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1 OVERVIEW OF SUPPLEMENTARY
MATERIAL

The supplementary material is organized into the following sec-
tions:

• Section 2: Evaluation metrics.
• Section 3: More visualization examples, including visual

comparisons between SATO and state-of-the-art approaches,
and attention visual examples.

• Section 4: More ablation study, including parameter analy-
sis, perturbation method ablation, and attention analysis.

• Section 5: Details of human evaluation.
• Section 6: SATO pseudo-algorithm.
• Section 7: Computational complexity.
• Section 8: Symbolic representation.

2 EVALUATION METRICS
We denote the motion features generated from the original text and
perturbed text as 𝑓𝑝𝑟𝑒𝑑 and 𝑓 ′

𝑝𝑟𝑒𝑑
, respectively. The ground-truth

motion features and text features are denoted as 𝑓𝑔𝑡 and 𝑓𝑡 .
FID-related. FID is used to measure the difference in distribution
between generated motions. We have the following formulas to
obtain 𝐹𝐼𝐷, 𝐹 𝐼𝐷𝑃 , 𝐹 𝐼𝐷𝐷 :

𝐹𝐼𝐷 = ∥𝜇𝑔𝑡 − 𝜇𝑝𝑟𝑒𝑑 ∥2
2 − Tr(Σ𝑔𝑡 + Σ𝑝𝑟𝑒𝑑 − 2(Σ𝑔𝑡Σ𝑝𝑟𝑒𝑑 )1/2) (1)

𝐹𝐼𝐷𝑃 = ∥𝜇𝑔𝑡 − 𝜇𝑝𝑟𝑒𝑑 ′ ∥2
2 − Tr(Σ𝑔𝑡 + Σ𝑝𝑟𝑒𝑑 ′ − 2(Σ𝑔𝑡Σ𝑝𝑟𝑒𝑑 ′ )1/2)

(2)

𝐹𝐼𝐷𝐷 = ∥𝜇𝑝𝑟𝑒𝑑 − 𝜇𝑝𝑟𝑒𝑑 ′ ∥2
2 − Tr(Σ𝑝𝑟𝑒𝑑 + Σ𝑝𝑟𝑒𝑑 ′ − 2(Σ𝑝𝑟𝑒𝑑Σ𝑝𝑟𝑒𝑑 ′ )1/2)

(3)

Here, 𝜇 represents the mean, Σ is the covariance matrix, and Tr
denotes the trace of a matrix. pred denotes the prediction with the
original text as input, and pred′ denotes the prediction with the
perturbed text as input. FID and 𝐹𝐼𝐷𝑃 are metrics utilized to gauge
the disparity in distribution between motions generated before and
after perturbation, reflecting the variance between the generated
motions and target motions. Meanwhile, 𝐹𝐼𝐷𝐷 evaluates the dis-
similarity in generated motions pre- and post-perturbation. The
smaller the difference, the less susceptible the model is to perturba-
tion.
MM-Dist.MM-Dist quantifies the disparity between text embed-
dings and generated motion features. For N randomly generated
samples, MM-Dist calculates the average Euclidean distance be-
tween each text feature and the corresponding motion feature, thus
assessing feature-level dissimilarities between text and motion. In-
creasingly smaller MM-Dist values correspond to better prediction
results.

MM-Dist =
1
𝑁

𝑁∑︁
𝑖=1

∥ 𝑓pred,𝑖 − 𝑓text,𝑖 ∥ (4)

Diversity. Diversity can measure the diversity of action sequences.
A larger value of the metric indicates better diversity in the model.
We randomly sample 𝑆 pairs of motions, denoted as 𝑓𝑖 and 𝑓 ′𝑖 . Ac-
cording to [2], we set 𝑆 to be 300. We can calculate using the fol-
lowing formula:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =
1
𝑆

𝑆∑︁
𝑖=1

∥ 𝑓𝑖 − 𝑓 ′𝑖 ∥ (5)

Jensen-Shannon Divergence (JSD). JSD can measure the simi-
larity between two distributions, with values ranging from 0 to 1.
Here, we utilize it to quantify the stability of attention before and
after perturbation. We have the attention distributions before and
after perturbation, denoted as 𝜔̃ and 𝜔̄ respectively, computed as
follows:

𝐽𝑆𝐷 (𝜔̃, 𝜔̄) = 1
2
𝐾𝐿[𝜔̃ | | 𝜔̃ + 𝜔̄

2
] + 1

2
𝐾𝐿[𝜔̄ | | 𝜔̃ + 𝜔̄

2
] (6)

where KL is the KL divergence between two distributions. A smaller
JSD implies a stronger resistance of the model’s attention to distur-
bances.

3 MORE VISUALIZATION EXAMPLES
Visual Comparison between SATO and state-of-the-art ap-
proaches. As shown in Fig. 1, we randomly select perturbed text
examples from the test set and visualize the predictions obtained
from model inputs before and after perturbation. In both of these
examples, SATO yielded correct predictions, while the other models
encountered catastrophic failure issues. Our approach demonstrates
consistent outputs and exhibits good stability before and after per-
turbation.
Attention visual examples. Fig. 2 illustrates the differences in
attention between SATO and the original model before and after per-
turbation. The specific attention calculation method can be found in
Section 3.1 of the main text. Across various examples, it is evident
that the Jensen-Shannon Divergence (JSD) between text attention
vectors before and after perturbation is significantly lower for SATO
compared to the original model. The original model exhibits atten-
tion shifts when encountering synonymous perturbations, while
SATO demonstrates better stability against synonymous perturba-
tions across multiple examples.

4 MORE ABLATION STUDY
Paraments analysis. To explore the reasonable range of param-
eters for the loss function, we conducted 13 experiments on the
SATO (T2M-GPT) model using the HumanML3D dataset, with three
different loss settings. The results are shown in Table 3. Here, L1,
L2, and L3 in the text represent the same losses. By fine-tuning the
parameter ranges, we observed that slight increases or decreases in
all loss parameters have little impact on the overall performance of
the model. This is because, during the fine-tuning process, the three
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Figure 1: Visual comparison between SATO and state-of-the-art approaches. We compare SATO with T2M-GPT [2], MoMask
[1], and MotionDiffuse [3]. We present two examples demonstrating predicted action sequences as outputs before and after
perturbation. The underlined part is the part that scrambles the description. It can be observed that all models perform
relatively accurately on the original text. However, only SATO predicts correctly on perturbed text. We presented additional
visualization examples on our anonymous website: https://anonymous.4open.science/api/repo/project-1FC7/file/SATO.html

losses enable the model to dynamically balance towards stability
and precision. For instance, when increasing L1, we are more likely
to obtain model weights that lean towards accuracy rather than
stability. Upon analyzing the detailed changes, we found that the
performance improvement in terms of FID and R-Top3 is associated
with an increase in L1, indicating its influence on model accuracy.
On the other hand, the stability of the model is correlated with L2
and L3, as reflected in the improvement of 𝐹𝐼𝐷𝑃 and 𝐹𝐼𝐷𝐷 when
L2 and L3 are increased. Moreover, when we set large variations in
the loss parameters, we observed that an excessively large L1 leads
to higher accuracy but poor stability, while a too large L3 results in
degraded performance due to excessive input perturbation during
training, causing the model to lose its original good performance.

Perturbation method ablation. In the perturbation method sec-
tion, we discussed two types of perturbation methods: PGD and

RSR. To enhance the performance of PGD, we integrated data aug-
mentation by randomly selecting either the original text or its
synonym-disturbed counterpart as input. During training, we then
apply gradient-based perturbations to the selected input, gener-
ating the perturbed text. This approach differs from RSR, where
the input comprises the original text, and its synonym-disturbed
sentence serves as its perturbed text. Table 1 illustrates that both
methods exhibited enhancements in 𝐹𝐼𝐷𝑃 and 𝐹𝐼𝐷𝐷 , with RSR
showcasing superior stability. JSD highlighted the variance in text
attention before and after model perturbation. We observed that
both methods enhanced the stability of text attention. Furthermore,
we utilized L1 to gauge the disparity in text features outputted by
the text encoder. It’s evident that after employing PGD or RSR,
the outputted text features are significantly stabilized, which aids
subsequent models in producing consistent outputs and thereby
improving model stability. In this paper, we opted for the synonym

2
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Figure 2: Attention visual examples. We compared the visualizations of attention vectors from the text encoder for T2M-GPT
and SATO (T2M-GPT) before and after textual perturbations. In our visualizations, darker shades of red indicate higher attention
weights. Additionally, we quantified the attention differences induced by perturbations using Jensen-Shannon Divergence (JSD).
Our model exhibits a smaller JSD when the text is perturbed, indicating that our model possesses better attention stability.

Perturbation Method Dataset 𝐹𝐼𝐷 𝐹𝐼𝐷𝑃 𝐹𝐼𝐷𝐷 JSD 𝐿𝑓 𝑒𝑎𝑡𝑢𝑟𝑒

Without perturbation
HumanML3D

0.141±.005 1.754±.004 1.443 ±.004 0.228 33.657
PGD 0.246±.010 0.316 ±.008 0.030±.010 0.179 16.743
RSR 0.157±.006 0.155±.007 0.021±.006 0.188 17.483

Table 1: Perturbation method ablation. We conducted ablation studies on SATO (T2M-GPT) using perturbation methods.
"Without perturbation" refers to the original T2M-GPT model. JSD assesses the stability of the model’s attention. 𝐿𝑓 𝑒𝑎𝑡𝑢𝑟𝑒
represents the L1 distance of the model’s output text feature before and after perturbation. We have employed two methods to
perturb the input, both of which significantly enhance model attention and prediction stability.

Method 𝐹𝐼𝐷 𝐹𝐼𝐷𝑃 𝐹𝐼𝐷𝐷 JSD Training time(h) Inference time(s)
T2M-GPT 0.141±.005 1.754±.004 1.443 ±.004 0.228 5.1 0.2557
Data augmentation 0.233±.008 0.395 ±.013 0.390±.008 0.228 5.2 0.2557
SATO 0.157±.006 0.155±.007 0.021±.006 0.188 12.6 0.2557

Table 2: Comparison with Data Augmentation: We conducted a comparison between SATO and the method of solely fine-tuning
the model using data augmentation. The findings suggest that SATO exhibits superior accuracy and stability compared to
relying solely on data augmentation.

replacement perturbation method, which exhibited superior stabil-
ity and performance.

Compare with data augmentation. The instability of the Text-
to-Motion model may stem from the limited diversity of vocabulary
in the dataset, leading to poor generalization performance on un-
seen text. We conducted experiments using T2M-GPT as the base
model on the HumanML3D dataset. We fine-tuned T2M-GPT using
only data augmentation, where during training, we input randomly
selected text either before or after synonymous perturbations, and

compared it with SATO(T2M-GPT). In Table 2, our model exhibits
better stability in attention, as evidenced by a significant decrease in
JSD. Additionally, our model outperforms data augmentation meth-
ods on both the original dataset and the perturbed dataset, with
𝐹𝐼𝐷𝑃 decreasing by 0.369, indicating better resistance to perturba-
tions. In Fig. 1 and Fig. 3, we compare SATO (T2M-GPT) with the
method of fine-tuning the original model using only data augmen-
tation. From our randomly selected examples, we can observe that
the results obtained solely through data augmentation still exhibit
catastrophic errors. Combining quantification and visualization, we

3
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Figure 3: Visual examples of data augmentation methods.
The first line is the ground truth of the motions. The sec-
ond row shows the predictions of the data augmentation
model on the original description, and the third line is on
the perturbed description. The underlined part is the part
that scrambles the description. Despite fine-tuning the orig-
inal model with data augmentation, the visual results still
indicate an inability to resolve catastrophic errors stemming
from synonymous perturbations.

Algorithm 1 SATO
Input: Origin pre-trained Text-to-Motion model (e.g., T2M-GPT) 𝑦 ( ·, 𝜔 ) and
weight W; Training data D including text data x and D′ including perturbed text
x′ .
Initialize W̃ via W
if method == ’PGD’ then

for 𝑡 = 1, 2, ...,𝑇 do
Initialize 𝝆∗

0 .
for 𝑛 = 1, 2, ..., 𝑁 do

Randomly sample a batch B𝑛 ⊂ 𝐷

𝝆𝑘 = 𝝆∗
𝑘−1 + 𝑟𝑘

|B𝑛 |
∑

x∈B𝑛 ∇(𝐷2 (𝑦 (x, 𝑤̃ ), 𝑦 (x, 𝑤̃ + 𝝆∗
𝑘−1 ) ) +

LTopk (𝜔, 𝜔̃ + 𝝆∗
𝑘−1 ) )

𝝆∗
𝑘
= argmin

∥𝝆∥≤𝑅
∥𝝆 − 𝝆𝑘 ∥

end for
Update W̃ using Stochastic Gradient Descent, where C𝑡 is a batch, L𝑡𝑟𝑎𝑛𝑠

is the loss of origin model
W̃𝑡 = W̃𝑡−1 − 𝜂𝑡

∑
x∈𝐶𝑡

[L𝑡𝑟𝑎𝑛𝑠 + 𝜆1𝐷2 (𝑦̃ (x, 𝑤̃ ), 𝑦 (x, 𝑤 ) ) +
𝜆2LTopk (𝜔̃, 𝜔̃ + 𝝆∗ ) + 𝜆3𝐷1 (𝑦̃ (x, 𝜔̃ ), 𝑦̃ (x, 𝜔̃ + 𝝆∗ ) ) ]

end for
else if method == ’RSR’ then

We get 𝜔̄ from input x′
for 𝑡 = 1, 2, ...,𝑇 do

Update W̃ using Stochastic Gradient Descent, where C𝑡 is a batch, L𝑡𝑟𝑎𝑛𝑠

is the loss of origin model
W̃𝑡 = W̃𝑡−1 − 𝜂𝑡

∑
x∈𝐶𝑡

[L𝑡𝑟𝑎𝑛𝑠 + 𝜆1𝐷2 (𝑦̃ (x, 𝑤̃ ), 𝑦 (x, 𝑤 ) ) +
𝜆2LTopk (𝜔̃, 𝜔̄ ) + 𝜆3𝐷1 (𝑦̃ (x, 𝜔̃ ), 𝑦̃ (x′, 𝜔̄ ) ) ]

end for
end if
return W̃∗ = W̃𝑇

can conclude that the instability observed in the Text-to-Motion
model does not solely stem from dataset limitations but also from

attention instability. Consequently, solely relying on data augmen-
tation is insufficient for mitigating the catastrophic errors induced
by input perturbations.
Attention analysis. In the preceding sections, we employed JSD
analysis to evaluate the stability of text encoders in SATO post
fine-tuning, juxtaposing them against the original model’s text
encoder. The results indicate SATO achieving the best JSD score
(0.228 vs. 0.188). A noteworthy distinction between SATO and data
augmentation lies in our adoption of a stable attention mechanism.
While data augmentation falls short in stability metrics and visual-
ization compared to SATO, this underscores the crucial role of the
attention stability module in mitigating catastrophic model errors
stemming from synonymous perturbations. Moreover, we observed
a close correlation between the stability of outputted text features
and attention stability. This suggests that SATO’s resilience to per-
turbations in text encoder attention stabilizes the outputted text
features, thereby ensuring more consistent predictive outcomes in
subsequent transformer structures.

5 DETAILS OF HUMAN EVALUATION

[Question1]: Please evaluate the quality of the motion
generation below.<motion1.gif>

(1) Completely accurate semantically, with smooth
and correct motion.

(2) Generates well with minor details.
(3) Some errors in detail, but overall correct.
(4) Poor, mostly incorrect.
(5) Very poor, completely incorrect semantically.

[Question2]: Please evaluate the quality of the motion
generation below.<motion2.gif>

(1) Completely accurate semantically, with smooth
and correct motion.

(2) Generates well with minor details.
(3) Some errors in detail, but overall correct.
(4) Poor, mostly incorrect.
(5) Very poor, completely incorrect semantically.

[Question2]:Which motion result do you think is better?
(1) The first one
(2) The second one

We’ve employed the Google Form platform to enable 35 individ-
uals to fill out multiple motion sequence tests independently. In
total, there are 1200 questionnaires distributed. Our questionnaire
design includes two types of questions. The first type involves di-
rectly rating the quality of generated motion. Motion is presented
in GIF format, accompanied by five evaluation options: "Good" sig-
nifies generally well-generated motion with minor details; "Fair"
indicates errors in details but overall correctness; "Poor" denotes
overall incorrectness; and "Very poor" signifies motions and text
that cannot be matched at all. We believe the first three options rep-
resent correctly generated postures, while the latter two represent
errors. The second type of question pertains to user preferences
between our model and a baseline model. This question compares
our method and the original method from the user’s perspective
regarding motion generation accuracy.

4
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L1 L2 L3 𝐹𝐼𝐷↓ 𝐹𝐼𝐷𝑃↓ 𝐹𝐼𝐷𝐷↓ R-Top3↑
0.1 0.01 0.2 0.200±.008 0.256±.011 0.035±.008 0.728±.003

0.1 0.1 0.2 0.197±.007 0.224±.009 0.031±.007 0.727±.002

0.1 0.005 0.2 0.198±.008 0.203±.010 0.023±.009 0.732±.003

0.1 0.5 0.2 0.179±.006 0.232±.011 0.073±.006 0.746±.003

0.01 0.05 0.2 0.197±.011 0.233±.010 0.023±.012 0.723±.003

0.05 0.05 0.2 0.220±.010 0.263±.011 0.033±.010 0.722±.003

0.2 0.05 0.2 0.190±.008 0.222±.008 0.036±.008 0.735±.002

1.0 0.05 0.2 0.169±.007 0.269±.012 0.190±.007 0.759±.002

0.1 0.05 0.02 0.183±.005 0.200±.026 0.026±.005 0.732±.003

0.1 0.05 0.1 0.198±.008 0.211±.011 0.029±.008 0.732±.003

0.1 0.05 0.3 0.212±.011 0.239±.007 0.031±.011 0.729±.002

0.1 0.05 2.0 0.730±.022 1.175±.029 0.171±.022 0.665±.003

0.1 0.05 0.2 0.157±.006 0.155±.007 0.021±.006 0.738±.003

Table 3: Parameter analysis. ± indicates a 95% confidence interval. R-top3 represents R-Precision Top3. The table displays the
results of three different parameters for loss.

Notation Remark Notation Remark
x input data 𝑉𝑘 top-k vector overlap ratio
𝜔, 𝜔̃ attention vector, SATO attention vector D divergence metric
𝜔̄ perturbed attention vector W weight of text-to-motion model
𝑋 a pose sequence y, ỹ prediction of text-to-motion model and SATO
𝐶 a textual description 𝛾1, 𝛾2, 𝑅 parameters in SATO
𝑐𝑖 𝑖𝑡ℎ word in the sentence 𝜌 some perturbation
L𝑡𝑟𝑎𝑛𝑠 the loss of text-to-motion model L𝑇𝑜𝑝𝑘 a surrogate loss of 𝑉𝑘
𝑟𝑘 PGD step size 𝜁𝜔

𝑘
top-k indices set of vector 𝜔

e text embedding 𝜆1, 𝜆2, 𝜆3 regularization parameters
t token index vector e embedding weights
t𝑒 text embedding vector k key vector
q query vector 𝜔𝑡 attention weights

Table 4: Symbolic representation and remarks for the notation used in this paper.

6 SATO PSEUDO-ALGORITHM
The pseudo-algorithm for SATO is outlined in Algorithm 1.

7 COMPUTATIONAL COMPLEXITY
During training, SATO incurs additional time due to the utilization
of an extra frozen teacher model and the generation of predictions
before and after output perturbation. Table 2 indicates that un-
der the same experimental conditions (RTX4090-24G GPU), SATO
(T2M-GPT) takes an additional 7.4 hours compared to T2M-GPT
over 100,000 iterations. However, during the inference process,
since SATO fine-tunes the original model without increasing the
parameter count, it does not incur any additional time or space
overhead. Table 2 also confirms this. When we use all the data from
HumanML3D as input with a batch size of 1, we obtain an average
inference time of 0.2557 second per text.

8 SYMBOLIC REPRESENTATION
A table providing the symbolic representation employed throughout
this paper is presented in Table 4. Each symbol is defined alongside
its respective notation and meaning.
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