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A Multiple min s-t cuts

Let G and G’ be two neighboring graphs, and let G and G, respectively, be their modified versions
constructed by [Algorithm I} [Algorithm Ijoutputs a min s-¢ cut in G. However, what happens if there
are multiple min s-¢ cuts in G and the algorithm invoked on breaks ties in a way that depends
on whether a specific edge e appears in G or not? If it happens that e is the edge difference between
G and G, then such a tie-breaking rule might reveal additional information about G and G’. We now
outline how this can be bypassed.

Observe that if the random variables X , and X, , were sampled by using infinite bit precision,
then with probability 1 no two cuts would have the same value. So, consider a more realistic
situation where edge-weights are represented by O(logn) bits, and assume that the least significant
bit corresponds to the value 27¢, for an integer t > 0. We show how to modify edge-weights by
additional O(logn) bits that have extremely small values but will help obtain a unique min s-t cut.
Our modification consists of two steps.

First step. All the bits corresponding to values from 27! to 27t~21°8™ remain 0, while those
corresponding to larger values remain unchanged. This is done so that even summing across all — but
at most () — edges it holds that no matter what the bits corresponding to values 2~*~21°6"~1 and
less are, their total value is less than 2. Hence, if the weight of cut C; is smaller than the weight
of cut Cy before the modifications we undertake, then C has a smaller weight than C after the
modifications as well.

Second step. We first recall the celebrated Isolation lemma.

Lemma A.1 (Isolation lemma, [25])). Let T and N be positive integers, and let F be an arbitrary
nonempty family of subsets of the universe {1, ..., T}. Suppose each element x € {1,...,T} in the
universe receives an integer weight g(x), each of which is chosen independently and uniformly at
random from {1, ..., N'}. The weight of a set S € F is defined as g(S) = 3, .q 9(x).

Then, with probability at least 1 — T /N there is a unique set in F that has the minimum weight
among all sets of F.

We now apply to conclude our modification of the edge weights in G. We let the
universe {1,...,7} from that lemma be the following 2(n — 2) elements U = {(s,v) | v €

V(G)\ {s,t}} U{(t,v) | v € V(G) \ {s,t}}. Then, we let F represent all min s-¢ cuts in G,
i.e., S C U belongs to F iff there is a min s-t cut C'in G such that for each (a,b) € S the cut C
contains X, p. So, by letting N = 2n?, we derive that with probability 1 — 1/n it holds that no two
cuts represented by F have the same minimum value with respect to g defined in|Lemma A.1. To
implement g in our modification of weights, we modify the bits of each X , and X, , corresponding
to values from 2~¢~210gn—1 o 2—t=2logn—log N 4 he an integer between 1 and N chosen uniformly
at random.

Only after these modifications, we invoke|[Line 4 of[Algorithm 1] Note that the family of cuts F is
defined only for the sake of analysis. It is not needed to know it algorithmically.

B Lower Bound for min s-f cut error

In this section, we prove our lower bound. Our high-level idea is similar to that of [§] for proving a
lower bound for private algorithms for correlation clustering.

Theorem 1.2. Any (e, 0)-differential private algorithm for min s-t cut on n-node graphs requires
expected additive error of at least n/20 for any e < 1 and 6 < 0.1.

Proof. For the sake of contradiction, let A be a (e, §)-differential private algorithm for min s-t cut
that on any input n-node graph outputs an s-t cut that has expected additive error of less than n/20.
We construct a set of 2™ graphs .S and show that .A cannot have low expected cost on all of the graphs
on this set while preserving privacy.

The node set of all the graphs in .S are the same and consist of V' = {s,¢,v1,...,v,} where s and ¢
are the terminals of the graph and n > 30. For any 7 € {0, 1}", let G be the graph on node set V/
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with the following edges: For any 1 < ¢ < n, if 7; = 1, then there is an edge between s and v;. If
7 = 0, then there is an edge between ¢ and v,. Note that v; is attached to exactly one of the terminals
s and t. Moreover, the min s-¢ cut of each graph G, is zero.

Algorithm A determines for each 4 if v; is on the s-side of the output cut or the ¢-side. The contribution
of each node v; to the total error is the number of edges attached to v; that are in the cut. We denote
this random variable in graph G by e, (v;). Since there are no edges between any two non-terminal
nodes in any of the graphs G, the total error of the output is the sum of these individual errors, i.e.,
i o er(vi). Let & (v;) be the expected value of e (v;) over the outputs of A given G

Let p(f) be the marginal probability that v; is on the s-side of the output s-t cut in G,. If 7; = 0, then

v; is connected to ¢ and so &, (v;) = (1) . If 7; = 1, then v; is connected to s and so &, (v;) = 1 — p(z).
By the assumption that A has a low expected error on every input, we have that for any 7 € {0,1}",
(n+2)/20> > pl+ > (1-p) 3)
4, 7,=0 1, 7i=1

Let S; be the set of 7 € {0, 1}" such that 7; = 0, and S; be the complement of S, so that T € S;
if ; = 1. Note that |S;| = |S;| = 2", Fix some i, and for any 7 € {0,1}", let 7’ be the
same as 7 except for the i-th entry being different, i.e., for all j # 7, 7; = ij ,and 7; # 7/. Since
G and G, only differ in two edges, from .4 being (e, §)-differentially private for any j we have

) < g2 ~p(T];) + 4. So for any i, j we have

Z pY) < Z 2epld) )

TES; TES;

From[Eq. (3)|we have
2"-0.05(n+2)> Y > (1

7€{0,1}n i:7;=1

i=1 1€S;
n
>3 37 (1 - [e2p) 4 6))
i=1 TEgi
— 712”_1(1 5) 626 i Z pg_z)

Where the last inequality comes from [Eq. (4). Using|Eq. (3) again, we have that Zl 12 re 3, pTl)
27-0.05(n + 2), so we have that 2" - 0.05(n +2) > n2"~*(1 —4) — e2¢(2" - 0.05(n + 2)). Dividing
by 2" we have
0.05(n + 2)(1 + €*) > n(1 —4)/2.
Now since € < 1, § < 0.1, and e? < 7.4 we get that
0.05-8.4(n+2) > 0.45n

Hence we have n < 28 which is a contradiction to n > 30. O

C Omitted Proofs
C.1 Proof of

By definition, we have
fLap(t + 7—) o % exp (_€|t + T|)

= =exp(—€|t + 7|+ €|t]) < exp(Te). (®)]
Frap®  Goxp (el el e = exvlre
Also by definition, it holds FL.p(t +7) = [’ el frap(x)dz. Using[Eq. (5)|we derive
t+7 t
Flrap(t+ 7) < exp (7€) fLap(x — T)dx = exp(T€) / Jrap(z)dz = exp(7€) FLap(t).
— 00 —0oQ
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C.2 Proof of Lemma 3.1]

To prove the lower-bound, we observe thatif x < aand y < S, thenx < o+ 7andy < f+ 7 as
well. Hence, it trivially holds P(« + 7,8+ 7,7v) > P(«, 3,7) and hence

Platn,8+77) 1
P(a,B,y)

We now analyze the upper-bound. For the sake of brevity, in the rest of this proof, we use F' to denote
Fiap and f to denote f,.,. We consider three cases depending on parameters o, 3, .

Case v > o + 8 + 27. In this case we have Priz+y <~z <a,y<f] = 1 =
Priz+y <~vlx <a+7,y<p+7]. Sowe have that

Pla,B,y) =Prlz+y <ylz <a,y <p]-Prlz <a,y <f]
=Prz <a,y<pf]
— F(a)F(8)
Similarly, P(aw + 7,8 + 7,v) = F(a + 7)F(8 + 7). Now using |Claim I, we obtain that

P(a+T,B+7,7) 27€
T P@py  =¢

Case vy < a+ . We write P(a, 83,7) as follows.

B min(a,y—y)
s =/ [ folaly)daf, (y)dy

B

— [ Fluin(a,y - 1)y
Vo B
—r@) [ twir+ [ Fo- i@y
5 Y
=F(a)F(y—a)+ /_ F(y—y)f(y)dy (6)
Similar to[Eq. (6)] we have
B+T
Pla+rptr)=Fa+nFo-a-n+ [  Fo-piwd O

Now we rewrite [Eq. (6)|as follows to obtain a lower bound on P(«, 3, 7).

y—a B
P(a,g) = F@F( —a-20)+ [ Fa)fwdy+ [ F&-o)fw)dy
y—a—2T Y-«
B
> )P —a=20)+> [ Flo—y)iy ®
Y—&—2aT

In obtaining the inequality, we used the fact thatif y € [y —a—27,7v—a] then0 < (y—y) —a < 27
and so bywe have F(a) > e 27 F(y — y).

Now we compare the two terms of[Eq. (8)|with[Eq. (7)} By|Claim 1|we have that F'(«) F'(y—a—27) >

e F(a+T)F(y—a—r)and [, F(y—y)f(y)dy > e [T F(y—y)f(y)dy. So

we have P(a, 3,7) > e 3™ P(a+ 71,8+ T,7).
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Casea+ 3 <~vy<a+B+2r. Then
B min(a,y—y)
s =[ [ fully)daf, (v)dy

B8
_ / F(min(a,~ — y)) f(y)dy

= F(a)F(8) ©
>e T Fla+7)F(B+7) (10)
= (Fla+1)F(B—7)+ Fla+1)(F(3+71) - F(B—1))

> e (Fla+7)F(B+7)+ Flat+n)(F(B+7)-F(B-7). (D

Note that[Eq. (9)|is obtained since for any y < 8 we have a < v — y.|Eq. (10)|and [Eq. (11) are both
obtained using One can easily verify that[Eq. (7)|for P(« 4+ 1, 8 + 1, ) holds in this case
as well. Using the fact that v — a — 7 < 8 + v and F’ being a non-decreasing function, we further

lower-bound [Eq. (7)]as
B
Pla+n8+7.7) SFa+DFG+n+ [ Fo-piw)dy
o B+T
<Fla+7)F(B+T) +F(Oz+7')/7 ) fly)dy
=Fla+7)F(B+717)+ Fla+7)(F(B+717)—F(y—a—T1))
<Fla+7n)F(B+7)+ Fla+7)(F(B+71)—F(B—1)). (12)
Eqgs. and[(12)]conclude the analysis of this case as well.

C.3 Proof of Theoremd.1]

We use induction on k to prove the theorem. Suppose that |Algorithm 2 outputs C'41c;. We show

that the C'4,¢; is a multiway k-cut and that the value of C 41, is at most w(E(V)) + Y5, 6(V;) +
2log (k)e(n). We will first perform the analysis of approximation assuming that A provides the
stated approximation deterministically, and at the end of this proof, we will take into account that the
approximation guarantee holds with probability 1 — a.

Base case: k = 1. Ifk =1, then Carc = (), and so it is a multiway 1-cut and w(Carg) = 0 <
(V1) + w(E(V)).

Inductive step: k£ > 2. So suppose that &k > 2. Hence, k¥’ > 1 and k—k’ > 1, where k’ is defined on
Line 4] Let (A, B) be the s-t cut obtained in where G1 is the graph induced on A and G is the
graph induced on B. Since the only terminals in 1 are sq,...,S8,, wehavethat ViNA,...,VixNA
is a partial multiway k’-cut on Gi. By the induction hypothesis, the cost of the multiway cut that
ﬁnds on Gy is atmost w(E(VNA))+ 35 65 (VinA)+2log (K)e(|Al). Similarly, by
considering the partial multiway (k—k&') cut Vi»1NB, ..., ViyNBon G, the cost of the multiway cut
that[Algorithm 2finds on G is at most w(E(V N B))+ 0y, ., 05, (ViNB)+21log (k — K)e(|B]).
So the total cost w(Car¢) of the multiway cut that outputs is at most

w(cALG)<w( (VN A)+ w(E(VmB)) (13)
+Zé (VinA)+ Z 05, (ViN B)
i=k’+1
( (4,B))

+210g( De(lAl) + 2log (k — k)e(|B])

First note that C'4 ¢ is a multiway k-cut: this is because by induction the output of the algorithm on
(G is a multiway k’-cut and the output of the algorithm on G5 is a multiway (k — k)-cut. Moreover,
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Figure 2: Node subsets of graph G. The subsets in asterisks have terminals in them. Red edges
indicate the left-hand side edges in[Eq. (I4), and purple edges indicate the edges on the right-hand

side in[Eq. (14)

E(A, B) € Cyrc. So the union of these cuts and E(A, B) is a k-cut, and since each terminal is in
exactly one partition, it is a multiway k-cut.

Now we prove the value guarantees. Let Uy = Vi U... UV and Uy = Vg U ... U V. So
U=U;UUy = V3 U...UYVj is the set of nodes that are in at least one partition. Recall that

V =V \ U is the set of nodes that are not in any partition.

Consider the following cut that separates {s1,..., S } from {sp41,...,s:}: Let A = [U1 N
AlJU[UyNBJU[V N A]. Let B = [U; N B]U [Ux N AU [V N BJ. Since (A, B) is a min cut
that separates {s1, ..., sk} from {sg/41,. .., sk} with additive error e(n), we have w(E(A, B)) <
w(E(A', B"))+e(n). Note that A = [U1NA]U[U2NAJU[VNA] and B = [U1NBJU[U2NBJU[VNB].
So turning (A, B) into (A’, B') is equivalent to switching Us N A and U; N B between A and B. So
we have that

w(E(UsN A, Uy N B))+w(E(UaNAVNB))+wEU NB,U NA))+w(EU NB,VNA))

< (14)

w(E(UsNA, UL NA)) +w(EUzsNAVNA) +wEUNB,U;NB))+w(EU; NB,VNB))

+e(n)
is illustrated in[Figure 2] Using[Eq. (14)] we obtain that
w(E(A,B)) = w(E(UzNA,UsN B)) +w(E(UzN A, VN B))
+w(E(UyNB,UNA))+w(EU, NB,VNA)
+w(E(Uz N A, Ui N B)
<w(E{U;NA U NA)
+w(E(U1NB,U;NB)
+w(E(Uz; N A, Ui N B)
+e(n)
So we conclude that
w(E(A, B))

(£(
(E([U1NAJU[VNA][UoNnBJU[V NB]))
(E(Uyn A,V NA))

(E(UyN B,V NB))

(E(

)
)
)
)
)

+ + + +

w(E([U; N AJU[V NA],[U:N BJU[V NB])

(E(UyNB,[UsNBJU[V NBJU[Uz;N A])) (15)

We substitute w(E (A, B)) in [Eq. (13)|using Eq. (15)| Recall that U; = U |V, o, (VinA) =
Vi, VAV

w(EB(V;NA,A\V;)) and 6¢(V;) = w(E( 7). Forany i € {1,...,k’}, we have that
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s0 E(V;NB,[UyNBJU[VNBJU[U; N A]) and E(V; N A, [Uy N B] U [V N B]) are both disjoint
se1  from E(V; N A, A\ V;). Moreover all these three terms appear in E(V;, V' \ V;). So we have

w(E(Uy N B,[UzsNBJU[V N BJU[UsN A]))
Y
w(E(Ui NA,[U2nBJUVNB]) + Y 65, (Vin A)
i=1

k/
<> 6a(Vi)
i=1
s62  Note that the first two terms above are the first two terms in[Eq. (I5)! Similarly, we have

w(E(UsNA, [UNAJUVNA]))+w(E(U,NB, VNA))+ Z 55, (VinB) Z 6a(Vi) (16)
i=k’+1 i=k’+1

sea  Note that the first two terms above are the third and forth terms in |Eq. (15), Finally w(E (VNA)+
see w(E(VNB))+wEVNAVNB)) <w(E(V)). So, we upper-bound [Eq. (13)|as

w(Carc) < Z 3 (Vi) + w(E(V))

i=1
+ e(n) + 2log (K")e(|A]) + 2log (k — k" )e(|B).

ses  Since k' = |k/2] and k — k' = [k/2], we have that ¥’ < || and k — k' < | 2L |. Moreover,
se6  since e = cn /e fore > 0and ¢ > 0, we have that e(|A|)+e(|B|) <e(JA]+ |B|) = ( ). Therefore,

e(n) + 2log (K)e(|A]) + 2log (k — K)e(|B])
k+1
<e(n)(1+2log ({;J )> < 2log(k)e(n).
s67  The above inequality finishes the approximation proof.

s6s  The success probability. As proved by [Lemma 4.1, the min s-¢ cut computations by
s69 can be seen as invocations of a min s-¢ cut algorithm on O(log k) many n-node graphs; in this claim,
570 we use A to compute min s-t cuts. By union bound, each of those O(log k) invocations output the
571 desired additive error by probability at least 1 — aO(log k).
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