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SATO: Stable Text-to-Motion Framework
Anonymous Author(s)

ABSTRACT
Is the Text to Motion model robust? Recent advancements in Text
to Motion models primarily stem from more accurate predictions of
specific actions. However, the text modality typically relies solely on
pre-trained Contrastive Language-Image Pretraining (CLIP) models.
Our research has uncovered a significant issue with the text-to-
motion model: its predictions often exhibit inconsistent outputs,
resulting in vastly different or even incorrect poses when presented
with semantically similar or identical text inputs. In this paper, we
undertake an analysis to elucidate the underlying causes of this
instability, establishing a clear link between the unpredictability
of model outputs and the erratic attention patterns of the text en-
coder module. Consequently, we introduce a formal framework
aimed at addressing this issue, which we term the Stable Text-
to-Motion Framework (SATO). SATO consists of three modules,
each dedicated to stable attention, stable prediction, and main-
taining a balance between accuracy and robustness trade-off. We
present a methodology for constructing an SATO that satisfies
the stability of attention and prediction. To verify the stability of
the model, we introduced a new textual synonym perturbation
dataset based on HumanML3D and KIT-ML. Results show that
SATO is significantly more stable against synonyms and other
slight perturbations while keeping its high accuracy performance.
We have presented more intuitive visualizations on the anony-
mous website: https://anonymous.4open.science/api/repo/project-
1FC7/file/SATO.html

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Human Motion Generation, Stable Text-to-Motion Framework, Ro-
bustness
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1 INTRODUCTION
The Text-to-Motion (T2M) model signifies a groundbreaking and
swiftly advancing paradigm with immense potential across various
domains, such as video games, themetaverse, and virtual/augmented

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, 28 October - 1 November 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Comparisons on 𝐹𝐼𝐷𝐷 and 𝐹𝐼𝐷𝑃 . The closer the
model is to the origin, the better. The arrow indicates the
effect of our method on the model. Our SATO framework
can make the text-to-motion model more stable.
reality environments. This innovative approach, as evidenced by
research contributions from [5, 6, 6, 8, 26, 31, 33] revolves around
generating motion data directly from textual descriptions, thereby
simplifying the overall process and mitigating associated time and
cost overheads.

However, a fundamental challenge inherent in text-to-motion
tasks stems from the variability of textual inputs [32]. Even when
conveying similar or the same meanings and intentions, texts can
exhibit considerable variations in vocabulary and structure due
to individual user preferences or linguistic nuances. Despite the
considerable advancements made in these models, we find a no-
table weakness: all of them demonstrate instability in prediction
when encountering minor textual perturbations, such as synonym
substitutions (examples and comparisons are shown in Fig. 4). This
is a serious issue. The instability of the model leads to inconsis-
tent outputs, with errors in details or even entirely incorrect
motion sequence, when users input synonymous or closely related
sentences. This limitation confines our model research within a
narrow range of expressions, hindering the future development
and practical applications of text-to-motion models. This prompts
us to inquire: What are the root causes of these issues? Are
they rooted in inadequacies in textual modalities, language
comprehension, or their harmonization? Through posing these
questions, elucidating this problem, and striving for a robust text-
to-motion framework emerges as an urgent necessity.

Most text-to-motionmodels build upon pre-trained text encoders,
such as CLIP [20]. Previous works have shown discrepancies in
downstream tasks utilizing CLIP text encoders despite similar se-
mantic inputs [13]. Further investigation reveals that similar phe-
nomena occur in the text-to-motion domain. Taking the T2M-GPT
[31] model as an example, several experimental findings emerge.
First, we observed a close correlation between instability attention
and incorrect prediction outcomes (shown in Fig. 4). Differences in
attention can lead to significant disparities in text feature represen-
tations during intermediate processes. Secondly, in many instances,
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Figure 2: Token modification example: In many examples,
when the input is perturbed, themodel produces an incorrect
motion sequence, as shown in the bottom-left figure. When
we correct the first erroneous token during the model pre-
diction process, we obtain the correct motion sequence, as
depicted in the bottom-right figure. The accuracy of the first
token is crucial for the subsequent temporal predictions of
the model.
by rectifying the initial token of inaccurately predicted action se-
quences, subsequent accurate action sequences were obtained (see
Fig. 2). Lastly, the initial motion sequence tokenwas predicted based
on the text feature. Significant differences in the text feature can
lead to significant variations in the first motion sequence token. We
further elucidate the aforementioned experimental findings: When
perturbed text is inputted, the model exhibits unstable attention,
often neglecting critical text elements necessary for accurate mo-
tion prediction. This instability further complicates the encoding
of text into consistent embeddings, leading to a cascade of consecu-
tive temporal motion generation errors. Notably, the stability of
the model manifests in the consistency of textual attention,
highlighting its pivotal role in mitigating such errors.

For a more robust text-to-motion framework, we must delve into
what constitutes stability, meaning requiring us to define stability
for the text-to-motion model. Intuitively, a stable attention and
prediction text-to-motion model should possess the following three
properties for any text input:
• Considering from a bionics perspective, it should possess a sta-

ble attention mechanism, focusing on key motion descriptions
without changing with synonym perturbation.

• Its prediction distribution should exhibit stability, i.e., robustness
to synonym or near-synonym substitution replacement pertur-
bations during training and testing.

• Its prediction distribution closely resembles that of the origi-
nal model in inputs without perturbation, ensuring outstanding
performance.

For the first two criteria, as discussed earlier, we work on stabilizing
the model’s attention and predictions, both indirectly and directly,
to stabilize the overall results. As for the last criterion, we emphasize
the trade-off between model stability and accuracy. We aim for the
model to maintain its excellent performance as much as possible.
Based on these criteria, this paper presents a formal definition of
a stable attention and robust prediction framework called SATO
(Stable Text-to-Motion Framework).

To assess better robustness, we construct a large dataset of syn-
onym perturbations based on two widely used datasets: KIT-ML
[19] and HumanML3D [7]. It is noteworthy that even when not
utilized specifically for stability tasks, our perturbed text dataset
can still serve as valuable data augmentation to enhance model
performance. Empirically, SATO achieves comparable performance
to state-of-the-art models while demonstrating superior stability, as
illustrated in Fig. 1. Extensive experimentation on these benchmark
datasets, employing T2M-GPT and Momask models for verification,
underscores the effectiveness of our approach. Our results reveal
that we achieve optimal stability while maintaining accuracy (e.g.,
on T2M-GPT, HumanML3D dataset original text FID 0.157 vs 0.141,
perturbed text FID 0.155 vs. 1.754). Moreover, human evaluation
results indicate a significantly reduced catastrophic error rate post-
perturbation in contrast to the SOTA models, while also suggesting
a subjective preference for the outputs generated by our model. In
conclusion, our contributions can be summarized as follows:

• To the best of our knowledge, this is the first work to discover the
instability issue in text-to-motion models. Our work formulates
a formal and mathematical definition for a stable text-to-motion
framework named SATO, proposes a dataset for measuring sta-
bility, and establishes relevant evaluation metrics, laying the
foundation for improving the stability of text-to-motion models.

• Through extensive experimentation, we validate the effectiveness
of our approach, showcasing its superiority in handling textual
perturbations with comparable performance and higher stability.
Additionally, we successfully strike a balance between accuracy
and stability, ensuring our model maintains high precision even
in the face of perturbations.

• Our work points to a novel direction for improving text-to-
motion models, paving the way for the development of more
robust models for real-world applications.

2 RELATEDWORK
2.1 Text-conditioned human motion generation
Text-conditioned human action generation aims to generate 3D
human actions based on textual descriptions. Recent mainstream
work can be divided into two categories, namely VQ-VAE-based
methods and diffusion models. VQ-VAE [1, 3, 4, 22, 27, 28] has
achieved excellent performance in multi-modal generation tasks.
ACTOR [17] proposes a Transformer-based VAE for generating
motion from predefined action categories. TEMOS [18] introduces
an additional text encoder based on ACTOR for generating different
action sequences based on text descriptions, but mainly focusing
on short sentences. Guo et al. [7] propose an autoregressive condi-
tional VAE conditioned on the generated frame and text features,
and proposed to predict actions based on the length of the text.
TEACH [2] is based on TEMOS, which generates temporal motion
combinations from a series of natural language descriptions and
extends space for long action combinations. TM2T [8] considers
not only text-to-motion tasks, but also motion-to-text tasks, and
the joint training of these two tasks will be improved. T2M-GPT
[31] quantizes motion clips into discrete markers and then uses a
converter to generate subsequent markers. The emerging diffusion
models are also changing the field of motion generation. MDM [26]
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Figure 3: (a) Framework of our proposed Stable Text-to-Motion (SATO). It comprises three components: perturbation module,
stable attention module, and pretrained teacher model. (b) The perturbation module encompasses two approaches for per-
turbation, namely Random Synonym Replacement (RSR) and Projected Gradient Descent (PGD). This module is utilized to
emulate various perturbations encountered during user interactions. (c) The stable attention module aligns the top-k attention
index weights before and after perturbation to stabilize the model’s attention distribution. Additionally, we incorporate a
frozen teacher module, solely utilized during training, to stabilize the model’s motion generation capability, thus balancing the
trade-off between accuracy and robustness.

Figure 4: Visual results on user testing. SATO (T2M-GPT)
refers to fine-tuning based on T2M-GPT to create SATO. Be-
low each action sequence is the corresponding motion cap-
tion. The red color text represents the top-k attention weight
words. It can be seen that the perturbation of the caption
can lead to changes in the attention of the text, which can
lead to catastrophic errors in the generative model. SATO
has demonstrated superior stability to other models both in
terms of attention andmotion prediction. More visual results
are provided in Supplementary Material Section 3.

uses a Transformer Encoder as the main body of prediction sam-
ples. MotionDiffuse [32] uses the DDPM architecture to generate
realistic and diverse motion.

However, whether it is the diffusion-based method the VQ-VAE-
based method, or even previous work such as MotionCLIP [25],
the structure is based on the CLIP encoder. Although the work of
TEMOS, TEACH, and Guo et al. considered the sequence length
of the text and the time and space issues, they did not take into
account the diversification of text raised by users. When the text is
subject to slight perturbation, the model may exhibit inconsistent
outputs, even leading to catastrophic errors in motion, which is a
common and severe problem with these past methods. Therefore,
based on these issues, this paper is the first work to consider the di-
versity of user-proposed texts and the first work based on the stable
framework in the field of text-conditional human action generation.
In this paper, we propose SATO so that the text generation results
can still show strong robustness when encountering synonyms or
other slight replacements or interference.

2.2 Stable Text-to-Motion
For the stabilization of input vector perturbations, some work has
been done on stabilizing the output pattern of the model from
various perspectives. Reconstructing the perturbed text with the
actual input text can improve the the robustness of the text model
[23], but does not guarantee the model’s attention similarity be-
fore and after the perturbation. Cansu et al. [24] analyze human
and machine attention to the text. However, they fail to analyze

3
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the consistency of the descriptions before and after perturbation.
Compared to the text after the perturbation, the model is more in-
clined to use "unfamiliar vocabulary" in human comprehension. As
the "unfamiliar vocabulary" increases in a description, it interferes
with the comprehension of the text. Shunsuke et al. [14] enhance
the text embedding stability using adversarial learning but do not
analyze the consistency between old and new attention, making it
difficult to ensure that textual attention can have consistent results
for different descriptive scenarios under the same semantics. Yin et
al. [29] employ an adversarial robustness approach to enhance the
stability of NLP models. However, these techniques are designed
for ex-post interpretation of model predictions and thus cannot
be applied to enhance attentional stability in the prediction phase.
Different from text or visual stable attention, for the multimedia
text-to-motion domain, we not only need to consider the distribu-
tion of attention weights during text embedding but also focus on
the coordination performance between text and motion generation.
Therefore, we need to pay attention to the consistency of textual
attention before and after the description perturbation. And we
also pay attention to the local importance and overall compatibility
of semantic weights, to avoid the repeated generation of the em-
phasized part of the description, thus ignoring the coherence of the
whole action.

3 METHOD
3.1 Preliminaries
Vanilla Attention. For text embedding, Text-to-Motion mainly
uses CLIP or other text vector models [5] to encode the action de-
scription text. For the original description text, tokenization is first
performed to obtain the token index vector, i.e., t ∈ R𝑛×1, where 𝑛
represents the number of tokens. Next, the token will be embedded
by the embedding weights, i.e. e ∈ R𝑉 ×𝑑 , where𝑉 is the size of vo-
cab, 𝑑 is the dimension of the embedding vectors. Therefore, when t
goes through the embedding layer, it can obtain the corresponding
embedded expression based on the token index, which is notated as
te ∈ R𝑛×𝑑 . Attention weight is to express the relationship between
the query and the key, here we use Scaled Dot-Product to calculate
its correlation, which is 𝑎 (q, k) = softmax

(
qk𝑇√
𝑑

)
∈ R𝑛×𝑚 , where

k ∈ R𝑚×𝑑 and q ∈ R𝑛×𝑑 . Finally, the correlation weight is multi-
plied by v ∈ R𝑚×𝑣 to get the output R𝑛×𝑣 . Additionally, the tensors
are divided into multi-heads, thus the corresponding final attention
weights obtained are also the average between the individual heads,
i.e. 𝜔t =

1
ℎ

∑ℎ
𝑖=1 𝑎 (q, k)𝑖 ∈ R𝑛×𝑚 .

VQ-VAE Based Text-to-Motion Model. Our objective is to pro-
duce a 3D human pose sequenceX = [x1, x2, ..., x𝑇 ], where x𝑡 ∈ R𝑑 ,
guided by a textual description C = [𝑐1, 𝑐2, ..., 𝑐𝑙 ], where 𝑇 repre-
sents the number of frames and 𝑑 denotes the dimension of the
motion feature. Here, c𝑖 represents the 𝑖𝑡ℎ word in the sentence,
and 𝑙 is the length of the sentence. The process begins with extract-
ing a text embedding ce from input text using CLIP. Subsequently,
a transformer model predicts the distribution of possible next in-
dices 𝑝 (𝑆𝑖 |ce, 𝑆<𝑖 ) based on the text embedding ce and previous
indices 𝑆<𝑖 , where 𝑆𝑖 represents the index of the next element at
position 𝑖 in the sequence. These predicted indices are then mapped
to corresponding entries in the learned codebook, yielding latent
code representations ẑi [27]. Finally, the decoder network decodes

these codebook entries into motion sequences Xpred. The opti-
mization objective aims to maximize the log-likelihood of the data
distribution. This is achieved by denoting the likelihood of the full
sequence as 𝑝 (𝑆 |ce) =

∏ |𝑆 |
𝑖=1 𝑝 (𝑆𝑖 |ce, 𝑆<𝑖 ) and directly maximizing

it: Ltrans = E𝑆∼𝑝 (𝑆 ) [− log𝑝 (𝑆 |ce)] [6, 31], facilitating the genera-
tion of motion sequences from input text.
Perturbations for Texts. To introduce effective perturbationmeth-
ods for text, we consider a scenario where a perturbation 𝐶 =

[𝑐1, 𝑐2, ..., 𝑐𝑙 ] is applied to transform the original text into 𝐶′ =

[𝑐′1, 𝑐
′
2, ...𝑐

′
𝑙
] or perturbing the text embedding 𝑐 to 𝑐′. Several strate-

gies have been shown to be effective in prior works, such as Greedy
Coordinate Gradient (GCG) [34], Projected Gradient Descent [16]
(PGD). However, due to the inherent diversity of user inputs and the
presence of noise in sentences, we incorporate two distinct pertur-
bation techniques in this study: Projected Gradient Descent (PGD)
and Random Synonym Replacement (RSR). PGD finds the perturba-
tion direction along the steepest ascent in the loss landscape, while
RSR is done manually through human-designed synonym pertur-
bations. These approaches are chosen to address the variability in
user inputs and to tackle the challenges posed by noisy sentences.
By employing PGD or RSR perturbations, we aim to enhance the
robustness of our text-processing techniques against diverse inputs
and noise.

3.2 Problem Formulation
The Stability Issue in Text-to-motion Models. The pre-trained
CLIP model used as a text encoder for text-to-motion tasks has
inherent limitations in maintaining stable attention for semanti-
cally similar or identical sentences, while minor perturbations are
inevitable during user input. Furthermore, text-to-motion mod-
els generally lack the stable capability to handle perturbed text
embeddings, leading to inconsistent predictions despite similar or
identical semantic inputs. This instability renders it unsuitable for
real-world applications where robustness and reliability are crucial.
Addressing these issues requires us to analyze them from different
perspectives.
Attention Stability. We first present the definition of the top-k
overlap ratio for two vectors [10]. For vector x ∈ R𝑛 , we define the
set of top-𝑘 components 𝑇𝑘 (·) as:

𝑇𝑘 (x) = {𝑖 : 𝑖 ∈ [𝑑] and |{x𝑗 ≥ x𝑖 : 𝑗 ∈ [𝑛]}| ≤ 𝑘}.
For two vectors x, x′, their top-𝑘 overlap ratio 𝑉𝑘 (x, x′) is de-

noted as:

𝑉𝑘 (x, x′) =
1

𝑘 · |𝑇𝑘 (x) ∩𝑇𝑘 (x′) |
. (1)

For the original text input, we can easily observe the model’s atten-
tion vector for the text. This attention vector reflects the model’s
attentional ranking of the text, indicating the importance of each
word to the text encoder’s prediction. We hope a stable attention
vector maintains a consistent ranking even after perturbations. For
a piece of text, demanding all attention magnitudes to be similar is
overly strict. For instance, in "Walking forward in an even pace",
the words "Walking", "forward", and "even" should have the most
significant impact on the motion sequence. Therefore, we relax
the requirement and only demand that the top-k indices remain
unchanged.
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Prediction Robustness. Even with stable attention, we still cannot
achieve stable results due to the change in text embeddings when
facing perturbations, even with similar attention vectors. This re-
quires us to impose further restrictions on the model’s predictions.
Specifically, in the face of perturbations, the model’s prediction
should remain consistent with the original distribution, meaning
the model’s output should be robust to perturbations.
Balancing Accuracy and Robustness. Accuracy and robustness
are naturally in a trade-off relationship [21, 30]. Our objective is to
bolster stability while minimizing the decline in model accuracy,
thereby mitigating catastrophic errors arising from input perturba-
tions. Consequently, we require a mechanism to uphold the model’s
performance concerning the original input.

Let 𝑦 (x) denote the prediction of the original text-to-motion
model, and 𝜔 denote the attention vector. Based on the discussion
above, we introduce the Stable Text-to-Motion Framework (SATO)
with modified prediction 𝑦 and attention vector �̃� as follows:
(1) (Prediction Robustness) 𝐷1 (𝑦 (x, �̃�),𝑦 (𝑥, �̃� + 𝝆1)) ≤ 𝛾1, for

some ∥𝝆1∥ ≤ 𝑅1, 𝛾1 ≥ 0 .
(2) (Closeness of Prediction)𝐷2 (𝑦 (x, �̃�), 𝑦 (x, 𝜔)) ≤ 𝛾2, for some

𝛾2 ≥ 0.
(3) (Top-𝑘 Attention Robustness) 𝑉𝑘 (�̃�, �̃� + 𝝆2) ≥ 𝛽 ,for some

1 ≥ 𝛽 ≥ 0, ∥𝝆2∥ ≤ 𝑅2;
Specifically, 𝝆1 and 𝝆2 represent perturbations; 𝑅1 and 𝑅2 is the
robust radius, which measures the robust region; 𝐷1 and 𝐷2 are
metrics of the similarity between two distributions, which could be
a distance or a divergence; 𝛾1 measures the robustness of prediction
while 𝛾2 measures the closeness of the two prediction distributions;
0 < 𝛽 < 1 is the robustness of top-𝑘 indices. When 𝛽 is larger, then
the attention module will be more robust; ∥ · ∥ is L1 or L2 norm.

It is worth noting that the roles of Prediction Robustness and
Top-𝑘 Robustness are not redundant. For instance, consider the
vectors v1 = (0.2, 0.1, 0.4, 0.7) and v2 = (0.3, 0.5, 0.8, 1.0), which
have the same top indices. However, the difference in their magni-
tudes can significantly affect the final prediction. The former affects
the robustness of the prediction, while the latter emphasizes the
stability of the attention vector. From a bionics perspective, the
latter facilitates the model to more stably focus on crucial motion
information.

3.3 Stable Text-to-Motion Framework
We have already proposed a rigorous definition of SATO. To build
our framework (shown in Fig. 3), we use the representative T2M-
GPT as the basis to provide a more concrete demonstration of
SATO. And we have also verified the wide applicability of our
method in MoMask [6]. To obtain a text encoder module with more
stable attention, we unfreeze the CLIPmodule, which was originally
frozen in most of the work [6, 31], and derive a minimum-maximum
optimization problem with three conditions from the above three
mathematical formulas, as shown in the following formula.

min
W̃
E𝑥 [𝜆1 (𝐷2 (𝑦 (𝑥, �̃�), 𝑦 (𝑥, 𝜔)) − 𝛾2) + max

∥𝝆 ∥≤𝑅
𝜆2 (𝛽 −𝑉𝑘 (�̃�, �̃� + 𝝆))

+ 𝜆3 ( max
∥𝝆 ∥≤𝑅

𝐷1 (𝑦 (𝑥, �̃�), 𝑦 (𝑥, �̃� + 𝝆)) − 𝛾1)] (2)

where 𝜆1, 𝜆2, 𝜆3 are hyperparameters, W̃ represents the weight
of the model. Here, we employ a maximum perturbation 𝝆 that

acts simultaneously on both factors. We need to point out that
there are two challenges in the optimization: (1) How to handle
the non-differentiable function −𝑉𝑘 (�̃�, �̃� + 𝝆), and (2) how to
find 𝝆 that maximizes the perturbation on 𝜔 within a certain
range.
Stable Attention Module. For the first issue, we need to seek an
equivalent LTopk to replace −𝑉𝑘 (�̃�, �̃� +𝝆). The previous discussion
highlighted the necessity of considering the overlap of the previous
k indices for the stability of our attention mechanism. This implies
that solely relying on L1-norm or L2-norm is insufficient [10]. We
need a method that is both differentiable and ensures attention to
the top-k indices. One approach is to introduce the cross-distance
of the values associated with the top-k indices for computation.
Here, we introduce a loose surrogate loss:

LTopk =
1

2𝑘
(∥ 𝜔𝜁𝜔

𝑘
− �̃�𝜁𝜔

𝑘
∥ + ∥ �̃�

𝜁 �̃�
𝑘

− 𝜔
𝜁 �̃�
𝑘

∥) (3)

where 𝜁𝜔
𝑘

represents the top-k indices set of vector 𝜔 , and ∥ · ∥
denotes a norm. In this paper, the L1-norm is used, which yields
the best experimental results. This definition serves two purposes:
it ensures the stability of the top-k indices of attention and cleverly
resolves the non-differentiability issue.We have 𝜔 = (0.1, 0.3, 0.7)
and �̃� = (0.5, 0.1, 0.2). We use the top-2 indices, denoted as 𝜁𝜔2 =

[1, 2] and 𝜁 �̃�2 = [0, 1]. Using the L1-norm, we obtain LTop2 =
1
4 ( | [0.3, 0.7] − [0.1, 0.2] | + | [0.1, 0.3] −[0.5, 0.1] |) = 0.325.
Perturbation Module. Regarding the second issue, one approach
is to introduce artificially generated high-quality synonym pertur-
bation datasets, thereby obtaining the maximum perturbation for
�̃� . And for another approach, we interpret it as maximizing its
susceptibility to attack for seeking the maximum perturbation for
�̃� . We transform this problem into solving the minimal max-attack
within a certain range. Through the process of PGD [16] with n
iterations, we search for the maximum attack 𝝆.

𝝆𝑘 = 𝝆∗
𝑘−1 +

𝑟𝑘

|B𝑛 |
∑︁

𝑥∈B𝑛

∇(𝐷2 (𝑦 (𝑥, �̃�)), 𝑦 (𝑥, �̃� + 𝝆∗
𝑘−1)+

LTopk (𝜔, �̃� + 𝝆∗
𝑘−1)) (4)

𝝆∗
𝑘
= argmin

∥𝝆 ∥≤𝑅
∥𝝆 − 𝝆𝑘 ∥

where |B𝑛 | represents the batch size, and 𝑟𝑘 is the step size. We
utilize the gradient descent algorithm, leveraging the gradient oper-
ator ∇, to iteratively update the parameters. By scaling the gradient
with the step size 𝑟𝑘 and averaging it over the batch size |B𝑛 |, we
calculate the perturbation at each iteration. Through 𝑛 iterations,
we aim to find the maximum perturbation we desire.
Pretrained TeacherModule.After solving two challenging issues,
we can easily interpret the first term of Equation (1). We employ
a frozen pretrained T2M-GPT model as a teacher module. We aim
to ensure consistency between SATO and the teacher model in
predicting the original text. This is done to maintain the superior
predictive performance of the original model while other modules
enhance model stability during training, preventing the model from
becoming overly stable and resulting in poor performance.
SATO Optimization Goal. we present our goal of SATO stable
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loss optimization as follows:

min
W̃
E𝑥 [𝜆1 (𝐷2 (𝑦 (x, �̃�), 𝑦 (x,𝑤)))︸                       ︷︷                       ︸

L1

+𝜆2 LTopk (�̃�, �̄�)︸         ︷︷         ︸
L2

(5)

+ 𝜆3 (𝐷1 (𝑦 (x, �̃�), 𝑦 (x, �̄�))︸                     ︷︷                     ︸
L3

]

Here �̄� represents the attention vector after perturbation (PGD or
RSR). In T2M-GPT (and likewise for other models), we incorporate
the three mentioned losses as auxiliary attention stability losses
into the original model transformer loss L𝑡𝑟𝑎𝑛𝑠 for fine-tuning.
Eventually, we obtain:

L = Ltrans + 𝜆1 · L1 + 𝜆2 · L2 + 𝜆3 · L3 (6)

4 EXPERIMENTS
Datasets. We selected the mainstream text-to-motion datasets Hu-
manML3D [7] and KIT-ML [19] for the evaluation of perturbed
text generation and human pose generation. The purpose of the
perturbation is to simulate the diversity of motion descriptions by
different dimensions in the real scene. Therefore, we first define
the perturbation of the motion descriptions as follows: (1) All sub-
stitutions should be randomized (different parts and number of
sentences); (2) Ensure that the semantics of the motion description
are consistent before and after the replacement, avoid the distrac-
tion of polysemous words; (3) There should be a clear perturbation
before and after the description replacement.

In detail, we randomly select 20% of the data for each of the
training, validation, and test sets of the HumanML3D dataset, re-
spectively, analyze the replaceable words in them, and generalize
the replaceable words based on their lexical properties, where the
generalized categories are: nouns, adjectives, adverbs, and verbs.
Then, We combine them with the context to construct a thesaurus
of synonymous substitutions for each word in each lexical property
and batch replacements by rules.

Our replacement rule is to traverse the word list for each mo-
tion description, randomly replacing words or verb phrases in the
lexicon until two types of lexical properties have been replaced,
resulting in a perturb motion description sentence. Here are some
examples: (1) "A man flaps his arms like a chicken while bending up
and down." is replaced with: "A human flaps his arms like a chicken
while stooping up and down." (2) "A person walks forward on an an-
gle to the right." is replaced with: "A man walks ahead on an angle
to the right." The examples in the lexicon are: "finally, ultimately,
eventually," "clap, applaud, handclap," and so on.

We also performed a quantitative analysis of substitution as
shown in Table 4, in the HumanML3D dataset, 99.13% of the mo-
tion descriptions were perturbed, and the frequency of perturbation
(number of perturbed words compared to the total number of words
on that description) per description amounted to 25.08%. Similarly,
97.74% of the descriptions in the KIT-ML dataset were perturbed,
and the average perturbation rate reached 31.73%, which shows
that the perturbation level of this perturbation strategy is fully
reflected in both datasets. While keeping high perturbation, the
average cosine similarity of descriptions before and after pertur-
bation reaches 94.57% in the HumanML3D dataset, and 93.97% in

the KIT-ML dataset, which indicates that the semantics before and
after perturbation have strong consistency.
Evaluation Metrics. In addition to the commonly utilized metrics
such as Frechet Inception Distance (FID), R-Precision, Multimodal
Distance (MM-Dist), and Diversity, which are employed by T2M-
GPT [31], we have introduced two additional metrics based on
Frechet Inception Distance to further assess the stability of the
model. Additionally, we utilize Jensen-Shannon Divergence to eval-
uate the stability of the model’s attention. Furthermore, human
evaluation is employed to obtain accuracy and human preference
results for the outputs generated by the model.
• Frechet Inception Distance [9] (FID): We can evaluate the

overall motion quality by measuring the distributional difference
between the high-level features of the motions.

• Human Evaluation:We conducted evaluations of each model’s
generated results in the form of a Google Form. We collected
user ratings on motion prediction, which encompassed both the
quality and correctness of the generated motions. Additionally,
we analyzed user preferences for pose prediction. Further details
will be discussed in section 4.2.

• Jensen-Shannon Divergence [11] (JSD): We use JSD (Jensen-
Shannon Divergence) to calculate the difference in attention
vectors before and after perturbation to assess the stability of
attention.
Notely, to measure the stability of the model, we will use three

different 𝐹𝐼𝐷 input calculation methods: (1) 𝐹𝐼𝐷 : the distribution
distance between the motion generated from the original text and
real motion. (2) 𝐹𝐼𝐷𝑃 : the distribution distance between the motion
generated from text after paraphrasing and real motion. (3) 𝐹𝐼𝐷𝐷 :
the distribution distance between the motion generated from the
original text and themotion generated from the text after paraphras-
ing. Moreover, we also employ human evaluation for cross-dataset
evaluation to further analyze the performance and stability of the
model. For assessing the stability of model attention, we propose
using JSD. A smaller JSD value indicates greater stability of atten-
tion under perturbation. More details about the evaluation metrics
are provided in Supplementary Material Section 2.

4.1 Experimental Setup
We adopt nearly identical settings for model architecture parame-
ters as T2M-GPT or MoMask. Additionally, We set the batch size
to 64 and utilize the AdamW [15] optimizer with hyperparame-
ters [𝛽1, 𝛽2] = [0.9,0.99]. The total iteration is set to 100000 and
the learning rate is 1e-4, employing a linear warm-up schedule for
training all models. We respectively set 𝜆1, 𝜆2, 𝜆3 to 0.1, 0.2, and
0.05. For perturbation, we set 𝑟𝑘 to 0.01, the PGD step as 10, and 𝑅
to 0.05 when we use text embedding perturbation. Training can be
conducted on a single RTX4090-24G GPU. It is worth mentioning
that our method is based on fine-tuning the original model to make
it more stable, without incurring any additional computation cost
during the inference process.

4.2 Comparisons with SOTA
Aswith previous experiments, each experimentwas repeated twenty
times, and we report the mean with a 95% statistical confidence
interval. Tables 1 and 2 respectively present the results of models
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Dataset Methods Venue 𝐹𝐼𝐷↓ 𝐹𝐼𝐷𝑃↓ 𝐹𝐼𝐷↓ R-Precision MM-Dist↓ Diversity↑Top1↑ Top2↑ Top3↑

HumanML3D

TM2T [8] ECCV2022 1.501±.017 3.909±.039 1.418±.035 0.424±.003 0.618±.003 0.729±.002 3.467±.011 8.589±.076

T2M [7] CVPR2022 1.087±.021 3.990±.064 2.110±.039 0.455±.003 0.636±.003 0.736±.002 3.347±.008 9.175±.083

MotionDiffuse [32] arXiv2022 0.630±.001 2.435±.067 1.549±.032 0.491±.001 0.681±.001 0.782±.001 3.113±.001 9.410±.049

MDM [26] ICLR2023 0.544±.044 3.251±.071 2.015±.027 − − 0.611±.007 5.566±.027 9.559±.086

T2M-GPT [31] CVPR2023 0.141±.005 1.754±.004 1.443 ±.004 0.492±.003 0.679±.002 0.775±.002 3.121±.009 9.722±.082

MoMask [6] CVPR2024 0.045±.002 0.969±.030 1.068±.029 0.521±.002 0.713±.002 0.807±.002 2.962±.008 9.962±.008

SATO (T2M-GPT) − 0.157±.006 0.155±.007 0.021±.006 0.454±.003 0.637±.003 0.738±.003 3.338±.013 9.651±.050

SATO(MoMask) − 0.065±.003 0.070±.002 0.010±.001 0.501±.002 0.697±.003 0.801±.003 3.024±.010 9.599±.075

Table 1: Quantitative evaluation on the HumanML3D. ± indicates a 95% confidence interval. SATO(T2M-GPT) refers to fine-
tuning based on T2M-GPT to create SATO, and similarly, SATO(MoMask) refers to fine-tuning based on MoMask to create SATO.
Red indicates the best result, while blue refers to the second best.

Dataset Methods Venue 𝐹𝐼𝐷↓ 𝐹𝐼𝐷𝑃↓ 𝐹𝐼𝐷𝐷↓
R-Precision MM-Dist↓ Diversity↑Top1↑ Top2↑ Top3↑

KIT-ML

TM2T ECCV2022 3.599±.051 10.619±.156 4.008±.228 0.280±.006 0.463±.007 0.587±.005 4.591±.028 9.473±.145

T2M CVPR2022 3.022±.107 8.832±.153 3.864±.119 0.361±.006 0.559±.007 0.681±.007 3.488±.028 10.720±.145

MotionDiffuse arXiv2022 1.954±.062 5.737±.172 2.496±.106 0.417±.004 0.621±.004 0.739±.004 2.958±.005 11.100±.143

MDM ICLR2023 0.497±.021 3.564±.894 2.331±.032 − − 0.396±.004 9.191±.022 10.847±.109

T2M-GPT CVPR2023 0.514±.029 2.756±.023 2.894±.016 0.416±.006 0.627±.006 0.745±.006 3.007±.023 10.921±.108

MoMask CVPR2024 0.204±.011 2.570±.092 2.234±.101 0.433±.007 0.656±.005 0.781±.005 2.779±.022 2.779±.022

SATO (T2M-GPT) − 0.513±.006 0.581±.005 0.137±.002 0.410±.011 0.619±.005 0.736±.005 3.123±.034 10.889±.066

SATO (MoMask) − 0.234±.011 0.259±.010 0.056±.002 0.425±.006 0.649±.003 0.780±.002 2.801±.019 10.499±.090

Table 2: Quantitative evaluation on the KIT-ML. ± indicates a 95% confidence interval. SATO (T2M-GPT) refers to fine-tuning
based on T2M-GPT to create SATO, and similarly, SATO (MoMask) refers to fine-tuning based on MoMask to create SATO. Red
indicates the best result, while blue refers to the second best.
Text Model Excellent (%) Good (%) Fair (%) Poor (%) Very poor (%) Acc (%) Preference (%)

Original text
T2M-GPT 27.0 29.0 20.5 18.0 5.5 76.5 53.5SATO (T2M-GPT) 29.0 26.5 22.5 16.0 6.0 78.0
MoMask 35.5 28.0 24.0 9.5 3.0 87.5 51.0SATO (MoMask) 29.5 35.0 24.5 6.5 4.5 89.0

Perturbed text
T2M-GPT 9.0 15.5 17.5 22.5 36.5 41.5 93.0SATO (T2M-GPT) 26.5 31.5 16.5 17.5 7.0 75.5
MoMask 11.0 14.5 24.0 14.5 35.0 49.5 91.0SATO (MoMask) 22.0 27.5 32.0 12.0 6.5 81.5

Cross Original text T2M-GPT 51.5 19.5 16.0 10.5 2.5 87.0 67.0SATO (T2M-GPT) 55.5 23.0 15.5 5.0 1.0 94.0
Cross Perturbed text T2M-GPT 20.0 13.5 16.0 22.0 28.5 49.5 92.0SATO (T2M-GPT) 44.5 16.0 24.5 6.0 9.0 85.0

Table 3: Human evaluation and cross-dataset results on the original or perturbed text. "Excellent" means completely meets
the semantic, with smooth and correct expression; "Good" means generally generates well with minor details; "Fair" means
contains errors in details but is overall correct; "Poor" means overall incorrect; "Very poor" means motions and text cannot be
matched at all. We believe that Excellent, Good, and Fair represent correctly generated postures, while the other two represent
errors. Preference indicates human preference for the compared motions. The cross-dataset evaluation result is that the model
is trained on the HumanML3D dataset, with text from KIT-ML used for testing.

Dataset Captions Replacement Rate Co-Sim (%)Caption (%) Word (%)
HumanML3D 87384 99.13 25.08 94.57
KIT-ML 12706 97.74 31.73 93.97

Table 4: Dataset analysis. We analyzed the replacement rates
(sentences, vocabulary). Additionally, we calculated the co-
sine similarity (Co-Sim) before and after replacement to en-
sure the validity of our substitutions.
on the HumanML3D and KIT-ML datasets. We compare our results
with six state-of-the-art (SOTA) methods.
Stability. It is worth noting that all other models perform poorly
on the perturbed dataset, with 𝐹𝐼𝐷𝑃 significantly greater than 𝐹𝐼𝐷 ,
indicating that diverse representations of perturbations are fatal to
the performance of these models. On 𝐹𝐼𝐷𝑃 , SATO(T2M-GPT) sig-
nificantly reduced by 1.599 and 2.175 on HumanML3D and KIT-ML

respectively, while SATO(Momask) decreased by 0.899 and 2.311
respectively. Similarly, there was a significant increase in 𝐹𝐼𝐷𝐷 ,
with SATO(T2M-GPT) decreasing by 1.422 and 2.757 respectively,
and SATO(MoMask) decreasing by 1.058 and 2.178 respectively.
This suggests that SATO yields similar predictive results on both
perturbed and original datasets, indicating stronger stability. We
can also observe a significant reduction in the fluctuation of our
model on the 𝐹𝐼𝐷, 𝐹 𝐼𝐷𝑃 , 𝐹 𝐼𝐷𝐷 metrics, which also reflects the sta-
bility of our approach in predictions. We further investigated the
impact of our approach on the attention JSD metric. Our method
exhibits stability in attention, as evidenced by experiments and
visualizations provided in the supplementary material.
Accuracy. Although our model experiences a slight decrease in
𝐹𝐼𝐷 and R-precision, we would like to point out that previous work
has shown that a small decrease in 𝐹𝐼𝐷 does not necessarily imply a
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Figure 5: Model stability evaluation under different pertur-
bations. The x-axis represents texts with varying degrees
of perturbation, while the left y-axis denotes 𝐹𝐼𝐷𝐷 and the
right y-axis represents 𝐹𝐼𝐷𝑃 . It can be observed that across
all levels of perturbation, SATO (T2M-GPT) consistently out-
performs T2M-GPT in terms of stability metrics. Even when
subjected to significant perturbation, our model maintains
excellent stability.

decrease in generation quality [12]. Our visualization results corrob-
orate this point, and we have additional examples from supplemen-
tary material and anonymous website to further substantiate this
perspective. Furthermore, compared to the significant improvement
in stability measured by the 𝐹𝐼𝐷 metric, the slight decrease in 𝐹𝐼𝐷

on the original text can be almost disregarded. Our visualizations
and additional human evaluation experiments also demonstrate
that the quality of text generated by our model on both original and
perturbed text is superior to the original model. This means that
our model can generate higher-quality motion sequence outputs
in practical applications, with a lower likelihood of catastrophic
errors occurring when presented with a broader range of textual
inputs.
Human Evaluation on the Original or Perturbed Text. Our
work’s motivation is to address the catastrophic errors users en-
counter when using perturbed text by implementing a stable at-
tention model. We further conduct a user study on Google Forms
to validate the correctness of the model’s generation. We gener-
ated 200 motions for each method using the same text pool from
the HumanML3D test set as the input for all baseline models and
SATO. We set up questions for users to rate the motions. Table 3
shows that SATO not only maintains or even achieves better accu-
racy on the original text but also ensures stability when the text is
perturbed. User preferences indicate that SATO performs slightly
better than the original model on the original text and significantly
outperforms the original model on the perturbed text dataset. More
details can be found in the supplementary material.

Cross dataset evaluation. To further test and evaluate the robust-
ness and applicability of our model, we compare SATO (T2M-GPT)
with T2M-GPT as examples. We conducted training on the Hu-
manML3D dataset, using 200 original and perturbed texts from the
sample kit dataset as inputs for evaluation. Table 3 illustrates that
SATO (T2M-GPT) achieves higher accuracy than the baseline by
7% on original texts and by 35.5% on perturbed datasets. Evaluators
also tend to favor the quality of outputs generated by SATO. Both

metrics indicate that our model demonstrates strong robustness
to dataset variations. This also suggests that our approach can en-
hance the generalization performance of the model, enabling it to
be applied in a wider range of domains.

Overall, SATO achieves state-of-the-art stability, balancing
accuracy and robustness, resolving catastrophic errors caused
by synonymous perturbations.

4.3 Ablation study
Ablation Study of SATO Stability Component. We conduct ex-
periments on HumanML3D to evaluate the enhancements provided
by our various modules in SATO,

L1 L2 L3 𝐹𝐼𝐷 𝐹𝐼𝐷𝑃 𝐹𝐼𝐷𝐷

✓ ✗ ✗ 0.149 1.762 1.431
✗ ✓ ✗ 0.187 0.221 0.026
✗ ✗ ✓ 0.213 0.233 0.021
✓ ✓ ✗ 0.162 0.173 0.017
✓ ✗ ✓ 0.159 0.383 0.164
✗ ✓ ✓ 0.198 0.168 0.012
✓ ✓ ✓ 0.157 0.155 0.010
Table 5: Ablation study results
of SATO stability component.
We conducted six separate ab-
lation studies on three differ-
ent loss functions. Bold indi-
cates the best results.

based on T2M-GPT. In
Table 5, we observe that
both the Stable Attention
Module(L2) and Pertur-
bation Module(L3) con-
tribute to improving sta-
bility, as evidenced by the
enhancements in 𝐹𝐼𝐷𝑃 by
1.521, 1.533 respectively,
and 𝐹𝐼𝐷𝐷 by 1.417, 1.422
respectively. The combined
effect of these modules
achieves optimal stability
performance.

The inclusion of the pre-trained Teacher Module (L1) enhances
the model’s 𝐹𝐼𝐷 performance, preventing excessive stability at
the expense of accuracy, albeit with a potential slight decrease in
stability metrics. Moreover, this module plays a crucial role by au-
tomating the selection of the best training iterations, striking a
balance between robustness and accuracy, and keeping the model
more evenly poised between stability and accuracy.
Resistance to synonymous perturbation. Based on the vary-
ing numbers of synonymous word substitutions in the test set, we
categorize perturbations as mild (1 word), moderate (2-3 words),
and severe (>3 words). Visualizing the results in Fig. 5, it’s appar-
ent that our model demonstrates superior stability compared to
T2M-GPT across different levels of perturbation. Even when faced
with severe perturbations, SATO consistently maintains excellent
stability. Our model’s stability metrics significantly outperform
those of the original model on datasets with mild perturbations,
underscoring its robustness across various degrees of perturbation.
More ablation results are provided in Supplementary Material Sec-
tion 4.

5 CONCLUSION
We identified instability issues in the text-to-motion task and in-
troduced a novel framework to address them. In the process of
building SATO, we tackled two key challenges. We also proposed
evaluation metrics for this task and constructed a dataset of 55k
perturbed text pairs. Our experiments demonstrate that SATO is an
attention-stable and prediction-robust framework, exhibiting broad
applicability across various baselines and datasets. We aim to en-
courage more researchers to delve into this issue, further enhancing
the performance and stability of text-to-motion systems.
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