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Abstract1

Neural networks leverage robust internal representations in order to generalise.2

Learning them is difficult, and often requires a large training set that covers the3

data distribution densely. We study a common setting where our task is not4

purely opaque. Indeed, very often we may have access to information about the5

underlying system (e.g. that observations must obey certain laws of physics) that6

any “tabula rasa” neural network would need to re-learn from scratch, penalising7

performance. We incorporate this information into a pre-trained reasoning module,8

and investigate its role in shaping the discovered representations in diverse self-9

supervised learning settings from pixels. Our approach paves the way for a new10

class of representation learning, grounded in algorithmic priors.11

1 Introduction12

Neural networks are able to learn policies in environments without access to their specifics [1],13

generate large quantities of text [2], or automatically fold proteins to high accuracy [3]. However,14

such “tabula rasa” approaches hinge on having access to substantial quantities of data, from which15

robust representations can be learned. Without a large training set that spans the data distribution,16

representation learning is difficult [4–6].17

Here, we study ways to construct neural networks with representations that are robust, while retaining18

a data-driven approach. We rely on a simple observation: very often, we have some (partial)19

knowledge of the underlying dynamics of the data, which could help make stronger predictions from20

fewer observations. This knowledge, however, usually requires us to be mindful of abstract properties21

of the data—and such properties cannot always be robustly extracted from natural observations.22
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Figure 1: Bouncing balls example (re-printed, with permission, from Battaglia et al. [7]). Natural
inputs, x, correspond to pixel observations. Predicting future observations (natural outputs, y), can
be simplified as follows: if we are able to extract a set of abstract inputs, x̄, (e.g. the radius, position
and velocity for each ball), the movements in this space must obey the laws of physics.

Motivation. Consider the task of predicting the future state of a system of n bouncing balls,23

from a pixel input x (Figure 1). Reliably estimating future pixel observations, y, is a challenging24

reconstruction task. However, the generative properties of this system are simple. Assuming25

knowledge of simple abstract inputs (radius, rc, position, xc, and velocity, vc) for every ball, x̄c,26

the future movements in this abstract space are the result of applying the laws of physics to these27
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low-dimensional quantities. Hence, future abstract states, ȳ, can be computed via a simple algorithm28

that aggregates pair-wise forces between objects.29

While this gives us a potentially simpler path from pixel inputs to pixel outputs, via abstract inputs to30

abstract outputs (x→ x̄ ȳ→ y), it still places potentially unrealistic demands on our task setup,31

every step of the way:32

x→ x̄: Necessitates either upfront knowledge of how to abstract away x̄ from x, or a massive33

dataset of paired (x, x̄) to learn such a mapping from;34

x̄ ȳ: Implies that the algorithm perfectly simulates all aspects of the output. In reality, an35

algorithm may often only give partial context about y. Further, algorithms often assume36

that x is provided without error, exposing an algorithmic bottleneck [8]: if x̄ is incorrectly37

predicted, this will negatively compound in ȳ, hence y;38

ȳ→ y: Necessitates a renderer that generates y from ȳ, or a dataset of paired (ȳ,y) to learn it.39

We will assume a general setting where none of the above constraints hold: we know that the mapping40

x̄ ȳ is likely of use to our predictor, but we do not assume a trivial mapping or a paired dataset41

which would allow us to convert directly from x to x̄ or from ȳ to y. Our only remaining assumption42

is that the algorithm x̄ ȳ can be efficiently computed, allowing us to generate massive quantities43

of paired abstract input-output pairs, (x̄, ȳ).44

Present work. In this setting, we propose Reasoning-Modulated Representations (RMR), an45

approach that first learns a latent-space processor of abstract data; i.e. a mapping x̄
f−→ z

P−→ z′
g−→ ȳ,46

where z ∈ Rk are high-dimensional latent vectors. f and g are an encoder and decoder, designed47

to take abstract representations to and from this latent space, and P is a processor network which48

simulates the algorithm x̄ ȳ in the latent space.49

We then observe, in the spirit of neural algorithmic reasoning [9], that such a processor network can50

be used as a drop-in differentiable component for any task where the x̄ ȳ kind of reasoning may be51

applicable. Hence, we then learn a pipeline x
f̃−→ z

P−→ z′
g̃−→ y, which modulates the representations52

z obtained from x, forcing them to pass through the pre-trained processor network. By doing so, we53

have ameliorated the original requirement for a massive natural dataset of (x,y) pairs. Instead, we54

inject knowledge from a massive abstract dataset of (x̄, ȳ) pairs, directly through the pre-trained55

parameters of P . This has the potential to relieve the pressure on encoders and decoders f̃ and g̃,56

which we experimentally validate on several challenging representation learning domains.57

Our contributions can be summarised as follows:58

• Verifying and extending prior work, we show that meaningful latent-space models can be learned59

from massive abstract datasets, on physics simulations and Atari 2600 games;60

• We then show that these latent-space models can be used as differentiable components within61

neural pipelines that process raw observations. In doing so, we recover a neural network pipeline62

that relies solely on the existence of massive abstract datasets (which can often be automatically63

generated).64

• Finally, we demonstrate early signs of processor reusability: latent-space abstract models can be65

used in tasks which do not even directly align with their environment, so long as these tasks can66

benefit from their underlying reasoning procedure.67

2 Related Work68

Neural algorithmic reasoning. RMR relies on being able to construct robust latent-space models,69

akin to world models [10], that imitate abstract reasoning procedures. This makes it well aligned70

with neural algorithmic reasoning [11], which is concerned with constructing neuralised versions of71

classical algorithms (typically by learning to execute them in a manner that extrapolates). Leveraging72

the ideas of algorithmic alignment [12], several known algorithmic primitives have already been73

successfully neuralised. This includes iterative computation [13, 14], linearithmic algorithms [15],74

and data structures [16, 17]. Further, the XLVIN model [8] demonstrates how such primitives can be75

re-used for data-efficient planning, paving the way for a blueprint [9] that we leverage in RMR as76

well. Our work also relates to transferring algorithmic reasoning knowledge [18], where no evidence77
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of positive transfer was found, in case of cross-algorithm transfer, whereas we did in the case of78

transfer among aligned algorithms (same underlying algorithm from abstract to raw inputs.)79

Physical simulation with neural networks. Our work also has contact points with prior art in80

using (graph) neural networks for physics simulations. In fact, there is a tight coupling between81

algorithmic computation and simulations, as the latter are typically realised using the former. Within82

this space, abstract GNN models of physics have been proposed by works such as interaction83

networks [7] and NPE [19], and extended to pixel-based inputs by visual interaction networks [20].84

The generalisation power of these models has increased drastically in recent years, with effective85

models of systems of particles [21] as well as meshes [22] being proposed. Excitingly, it has also86

been demonstrated that rudimentary laws of physics can occasionally be recovered from the update87

rules of these GNNs [23], and that they can be used to uncover new physical knowledge [24].88

Recent work has also explored placing additional constraints on learning-based physical simulators,89

for example by using Hamiltonian ODE integrators in conjunction with GNN models [25], or by90

coupling a (non-neural) differentiable physics engine directly to visual inputs and optimizing its91

parameters via backprop [26, 27].92

Object-centric and modular models for dynamic environments. RMR with factored latents93

can be viewed as a form of object-centric neural network, in which visual objects in an image or94

video are represented as separate latent variables in the model and their temporal dynamics and95

pairwise interactions are modeled via GNNs or self-attention mechanisms. There is a rich literature96

on discovering objects and learning their dynamics from raw visual data without supervision, with97

object-centric models such as R-NEM [28], SQAIR [29], OP3 [30], SCALOR [31], G-SWM [32].98

Recent work has explored using contrastive losses [33] in this context or other losses directly in latent99

space [34]. Related approaches discover and use keypoints [35] to describe objects and even discover100

causal relations from visual input [36] using neural relational inference [37] in conjunction with a101

keypoint discovery method. A related line of works integrate attention-mechanisms in modular and102

object-centric models to interface latent variables with visual input, including models such as RMC103

[38], RIM [39], Slot Attention [40], SCOFF [41], and NPS [42].104

3 RMR architecture105

Having provided a high-level overview of RMR and surveyed the relevant related work, we proceed106

to carefully detail the blueprint of RMR’s various components. This will allow us to ground any107

subsequent RMR experiments on diverse domains directly in our blueprint. Throughout this section,108

it will be useful to refer to Figure 2 which presents a visual overview of this section.109

Preliminaries. We assume a set of natural inputs, X , and a set of natural outputs, Y . These sets110

represent the possible inputs and outputs of a target function, Φ : X → Y , which we would like to111

learn based on a (potentially small) dataset of input-output pairs, (x,y), where y = Φ(x).112

We further assume that the inner workings of Φ can be related to an algorithm, A : X̄ → Ȳ . The113

algorithm operates over a set of abstract inputs, X̄ , and produces outputs from an abstract output114

set Ȳ . Typically, it will be the case that dim X̄ � dimX ; that is, abstract inputs are assumed115

substantially lower-dimensional than natural inputs. We do not assume existence of any aligned input116

pairs (x, x̄), and we do not assume that A perfectly explains the computations of Φ. What we do117

assume is that A is either known or can be trivially computed, giving rise to a massive dataset of118

abstract input-output pairs, (x̄, ȳ), where ȳ = A(x̄).119

Lastly, we assume a latent space, Z , and that we can construct neural network components to both120

encode and decode from it. Typically, Z will be a real-valued vector space (Z = Rk) which is121

high-dimensional; that is, k > dim X̄ . This ensures that any neural networks operating over Z are122

not vulnerable to bottleneck effects.123

Note that either the natural or abstract input set may be factorised, e.g., into objects; in this case, we124

can accordingly factorise the latent space, enforcing Z = Rn×k, where n is the assumed maximal125

number of objects (typically a hyperparameter of the models if not known upfront).126

Abstract pipeline. RMR training proceeds by first learning a model of the algorithm A, which is127

bound to pass through a latent-space representation. That is, we learn a neural network approximator128
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Figure 2: Reasoning-modulated representation learner (RMR).

g(P (f(x̄))) ≈ A(x̄), which follows the encode-process-decode paradigm [43]. It consists of the129

following three building blocks: Encoder, f : X̄ → Z , tasked with projecting the abstract inputs130

into the latent space; Processor, P : Z → Z , simulating individual steps of the algorithm in the131

latent space; Decoder, g : Z → Ȳ , tasked with projecting latents back into the abstract output space.132

Such a pipeline is now widely used both in neural algorithmic reasoning [13] and learning physical133

simulations [21], and can be trained end-to-end with gradient descent.134

For reasons that will become apparent, it is favourable for most of the computational effort to be135

performed by P . Accordingly, encoders and decoders in the abstract pipeline are often designed to be136

simple learnable linear projections as there is usually no need for elaborate encoders/decoders, which,137

we will see, is not the case in the natural pipeline, due to nontrivial geometry of inputs and outputs.138

The processors tend to be either deep MLPs or graph neural networks—depending on whether the139

latent space is factorised into nodes.140

Natural pipeline. Once an appropriate processor, P , has been learned, it may be observed that it141

corresponds to a highly favourable component in our setting. Namely, we can relate its operations to142

the algorithm A, and since it stays high-dimensional, it is a differentiable component we can easily143

plug into other neural networks without incurring any bottleneck effects. This insight was originally144

recovered in XLVIN [8], where it yielded a generic implicit planner. As an ablation, we have also145

rediscovered the bottleneck effect in our settings; see Appendix C. We now leverage similar insights146

for general representation learning tasks.147

On a high level, what we need to do is simple and elegant: swap out f and g for natural encoders148

and decoders, f̃ : X → Z and g̃ : Z → Y , respectively. We are then able to learn a function149

g̃(P (f̃(x))) ≈ Φ(x), which is once again to be optimised through gradient descent. We would like P150

to retain its semantics during training, and therefore it is typically kept frozen in the natural pipeline.151

Note that P might not perfectly represent A which in turn might not perfectly represent Φ. While we152

rely on a skip connection in our implementation of P , it has no learnable parameters and does not153
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offer the system the ability to learn a correction of P in the natural setting. Our choice is motivated154

by the desire to both maintain the semantics and interpretability of P and to force the model to rely155

on the processor P , not to simply bypass it. We show empirically that our pipeline is surprisingly156

robust to imperfect P models even with weak (linear) encoders/decoders.157

It is worth noting several potential challenges that may arise while training the natural pipeline,158

especially if the training data for it is sparsely available. We also suggest remedies for each:159

• If x and/or y exhibit any nontrivial geometry, simple linear projections will rarely suffice for f̃160

and g̃. For example, our natural inputs will often be pixel-based, necessitating a convolutional161

neural network for f̃ .162

• Further, since the parameters of P are kept frozen, f̃ is left with a challenging task of mapping163

natural inputs into an appropriate manifold that P can meaningfully operate over. While we164

demonstrate clear empirical evidence that such meaningful mappings definitely occur, we remark165

that its success may hinge on carefully tuning the hyperparameters of f̃ .166

• A very common setting assumes that the abstract inputs and latents are factorised into objects,167

but the natural inputs are not. In this case, f̃ is tasked with predicting appropriate object168

representations from the natural inputs. This is known to be a challenging feat [44], but can be169

successfully performed. Sometimes arbitrarily factorising the feature maps of a CNN [33] is170

sufficient, while at other times, models such as slot attention [40] may be required.171

• One corollary of using automated object extractors for f̃ is that it’s very difficult to enforce their172

slot representations to line up in the same way as in the abstract inputs. This implies that P173

should be permutation equivariant (and hence motivates using a GNN for it).174

4 RMR for bouncing balls175

To evaluate the capability of the RMR pipeline for transfer from the abstract space to the pixel176

space, we apply it on the “bouncing balls” problem. The bouncing balls problem is an instance of a177

physics simulation problem, where the task is to predict the next state of an environment in which178

multiple balls are bouncing between each other and a bounding box. Though this problem had been179

studied in the the context of physics simulation from (abstract) trajectories [7] and from (natural)180

videos [20, 28, 45], here we focus on the aptitude of RMR to transfer learned representations from181

trajectories to videos.182

Our results affirm that strong abstract models can be trained on such tasks, and that including183

them in a video pipeline induces more robust representations. See Appendix A for more details on184

hyperparameters and experimental setup.185

Preliminaries. Here, trajectories are represented by 2D coordinates of 10 balls through time,186

defining our abstract inputs and outputs X̄ = Ȳ = R10×2. We slice these trajectories into a series187

of moving windows containing the input, x̄∗, spanning a history of three previous states, and the188

target, ȳ, representing the next state. We obtain these trajectories from a 3D simulator (MuJoCo [46]),189

together with their short-video renderings, which represent our natural input and output space190

X = Y = R64×64×3. Our goal is to train an RMR abstract model on trajectories and transfer learned191

representations to improve a dynamics model trained on these videos.192

Abstract pipeline. So as to model the dynamics of trajectories, we closely follow the RMR193

desiderata for the abstract model. We set f to a linear projection over the input concatenation, P194

to a Message Passing Neural Network (MPNN), following previous work [7, 21], and g to a linear195

projection.196

Our model learns a transition function g(P (f(x̄∗)) ≈ ȳ, supervised using Mean Squared Error197

(MSE) over ball positions in the next step. It achieves an MSE of 4.59 × 10−4, which, evaluated198

qualitatively, demonstrates the ability of the model to predict physically realistic behavior when199

unrolled for 10 steps (the model is trained on 1-step dynamics only). Next, we take the processor P200

from the abstract pipeline and re-use it in the natural pipeline.201

Natural pipeline. Here we evaluate whether the pre-trained RMR processor can be reused for202

learning the dynamics of the bouncing balls from videos. The pixel-based encoder f̄ simply runs a203
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Slot Attention model [40] on each input image, concatenates its outputs and passes them through a204

linear layer. The pixel-based decoder ḡ is a Broadcast Decoder [47].205

The full model is a transition function ḡ(P (f̄(x∗)) ≈ y, supervised by pixel reconstruction loss over206

the next step image. We compare the performance of the RMR model with a pre-trained processor207

P against a baseline in which P is trained fully end-to-end. The RMR model achieves an MSE of208

7.94±0.41 (×10−4), whereas the baseline achieves 9.47±0.24 (×10−4). We take a qualitative look209

at the reconstruction rollout of the RMR model in Figure 3, and expose the algorithmic bottleneck210

properties for this task in Appendix C.211

Figure 3: RMR for bouncing balls reconstruction rollout. States marked in green are the natural
input, followed by the reconstructed output. The states below the reconstruction are the ground truth.

5 Contrastive RMR for Atari212

We evaluate the potential of our RMR pipeline for state representation learning on the Atari 2600213

[48]. We find the RMR applicable here because there is a potential wealth of information that can be214

obtained about the Atari’s operation—namely, by inspecting its RAM traces.215

Preliminaries. Accordingly, we will define our set of abstract inputs and outputs as Atari RAM216

matrices. Given that the Atari has 128 bytes of memory, X̄ = Ȳ = B128×8 (where B = {0, 1} is the217

set of bits). We collect data about how the console modifies the RAM by acting in the environment218

and recording the trace of RAM arrays we observe. These traces will be of the form (x̄, a, ȳ) which219

signify that the agent’s initial RAM state was x̄, and that after performing action a ∈ A, its RAM220

state was updated to ȳ. We assume that a is encoded as an 18-way one-hot vector.221

We would like to leverage any reasoning module obtained over RAM states to support representation222

learning from raw pixels. Accordingly, our natural inputs, X , are pixel arrays representing the Atari’s223

framebuffer.224

Mirroring prior work, we perform contrastive learning directly in the latent space, and set Y = Z;225

that is, our natural outputs correspond to an estimate of the “updated” latents after taking an action.226

All our models use latent representations of 64 dimensions per slot, meaning Z = R128×64.227

We note that it is important to generate a diverse dataset of experiences in order to train a robust228

RAM model. To simulate a dataset which might be gathered by human players of varying skill, we229

sample our data using the 32 policy heads of a pre-trained Agent57 [49]. Each policy head collects230

data over three episodes in the studied games. Note that this implies a substantially more challenging231

dataset than the one reported by [50], wherein data was collected by a purely random policy, which232

may well fail to explore many relevant regions of the games.233

Abstract pipeline. Firstly, we set out to verify that it is possible to train nontrivial Atari RAM234

transition models. The construction of this abstract experiment follows almost exactly the abstract235

RMR setup: f and g are appropriately sized linear projections, while P needs to take into account236

which action was taken when updating the latents. To simplify the implementation and allow further237

model re-use, we consider the action a part of the P ’s inputs. See Appendix F for detailed equations.238

This implies that our transition model learns a function g(P (f(x̄), a)) ≈ ȳ. We supervise this model239

using binary cross-entropy to predict each bit of the resulting RAM state. Since RAM transitions are240

assumed deterministic, we assume a fully Markovian setup and learn 1-step dynamics.241
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For brevity purposes, we detail our exact hyperparameters and results per each Atari game considered242

in Appendix B. Our results ascertain the message passing neural network (MPNN) [51] as a highly243

potent processor network in Atari: it ranked most potent in 17 out of 24 games considered, compared244

to MLPs and Deep Sets [52]. Accordingly, we will focus on leveraging pre-trained MPNN processors245

for the next phase of the RMR pipeline.246

Natural pipeline. We now set out to evaluate whether our pre-trained RMR processors can be247

meaningfully re-used by an encoder in a pixel-based contrastive learning pipeline.248

Table 1: Natural modelling results for Atari 2600. Bit-level F1 reported for slots with high entropy,
as in Anand et al. [50]. Results assumed significant at p < 0.05 (one-sided paired Wilcoxon test).

Game Agent57 C-SWM RMR p-value

Asteroids 0.514±0.001 0.582±0.009 0.593±0.004 < 10−5

Battlezone 0.351±0.003 0.592±0.005 0.589±0.007 0.056
Berzerk 0.454±0.084 0.463±0.053 0.470±0.025 0.364
Bowling 0.554±0.004 0.944±0.006 0.946±0.003 0.071
Boxing 0.558±0.002 0.667±0.012 0.669±0.011 0.215
Breakout 0.657±0.001 0.836±0.009 0.852±0.008 < 10−5

Demon Attack 0.539±0.004 0.653±0.006 0.658±0.004 0.002
Freeway 0.424±0.052 0.912±0.025 0.919±0.035 0.032
Frostbite 0.405±0.001 0.580±0.025 0.594±0.016 0.035
H.E.R.O. 0.481±0.001 0.729±0.026 0.779±0.021 < 10−5

Montezuma’s Revenge 0.743±0.003 0.824±0.012 0.821±0.016 0.156
Ms. Pac-Man 0.506±0.001 0.599±0.004 0.602±0.006 0.038
Pitfall! 0.495±0.003 0.626±0.015 0.603±0.010 < 10−5

Pong 0.392±0.001 0.750±0.016 0.762±0.010 0.001
Private Eye 0.594±0.001 0.863±0.010 0.867±0.008 0.045
Q*Bert 0.536±0.010 0.588±0.015 0.590±0.017 0.165
River Raid 0.686±0.001 0.762±0.005 0.764±0.007 0.032
Seaquest 0.472±0.007 0.634±0.013 0.653±0.008 < 10−5

Skiing 0.599±0.007 0.766±0.028 0.775±0.014 0.174
Space Invaders 0.588±0.002 0.719±0.012 0.761±0.006 < 10−5

Tennis 0.533±0.008 0.724±0.007 0.729±0.005 0.007
Venture 0.567±0.001 0.632±0.005 0.633±0.004 0.392
Video Pinball 0.375±0.011 0.724±0.009 0.745±0.008 < 10−5

Yars’ Revenge 0.608±0.001 0.715±0.008 0.751±0.010 < 10−5

For our pixel-based encoder f̃ , we use the same CNN trunk as Anand et al. [50]—however, as we249

require slot-level rather than flat embeddings, the final layers of our encoder are different. Namely,250

we apply a 1× 1 convolution computing 128m feature maps (where m is the number of feature maps251

per-slot). We then flatten the spatial axes, giving every slot m× h× w features, which we finally252

linearly project to 64-dimensional features per-slot, aligning with our pre-trained P . Note that setting253

m = 1 recovers exactly the style of object detection employed by C-SWM [33]. Since our desired254

outputs are themselves latents, g̃ is a single linear projection to 64 dimensions.255

Overall, our pixel-based transition model learns a function g̃(P (f̃(x), a)) ≈ f̃(y), where y is the256

next state observed after applying action a in state x. To optimise it, we re-use exactly the same257

TransE-inspired [53] contrastive loss that C-SWM [33] used.258

Once state representation learning concludes, all components are typically thrown away except for259

the encoder, f̃ , which is used for downstream tasks. As a proxy for evaluating the quality of the260

encoder, we train linear classifiers on the concatenation of all slot embeddings obtained from f̃ to261

predict individual RAM bits, exactly as in the abstract model case. Note that we have not violated262

our assumption that paired (x, x̄) samples will not be provided while training the natural model—in263

this phase, the encoder f̃ is frozen, and gradients can only flow into the linear probe.264

Our comparisons for this experiment, evaluating our RMR pipeline against an identical architecture265

with an unfrozen P (equivalent to C-SWM [33]) is provided in Table 1. For each of 20 random seeds,266
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we feed identical batches to both models, hence we can perform a paired Wilcoxon test to assess the267

statistical significance of any observed differences on validation episodes. The results are in line with268

our hypothesis: representations learnt by RMR are significantly better (p < 0.05) on 15 out of 24269

games, significantly worse only on Pitfall!—and indistinguishable to C-SWM’s on others. This is270

despite the fact their architectures are identical, indicating that the pre-trained abstract model induces271

stronger representations for predicting the underlying data factors. As was the case for bouncing272

balls, we expose the algorithmic bottleneck here too; see Appendix C.273

As a relevant initial baseline—and to emphasise the difficulty of our task—we also include in Table274

1 the performance of the latent embeddings extracted from a pre-trained Agent57 [49]. These275

embeddings are, perhaps unsurprisingly, substantially worse than both the RMR and C-SWM models.276

As Agent57 was trained on a reward-maximising objective, its embeddings are likely to capture the277

controllable aspects of the input, while filtering out the environment’s background.278

Abstract model transfer. While the results above indicate that endowing a self-supervised Atari279

representation learner with knowledge of the underlying game’s RAM transitions yields stronger280

representations, one may still argue that this constitutes a form of “privileged information”. This is281

due to the fact we knew upfront which game we were learning the representations for, and hence282

could leverage the specific RAM dynamics of this game.283

In the final experiment, we study a more general setting: we are given access to RAM traces showing284

us how the Atari console manipulates its memory in response to player input, but we cannot guarantee285

these traces came from the same game that we are performing representation learning over. Can we286

still effectively leverage this knowledge?287

Specifically, we test abstract model transfer in the following way: first, we take a pre-trained abstract288

processor network P from one game (the “train game”) and freeze it. Then, using this processor, we289

perform the aforementioned natural pipeline training and testing over frames from another game (the290

“test game”). We then evaluate whether the recovered performance improves over the C-SWM model291

with unfrozen weights—once again using a paired one-sided Wilcoxon test over 20 seeds to ascertain292

statistical significance of any differences observed. The final outcome of our experiment is hence293

a 24× 24 matrix, indicating the quality of abstract model transfer from every game to every other294

game. Table 1 corresponds to the “diagonal” entries of this matrix.295

The results, presented in Figure 4, testify to the performance of RMR. Representations learned by296

RMR transfer better in 64.6% of the train/test game pairs, are indistinguishable from C-SWM in297

33.7% of the game pairs and perform worse than C-SWM in only 1.7% of game pairs. Therefore, in298

plentiful circumstances, the answer to our original question is positive: discovering a trace of Atari299

RAM transitions of unknown origin can often be of high significance for representation learning from300

Atari pixels, regardless of whether the underlying games match.301

Qualitative analysis of transfer. While we find this result interesting in and of itself, it also raises302

interesting follow-up questions. Is representation learning on certain games more prone to being303

improved just by knowing anything about the Atari console? Figure 4 certainly implies so: several304

games (such as Seaquest or Space Invaders) have “fully-green” columns, making them “universal305

recipients”. Similarly, we may be interested about the “donor” properties of each game – to what306

extent are their RAM models useful across a broad range of test games?307

We study both of the above questions by performing a hierarchical (complete-link) clustering of the308

rows and columns of the 24× 24 matrix of transfer performances, to identify clusters of related donor309

and recipient games. Both clusterings are marked in Figure 4 (on the sides of the matrix).310

The analysis reveals several well-formed clusters, from which we are able to make some preliminary311

observations, based on the properties of the various games. To name a few examples:312

• The strongest recipients (e.g. Yars’ Revenge, H.E.R.O., Seaquest, Space Invaders and Asteroids)313

tend to include elements of “shooting” in their gameplay.314

• Conversely, the weakest recipients (River Raid, Berzerk, Private Eye, Ms. Pac-Man and Pitfall!)315

are all games in which movement is generally unrestricted across most of the screen, indicating316

a larger range of possible coordinate values to model.317

• Pong, Breakout, Battlezone and Skiing cluster closely in terms of donor properties—and they318

are all games in which movement is restricted to one axis only.319
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Figure 4: A hierarchically clustered heatmap depiction of the transfer results, where the Train Game
abstract models have been trained on the Test Games. The results are summarised by a Wilcoxon test,
denoting where the performance of RMR is better, does not differ or is worse than C-SWM’s. In each
cell, the mean relative % improvement is noted. The significance cutoff is p < 0.05.

• Lastly, strong donors (Montezuma’s Revenge, Yars’ Revenge, Q*Bert and Venture) all feature320

massive, abrupt, changes to the game state (as they feature multiple rooms, for example). This321

implies that they might generally have seen a more diverse set of transitions. Further, on Yars’322

Revenge, a massive laser features, which, conveniently, prints an RGB projection of the RAM323

itself on the frame.324

6 Conclusions325

We presented Reasoning-Modulated Representations (RMR), a novel approach for leveraging back-326

ground algorithmic knowledge within a representation learning pipeline. By encoding the underlying327

algorithmic priors as weights of a processor neural network, we alleviate requirements on alignment328

between abstract and natural inputs and protect our model against bottlenecks. We believe that RMR329

paves the way to a novel class of algorithmic reasoning-inspired representations, with a high potential330

for transfer across tasks—a feat that has largely eluded deep reinforcement learning research.331
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A Bouncing balls modelling setup488

Abstract pipeline. The f is a linear projection over the concatenation of inputs, outputting a 128-489

long representation for each of the 10 balls in the input. The P is a MPNN over the fully connected490

graph of the ball representations. It is a 2-pass MPNN with a 3-layered ReLU-activated MLP as a491

message function, without the final layer activation, projecting to the same 128-dimensional space,492

per object. Finally, g is a linear projection applied on each object representation of the output of P .493

The model is MSE-supervised with ball position on the next step. It is trained on a 8-core TPU for494

10000 epochs, with a batch size of 512, and the Adam optimizer with the initial learning rate of495

0.0001.496

Natural pipeline. f̄ is a Slot Attention model [40] on each input image, concatenating the images497

and passing them through a linear layer, outputting a 128-dimensional vector for each of the objects.498

ḡ is a Broadcast Decoder [47] containing a sequence of 5 transposed convolutions and a linear layer499

mapping before calculating the reconstructions and their masks.500

The model is MSE-supervised by pixel reconstruction (per-pixel MSE) over the next step image.501

Both the RMR and the baseline are trained on a 8-core TPU for 1000 epochs, with a batch size of502

512, with the Adam optimiser and the initial learning rate of 0.0001, all over 3 random seeds.503

B Atari abstract modelling setup and results504

Our best processor network is a MPNN [51] over a fully connected graph [54] of RAM slots, which505

concatenates the action embedding to every node (as done in [33]). It uses three-layer MLPs as506

message functions, with the ReLU activation applied after each hidden layer. The entire model507

is trained for every game in isolation, over 48 distinct episodes of Agent57 experience. We use508

the Adam SGD optimiser [55] with a batch size of 50 and a learning rate of 0.001 across all Atari509

experiments. To evaluate the benefits of message passing, we also compare our model to Deep Sets510

[52], which is equivalent to our MPNN model—only it passes messages over the identity adjacency511

matrix. Lastly, we evaluate the benefits of factorised latents by comparing our methods against a512

three-layer MLP applied on the flattened RAM state.513

One immediate observation is that RAM updates in Atari are extremely sparse, with a copy baseline514

already being very strong for many games. To prevent the model from having to repeatedly re-learn515

identity functions, we also make it predict masks of the shapeM = B128, specifying which cells516

are to be overwritten by the model at this step. This strategy, coupled with teacher forcing (as517

done by [16, 17]) yielded substantially stronger predictors. We also use this observation to prevent518

over-inflating our prediction scores: we only display prediction accuracy over RAM slots with label519

entropy larger than 0.6 (as done by [50]).520

The full results of training Atari RAM transition models, for the games studied in [50], are provided521

in Table 2. We evaluate both bit-level F1 scores, as well as slot-level accuracy (for which all 8522

bits need to be predicted correctly in order to count), over the remaining 48 Agent57 episodes as523

validation. To the best of our knowledge, this is the first comprehensive feasibility study for learning524

Atari RAM transition models.525

C Rediscovering the algorithmic bottleneck526

As mentioned in the main text body, one of the key reasons in favour of a high-dimensional algorithmic527

component is to avoid the algorithmic bottleneck, as first exposed by Deac et al. [8].528

In short, the performance guarantees of running classical algorithms rely on having the exactly correct529

inputs for them. If there are any errors in the predictions of these (usually very low-dimensional)530

inputs, these errors may propagate to the algorithmic computations and yield suboptimal results.531

Further, there is no room for any kind of fallback if such an event occurs.532

In contrast, the high-dimensional neural processors like the ones we study here are not vulnerable to533

bottleneck effects: if any dimensions of the latent state are poorly predicted, the other components of534

it could step in and compensate for this. Further, we can easily support skip connections in the case535

where the algorithm is not fully descriptive of the problem we’re solving.536
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Table 2: Abstract modelling results for Atari 2600. Entire-slot accuracies and bit-level F1 scores are
reported only for slots with high entropy, as per [50].

Copy baseline MLP Deep Sets MPNN
Game Slot acc. Bit F1 Slot acc. Bit F1 Slot acc. Bit F1 Slot acc. Bit F1

Asteroids 70.65% 0.856 71.28% 0.872 72.84% 0.879 80.69% 0.930
Battlezone 57.09% 0.841 61.19% 0.840 61.71% 0.867 71.06% 0.892
Berzerk 84.32% 0.905 86.17% 0.930 84.16% 0.923 86.67% 0.933
Bowling 93.86% 0.972 97.43% 0.991 90.72% 0.966 98.41% 0.995
Boxing 59.78% 0.848 54.45% 0.834 59.79% 0.890 58.56% 0.877
Breakout 89.80% 0.949 92.77% 0.970 94.34% 0.979 96.45% 0.988
Demon Attack 67.90% 0.850 68.43% 0.864 66.70% 0.877 69.51% 0.879
Freeway 46.65% 0.787 75.93% 0.921 84.68% 0.959 89.17% 0.965
Frostbite 76.83% 0.904 79.09% 0.904 78.25% 0.946 76.52% 0.918
H.E.R.O. 76.71% 0.891 82.96% 0.932 80.17% 0.929 89.07% 0.956
Montezuma’s Revenge 82.58% 0.907 87.30% 0.941 85.90% 0.951 85.44% 0.932
Ms. Pac-Man 83.80% 0.941 80.60% 0.935 81.50% 0.952 85.88% 0.966
Pitfall! 66.60% 0.862 78.28% 0.923 81.92% 0.947 80.40% 0.941
Pong 68.76% 0.873 73.58% 0.911 74.71% 0.920 83.23% 0.952
Private Eye 75.25% 0.889 81.95% 0.932 84.77% 0.954 86.41% 0.955
Q*Bert 83.00% 0.915 90.07% 0.966 87.87% 0.943 89.26% 0.946
River Raid 76.95% 0.895 80.82% 0.927 69.96% 0.865 86.79% 0.954
Seaquest 71.23% 0.859 78.48% 0.898 75.53% 0.906 70.94% 0.798
Skiing 91.02% 0.966 93.42% 0.980 93.51% 0.983 96.37% 0.992
Space Invaders 81.67% 0.942 84.62% 0.957 89.38% 0.974 91.98% 0.985
Tennis 78.13% 0.890 82.13% 0.926 71.60% 0.856 80.20% 0.893
Venture 61.29% 0.858 63.16% 0.863 64.88% 0.886 76.56% 0.935
Video Pinball 76.71% 0.848 85.92% 0.912 78.64% 0.877 86.61% 0.913
Yars’ Revenge 69.25% 0.896 74.87% 0.929 72.69% 0.948 84.11% 0.969

In this section, we reaffirm the bottleneck effect for both Atari and bouncing ball experiments by537

providing additional sets of ablations on the processor network’s latent size.538

We ablate various RMR processor network architectures, for dim z ∈ {2, 4, 8, 16, 32, 64}, but leaving539

all other components and operations unchanged.540

The results of this ablation for the Atari representation learning setting are provided in Figure 5. It541

can be clearly observed that, as we reduce the size of the latents, this typically induces a performance542

regression in the downstream bit F1 scores. This indicates the algorithmic bottleneck effect.543

On the bouncing balls task, we observe the algorithmic bottleneck as well, with more pronounced544

effects. Namely, for all latent sizes 32 and under, the validation MSE shoots up even though the545

training MSE keeps improving. Ultimately, we also attempted using an Interaction Network [7]546

as a bottlenecked RMR processor which requires projecting on to x̄ rather than z, which exhibited547

exactly the same behaviour, at a larger scale. The IN processor achieved a final validation MSE of548

341.40± 5.60 (×10−4). This is roughly 43× worse than the non-bottlenecked RMR.549

D On the weak acceptor properties of Battlezone550

Out of all the Atari games studied in our work, Battlezone could been singled out as the least “recep-551

tive” to RMR processors—with only four games successfully donating their RAM representations to552

its pixel based encoder (Figure 4).553

We set out to study why this effect took place. Upon inspection of the game’s dynamics1, we deter-554

mined that Battlezone has certain properties that make representation learning uniquely challenging555

and somewhat decoupled from the underlying console computation.556

Namely, Battlezone is the only game in our dataset that is played in the “first-person” perspective.557

Therefore, from the point of view of the pixel inputs, it may seem as if the player is always in the558

1https://www.youtube.com/watch?v=9X4_xy7rC1A
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Figure 5: Bit-level F1 scores for the Atari experiments while varying the latent size. A clear
decreasing trend is apparent a dim z is reduced, indicating the bottleneck effect.
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same place, and we would expect the mechanics and the way of thinking about the ’avatar’ to be559

substantially different from all other Atari games considered.560

E On the data distribution and setup used for training P561

In many cases, while an algorithmic prior may be known, generative aspects of the relevant abstract562

inputs for the natural task could be unknown. For example, it may be known that the natural task563

could benefit from a sorting subroutine, but it may not be known upfront how many objects will need564

to be sorted.565

When such details are unknown, it may still be possible to fall back to abstract inputs sampled from566

some sensible generic random distribution—so long as the processor network is trained in a way567

that promotes extrapolation. For a recent theoretical treatment of OOD generalisation in algorithmic568

reasoners, we refer the reader to Xu et al. [56]. Further, as observed by Deac et al. [8] in the case of569

implicit planning, even generic random abstract distributions can promote useful transfer to noisy570

pixel-based acting settings such as Atari.571

Lastly, it is important to ensure that, in the abstract pipeline, the processor network P carries the572

brunt of the computational burden; otherwise, the reasoning task may be partially captured in either573

f or g, and not left to P ’s weights. In our work, we generally promote such behaviour by keeping574

f and g to be only linear layers; but even in settings where this is not appropriate, we recommend575

taking care to not overpower the abstract encoder and decoder.576

F Atari abstract model equations577

In this appendix, we provide a “bird’s eye” view of the modelling steps taken by our abstract Atari578

pipeline, aiming to support future implementations of the RMR blueprint. We will readily re-use the579

notation from the main text for the various components.580

Firstly, the abstract encoder f is applied on the relevant Atari RAM representations, x̄, augmented by581

a one-hot representation which is aiming to provide a generic embedding of the semantics of each582

RAM slot. f is implemented as a linear layer, hence:583

z = f(x̄‖o) = Wf x̄ + Ufo + bf (1)

where Wf ,Uf ,bf are learnable weights, and o ∈ B128×128 is a one-hot encoding s.t. o = I128.584

In a separate pipeline (officially part of the processor network), the performed actions are also encoded585

using a linear action encoder:586

α = fa(a) = Wfaa + bfa (2)
where a is a one-hot encoded action representation.587

Then, the processor network GNN is called to update these latents, and a sum-based skip connection588

is employed to promote a model-free path:589

z′ = P (z +α) + z +α (3)

Here, the processor network P is implemented as a standard message passing neural network [51]590

over a fully connected graph. Equations of such a P are commonly exposed in e.g. Veličković et al.591

[13].592

Lastly, the relevant decoder networks predict two properties: a mask which signifies which RAM593

slots have been changed as a result of applying a, and the updated states ȳ.594

µ = gµ(z′) = σ (Wµz′ + bµ) (4)
ȳ = g(z′)� Iµ>0.5 = (Wgz′ + bg)� Iµ>0.5 (5)

Here, σ is the logistic sigmoid activation,� is the elementwise product, and I is the indicator function,595

which thresholds the mask. While this thresholding is non-differentiable, we note that the mask596

values can be directly supervised from known trajectories, and at training time, teacher forcing can597

be applied—slotting ground-truth masks in place of the indicator function.598
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