n))

π
√
A+

∑n
i=0 η

2
n

≥ (1− cos θ(n))
Bηn√

A+
∑n
i=0 η

2
i

.

Adjust the terms, we get(
1− Bηn√

A+
∑n
i=0 η

2
i

)
(1− cos θ(n)) ≥ 1− cos θ(n+ 1),

showing that

ln (1− cos θ(n))− ln (1− cos θ(n+ 1)) ≥ − ln

(
1− Bηn√

A+
∑n
i=0 η

2
i

)
≥ Bηn√

A+
∑n
i=0 η

2
i

.

Hence,
cos θ(n) ≥ 1− (1− cos θ(0)) e−BS

−
n .

When S−n → +∞, for some finite T steps, cos θ(T ) ≥ 0, giving that v>w(T ) ≥ 0. �

Remark 6 Obviously, S−n < n, and we list several choices of {ηn}∞i=1:

S−n =


Θ(n), ηn = Θ(qn), q > 1;

Θ(nmin{α+1,1/2}), ηn = Θ(nα),−1 < α,α 6= −1/2;

Θ(ln(n)), ηn = Θ(n−1);

<∞, ηn = Θ(nα), α < −1.
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A.9 Proof of Lemma 5

Proof: Use the upper bound of ‖w(n+ 1)‖ below

‖w(n+ 1)‖2 = ‖w(n)‖2 − 2ηnw(n)>∇L(wn) + η2n‖∇L(wn)‖2 ≤ ‖w(n)‖2 + 0.6ηn + c20η
2
n.

Therefore, from Lemma 12, we get

cos θ (n+ 1)− cos θ (n) =
v>w(n+ 1)− ‖w(n+ 1)‖v>w(n)

‖w(n+ 1)‖

=

(
v − v>w(n)w(n)

)>
w(n+ 1)−

(
‖w(n+ 1)‖ −w(n)>w(n+ 1)

)
v>w(n)

‖w(n+ 1)‖

=
1

‖w(n+ 1)‖

(
− ηn

(
v − (w(n)>v)w(n)

)>∇L(w(n))

−
‖w(n+ 1)‖2 −

(
w(n)>w(n+ 1)

)2
‖w(n+ 1)‖+ w(n)>w(n+ 1)

cos θ(n)

)
=

1

‖w(n+ 1)‖

(
c0ηn sin2 θ(n)

π
− c20η

2
n sin2 θ(n) cos θ(n)/π2

‖w(n+ 1)‖+ w>nw(n+ 1)

)
(i)

≥ 1

‖w(n+ 1)‖
δc0ηn sin2 θ(n)

(1 + δ)π
≥ δηn

(1 + δ)π
√
A+

∑n
i=0 η

2
i + Cηi

sin2 θ(n),

where (i) uses the sufficient convergence condition in Eq. (11). Hence, similarly, we obtain

cos θ(n) ≥ 1− (1− cos θ(0)) e−BS
+
n .

�

Remark 7 Obviously, S+
n < n, and we list several choices of {ηn}∞i=1:

S+
n =


Θ(n), ηn = Θ(qn), q > 1;

Θ(n(min{α,0}+1)/2), ηn = Θ(nα),−1 < α;

Θ(
√

ln(n)), ηn = Θ(n−1);

<∞, ηn = Θ(nα), α < −1.

A.10 Proof of Theorem 2

Proof: Note that ‖w(n)‖ ≥ ‖w(n)‖ cos θ(n) = v>w(n). From (ii) in Proposition 2 and (iii) in
Proposition 3, the right term monotonically increases to infinity. Thus, after finite iterations, the
sufficient convergence condition would be satisfied: ‖w(n1)‖ cos θ(n1) ≥ R1 = η+c0 + c0η+/π.
Therefore, we have ‖w(n)‖ ≥ ‖w(n)‖ cos θ(n) ≥ ‖w(n1)‖ cos θ(n1) ≥ R1,∀n > n1. Thus, from
η+ ≥ ηn, we obtain ∀n > n1,

‖w(n+ 1)‖+ w(n)>w(n+ 1) ≥ 2 (‖w(n)‖ − ηn‖∇L(w(n))‖) ≥ 2c0ηn cos θ(n)/π,

which satisfies the sufficient convergence condition with δ = 1. Hence, from Lemma 5, we obtain
superpolynomial directional convergence of 1− cos θ(n) from n1. �

B Missing Proofs in Section 4

B.1 Proof of Lemma 7

Proof: From the induced flow on we, we obtain

−
(
v −

(
w>e v

)
we

)> ∂we(t)

∂t

(14)
= −

(
v −

(
w>e v

)
we

)> · ‖we‖2−
2
g

(
dL1(we)

dw
+ (N − 1)wew

>
e

dL1(we)

dw

)
= −‖we‖2−

2
N

(
v −

(
w>e v

)
we

)> dL1(we)

dw
= ‖we‖2−

2
N · c0 sin2 θ(we,v)

π
.
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Therefore we have

∂ cos θ(we(t),v)

∂t
=

(
v −

(
we(t)

>v
)
we(t)

)>
‖we(t)‖

· ∂we(t)

∂t
=
c0 sin2 θ(we(t),v)

π
· ‖we(t)‖1−

2
N .

�

B.2 Proof of Lemma 8

Proof: First, we establish the dynamics of the (2/N)-th power of the induced norm. More specifically,
we will show that if we(t) 6= 0, then

∂‖we(t)‖
2
N

∂t
= Ex∼D2

2y(x)we(t)
>x

1 + ey(x)we(t)>x
. (39)

This relation is proved as follows.

∂‖we(t)‖
2
N

∂t
=

2

N
‖we(t)‖

2
N−1we(t)

> ∂we(t)

∂t

(14)
= − 2

N
we(t)

>
(
dL1(we(t))

dw
+ (N − 1)we(t)we(t)

> dL
1(we(t))

dw

)
= −2we(t)

> dL
1(we(t))

dw
= Ex∼D2

2y(x)we(t)
>x

1 + ey(x)we(t)>x
.

We now turn to prove each part of Lemma 8.

Proof of (i): From Eq. (39), we have

∂‖we(t)‖
2
N

∂t
= Ex∼D2

2y(x)we(t)
>x

1 + ey(x)we(t)>x
≥ −2Ex∼D2

‖x‖ · ‖we(t)‖ = −2c0‖we(t)‖.

This implies
2

2−N
· ∂‖we(t)‖

2
N−1

∂t
≥ −2c0.

Integrate both sides for the range [0, t], we obtain the lower bound:

‖we(t)‖1−
2
N ≥

(
‖we(0)‖ 2

N−1 + (N − 2)c0t
)−1

.

The upper bound is due to (i) in Lemma 3. More specifically,

∂‖we(t)‖
2
N

∂t
= Ex∼D2

2ywe(t)
>x

1 + eywe(t)>x
≤ 0.6 =⇒ ‖we(t)‖ ≤

(
‖we(0)‖ 2

N + 0.6t
)N

2

.

Proof of (ii): From the lower bound in Eq. (17), we could see

‖we(t)‖ > 0,∀t ≥ 0. (40)

Note that

∂‖we(t)‖2

∂t
= we(t)

> ∂we(t)

∂t

(14)
= −N‖we(t)‖2−

2
N ·we(t)

> dL
1(we(t))

dw
(7)
= N‖we(t)‖2−

2
N · g(we(t)).

(41)

Here g(w) = −w> dL
1(w)
dw is the same as the one defined in the analysis of logistic regression. This

definition applies to any w, including the points on the trajectory of linear model training as well as
deep linear net training. Notice that Lemma 3 is established for g(w) with any w, thus can be used
for analyzing both linear model training and deep linear net training.

The rest is quite similar to Step 2 in the proof of Lemma 1 in Appendix A.6. There is a slight difference
that we need to show the extra termN‖we(t)‖2−

2
N in Eq. (41) compared to 1

2 ·
∂‖we(t)‖2

∂t = g(we(t))
does not affect the argument.
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From the assumption ∂‖we(t0)‖2
∂t = 0 and Eq. (41), we obtain g(we(t0)) = 0. Further, by (ii) in

Lemma 3 we obtain θ(t0) ≤ π/2. Note that ∂ cos θ(t)/∂t > 0 by Eq. (40), Lemmas 7 and 11,
leading to ∂θ(t)/∂t < 0,∀t ≥ 0.

Moreover, we have we(t) ∈ span{we(0),v} since ∇L(we(t)) ∈ span(we(t),v) by Eqs. (20) and
(14). Hence we can view g(we(t)) as a function only decided by ‖we(t)‖ and θ(t). Using (iii) in
Lemma 3, we have

∂g(we(t0))

∂t
=
∂g(we(t0))

∂ ‖we‖
· ∂ ‖we(t0)‖

∂t
+
∂g(we(t0))

∂θ
· ∂θ(t0))

∂t
=
∂g(we(t0))

∂θ
· ∂θ(t0))

∂t
> 0,

where we use ∂ ‖we(t0)‖ /∂θ(t) = 0 by g(we(t0)) = 0 and Eq. (40). This finishes the proof of the
desired property: ∂‖we(t0)‖

2

∂t = 0 implies ∂g(we(t0))
∂t > 0. �

B.3 Proof of Proposition 4

Form Eq. (16) and N = 2, we get ∂ cos θ(t)
∂t = c0 sin2 θ(t)

π . Integrating from 0 to t, we obtain

ln
1 + cos θ(t)

1− cos θ(t)
− ln

1 + cos θ(0)

1− cos θ(0)
=

2c0
π
t.

Hence

cos θ(t) = 1− 2

C1e2c0t/π + 1
, with C1 =

1 + cos θ(0)

1− cos θ(0)
.

B.4 Proof of Lemma 6

Lemma 6 consists of two properties: Eq. (15) and T <∞.

First, Eq. (15) is an immediate consequence of Lemma 10 (given in Appendix A.6) and Part (ii)
of Lemma 8. More specifically, Part (ii) of Lemma 8 essentially verifies the condition Eq. (33) in
Lemma 10 for h(t) = g(we(t)). Thus the conclusion of Lemma 10 holds, i.e, Eq. (15) holds.

Next, we prove T <∞ by contradiction. Assume the contrary, that T =∞, i.e.,

∂‖we(t)‖2/∂t < 0, ∀t ≥ 0. (42)

Then ‖we(t)‖ converges to a finite non-negative value. There are two possibilities.

Case 1: ‖we(t)‖ → 0. We will derive a contradiction. The intuition is that the origin is a saddle
point, thus the gradient flow will not converge to it. A formal argument is the following.

We first claim that cos θ(t)→ 1 3. Using Lemma 7 and the lower bound of ‖we(t)‖ in Lemma 8, we
obtain

1

2
ln

1 + cos θ(t)

1− cos θ(t)
− 1

2
ln

1 + cos θ(0)

1− cos θ(0)
≥ 1

(N − 2)π
ln
A1t+B1

B1
.

This implies

cos θ(t) ≥ 1− 2

C1(A1t/B1 + 1)α + 1
,∀t ≥ 0. (43)

As a consequence, there exists t0 > 0 such that cos θ(t) ≥ δ > 0, ∀ t ≥ t0. Since we(t) converges to
origin, by (iv) in Lemma 3, for some t1 > t0 with small enough ‖we(t1)‖, we have g(we(t1)) ≥ 0,
i.e., ∂‖we(t1)‖2/∂t ≥ 0. This is a contradiction to Eq. (42).

Case 2: ‖we(t)‖ → ε > 0. According to (43), we have cos θ(t) → 1, then from (iii) of Lemma 3,
we obtain

lim
t→∞

∂‖we(t)‖2

∂t

(41)
= lim

t→∞
N‖we(t)‖2−

2
N · g(we(t))

(30)
= Nε2−

2
N · Ex∼D2

ε|x1|
1 + eε|x1|

> 0. (44)

This is again a contradiction to Eq. (42).

For both cases we have derived a contradiction. Thus Eq. (42) cannot hold, i.e., T <∞. �
3The proof of this claim appears in the proof of Theorem 3 as well. The proof of Theorem 3 utilizes this

lemma, thus we cannot directly utilize the conclusion of Theorem 3 in the proof of this lemma. Thus we restate
that argument here.
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