
A Multiple min s-t cuts434

Let G and G
0 be two neighboring graphs, and let eG and eG0, respectively, be their modified versions435

constructed by Algorithm 1. Algorithm 1 outputs a min s-t cut in G. However, what happens if there436

are multiple min s-t cuts in eG and the algorithm invoked on Line 4 breaks ties in a way that depends437

on whether a specific edge e appears in G or not? If it happens that e is the edge difference between438

G and G
0, then such a tie-breaking rule might reveal additional information about G and G

0. We now439

outline how this can be bypassed.440

Observe that if the random variables Xs,u and Xt,u were sampled by using infinite bit precision,441

then with probability 1 no two cuts would have the same value. So, consider a more realistic442

situation where edge-weights are represented by O(log n) bits, and assume that the least significant443

bit corresponds to the value 2�t, for an integer t � 0. We show how to modify edge-weights by444

additional O(log n) bits that have extremely small values but will help obtain a unique min s-t cut.445

Our modification consists of two steps.446

First step. All the bits corresponding to values from 2�t�1 to 2�t�2 logn remain 0, while those447

corresponding to larger values remain unchanged. This is done so that even summing across all – but448

at most
�
n

2

�
– edges it holds that no matter what the bits corresponding to values 2�t�2 logn�1 and449

less are, their total value is less than 2�t. Hence, if the weight of cut C1 is smaller than the weight450

of cut C2 before the modifications we undertake, then C1 has a smaller weight than C2 after the451

modifications as well.452

Second step. We first recall the celebrated Isolation lemma.453

Lemma A.1 (Isolation lemma, [25]). Let T and N be positive integers, and let F be an arbitrary454

nonempty family of subsets of the universe {1, . . . , T}. Suppose each element x 2 {1, . . . , T} in the455

universe receives an integer weight g(x), each of which is chosen independently and uniformly at456

random from {1, . . . , N}. The weight of a set S 2 F is defined as g(S) =
P

x2S
g(x).457

Then, with probability at least 1 � T/N there is a unique set in F that has the minimum weight458

among all sets of F .459

We now apply Lemma A.1 to conclude our modification of the edge weights in eG. We let the460

universe {1, . . . , T} from that lemma be the following 2(n � 2) elements U = {(s, v) | v 2461

V (G) \ {s, t}} [{(t, v) | v 2 V (G) \ {s, t}}. Then, we let F represent all min s-t cuts in eG,462

i.e., S ✓ U belongs to F iff there is a min s-t cut C in eG such that for each (a, b) 2 S the cut C463

contains Xa,b. So, by letting N = 2n2, we derive that with probability 1� 1/n it holds that no two464

cuts represented by F have the same minimum value with respect to g defined in Lemma A.1. To465

implement g in our modification of weights, we modify the bits of each Xs,v and Xt,v corresponding466

to values from 2�t�2 logn�1 to 2�t�2 logn�logN to be an integer between 1 and N chosen uniformly467

at random.468

Only after these modifications, we invoke Line 4 of Algorithm 1. Note that the family of cuts F is469

defined only for the sake of analysis. It is not needed to know it algorithmically.470

B Lower Bound for min s-t cut error471

In this section, we prove our lower bound. Our high-level idea is similar to that of [8] for proving a472

lower bound for private algorithms for correlation clustering.473

Theorem 1.2. Any (✏, �)-differential private algorithm for min s-t cut on n-node graphs requires474

expected additive error of at least n/20 for any ✏  1 and �  0.1.475

Proof. For the sake of contradiction, let A be a (✏, �)-differential private algorithm for min s-t cut476

that on any input n-node graph outputs an s-t cut that has expected additive error of less than n/20.477

We construct a set of 2n graphs S and show that A cannot have low expected cost on all of the graphs478

on this set while preserving privacy.479

The node set of all the graphs in S are the same and consist of V = {s, t, v1, . . . , vn} where s and t480

are the terminals of the graph and n > 30. For any ⌧ 2 {0, 1}n, let G⌧ be the graph on node set V481

12

with the following edges: For any 1  i  n, if ⌧i = 1, then there is an edge between s and vi. If482

⌧ = 0, then there is an edge between t and vi. Note that vi is attached to exactly one of the terminals483

s and t. Moreover, the min s-t cut of each graph G⌧ is zero.484

Algorithm A determines for each i if vi is on the s-side of the output cut or the t-side. The contribution485

of each node vi to the total error is the number of edges attached to vi that are in the cut. We denote486

this random variable in graph G⌧ by e⌧ (vi). Since there are no edges between any two non-terminal487

nodes in any of the graphs G⌧ , the total error of the output is the sum of these individual errors, i.e.,488 P
n

i=0 e⌧ (vi). Let ē⌧ (vi) be the expected value of e⌧ (vi) over the outputs of A given G⌧ .489

Let p(i)⌧ be the marginal probability that vi is on the s-side of the output s-t cut in G⌧ . If ⌧i = 0, then490

vi is connected to t and so ē⌧ (vi) = p
(i)
⌧ . If ⌧i = 1, then vi is connected to s and so ē⌧ (vi) = 1�p

(i)
⌧ .491

By the assumption that A has a low expected error on every input, we have that for any ⌧ 2 {0, 1}n,492

(n+ 2)/20 >

X

i,⌧i=0

p
(i)
⌧

+
X

i,⌧i=1

(1� p
(i)
⌧
) (3)

Let Si be the set of ⌧ 2 {0, 1}n such that ⌧i = 0, and S̄i be the complement of Si, so that ⌧ 2 S̄i493

if ⌧i = 1. Note that |Si| = |S̄i| = 2n�1. Fix some i, and for any ⌧ 2 {0, 1}n, let ⌧ 0 be the494

same as ⌧ except for the i-th entry being different, i.e., for all j 6= i, ⌧j = ⌧
0
j
, and ⌧i 6= ⌧

0
i
. Since495

G⌧ and G⌧ 0 only differ in two edges, from A being (✏, �)-differentially private for any j we have496

p
(j)
⌧  e

2✏ · p(j)
⌧ 0 + �. So for any i, j we have497

X

⌧2Si

p
(j)
⌧


X

⌧2S̄i

(e2✏p(j)
⌧

+ �) (4)

From Eq. (3) we have498

2n · 0.05(n+ 2) >
X

⌧2{0,1}n

X

i:⌧i=1

(1� p
(i)
⌧
)

=
nX

i=1

X

⌧2Si

(1� p
(i)
⌧
)

�
nX

i=1

X

⌧2S̄i

(1� [e2✏p(i)
⌧

+ �])

= n2n�1(1� �)� e
2✏

nX

i=1

X

⌧2S̄i

p
(i)
⌧

Where the last inequality comes from Eq. (4). Using Eq. (3) again, we have that
P

n

i=1

P
⌧2S̄i

p
(i)
⌧ <

2n · 0.05(n+2), so we have that 2n · 0.05(n+2) > n2n�1(1� �)� e
2✏(2n · 0.05(n+2)). Dividing

by 2n we have
0.05(n+ 2)(1 + e

2✏) > n(1� �)/2.
Now since ✏  1, �  0.1, and e

2
< 7.4 we get that
0.05 · 8.4(n+ 2) > 0.45n

Hence we have n < 28 which is a contradiction to n > 30. ⇤499

C Omitted Proofs500

C.1 Proof of Claim 1501

By definition, we have502

fLap(t+ ⌧)

fLap(t)
=

✏

2 exp (�✏|t+ ⌧ |)
✏

2 exp (�✏|t|) = exp (�✏|t+ ⌧ |+ ✏|t|)  exp (⌧✏) . (5)

Also by definition, it holds FLap(t+ ⌧) =
R
t+⌧

�1 fLap(x)dx. Using Eq. (5) we derive503

FLap(t+ ⌧)  exp (⌧✏)

Z
t+⌧

�1
fLap(x� ⌧)dx = exp(⌧✏)

Z
t

�1
fLap(x)dx = exp(⌧✏)FLap(t).

13

C.2 Proof of Lemma 3.1504

To prove the lower-bound, we observe that if x < ↵ and y < �, then x < ↵+ ⌧ and y < � + ⌧ as505

well. Hence, it trivially holds P (↵+ ⌧,� + ⌧, �) � P (↵,�, �) and hence506

P (↵+ ⌧,� + ⌧, �)

P (↵,�, �)
� 1.

We now analyze the upper-bound. For the sake of brevity, in the rest of this proof, we use F to denote507

FLap and f to denote fLap. We consider three cases depending on parameters ↵,�, �.508

Case � � ↵ + � + 2⌧ . In this case we have Pr [x+ y < �|x < ↵, y < �] = 1 =509

Pr [x+ y < �|x < ↵+ ⌧, y < � + ⌧]. So we have that510

P (↵,�, �) = Pr [x+ y < �|x < ↵, y < �] · Pr [x < ↵, y < �]

= Pr [x < ↵, y < �]

= F (↵)F (�)

Similarly, P (↵ + ⌧,� + ⌧, �) = F (↵ + ⌧)F (� + ⌧). Now using Claim 1, we obtain that511
P (↵+⌧,�+⌧,�)

P (↵,�,�)  e
2⌧✏.512

Case � < ↵+ �. We write P (↵,�, �) as follows.513

P (↵,�, �) =

Z
�

�1

Z min(↵,��y)

�1
fx(x|y)dxfy(y)dy

=

Z
�

�1
F (min(↵, � � y))f(y)dy

= F (↵)

Z
��↵

�1
f(y)dy +

Z
�

��↵

F (� � y)f(y)dy

= F (↵)F (� � ↵) +

Z
�

��↵

F (� � y)f(y)dy (6)

Similar to Eq. (6) we have514

P (↵+ ⌧,� + ⌧, �) = F (↵+ ⌧)F (� � ↵� ⌧) +

Z
�+⌧

��↵�⌧

F (� � y)f(y)dy (7)

Now we rewrite Eq. (6) as follows to obtain a lower bound on P (↵,�, �).515

P (↵,�, �) = F (↵)F (� � ↵� 2⌧) +

Z
��↵

��↵�2⌧
F (↵)f(y)dy +

Z
�

��↵

F (� � y)f(y)dy

� F (↵)F (� � ↵� 2⌧) + e
�2⌧✏

Z
�

��↵�2⌧
F (� � y)f(y)dy (8)

In obtaining the inequality, we used the fact that if y 2 [��↵�2⌧, ��↵] then 0  (��y)�↵  2⌧516

and so by Claim 1 we have F (↵) � e
�2⌧✏

F (� � y).517

Now we compare the two terms of Eq. (8) with Eq. (7). By Claim 1 we have that F (↵)F (��↵�2⌧) �518

e
�2⌧✏

F (↵+ ⌧)F (� � ↵� ⌧) and
R
�

��↵�2⌧ F (� � y)f(y)dy � e
�⌧✏

R
�+⌧

��↵�⌧
F (� � y)f(y)dy. So519

we have P (↵,�, �) � e
�3⌧✏

P (↵+ ⌧,� + ⌧, �).520

14

Case ↵+ �  � < ↵+ � + 2⌧ . Then521

P (↵,�, �) =

Z
�

�1

Z min(↵,��y)

�1
fx(x|y)dxfy(y)dy

=

Z
�

�1
F (min(↵, � � y))f(y)dy

= F (↵)F (�) (9)

� e
�2⌧✏

F (↵+ ⌧)F (� + ⌧) (10)

= e
�2⌧✏(F (↵+ ⌧)F (� � ⌧) + F (↵+ ⌧)(F (� + ⌧)� F (� � ⌧))

� e
�4⌧✏(F (↵+ ⌧)F (� + ⌧) + F (↵+ ⌧)(F (� + ⌧)� F (� � ⌧)). (11)

Note that Eq. (9) is obtained since for any y  � we have ↵  � � y. Eq. (10) and Eq. (11) are both522

obtained using Claim 1. One can easily verify that Eq. (7) for P (↵+ 1,� + 1, �) holds in this case523

as well. Using the fact that � � ↵� ⌧  � + � and F being a non-decreasing function, we further524

lower-bound Eq. (7) as525

P (↵+ ⌧,� + ⌧, �) F (↵+ ⌧)F (� + ⌧) +

Z
�+⌧

��↵�⌧

F (� � y)f(y)dy

F (↵+ ⌧)F (� + ⌧) + F (↵+ ⌧)

Z
�+⌧

��↵�⌧

f(y)dy

=F (↵+ ⌧)F (� + ⌧) + F (↵+ ⌧)(F (� + ⌧)� F (� � ↵� ⌧))

F (↵+ ⌧)F (� + ⌧) + F (↵+ ⌧)(F (� + ⌧)� F (� � ⌧)). (12)

Eqs. (11) and (12) conclude the analysis of this case as well.526

C.3 Proof of Theorem 4.1527

We use induction on k to prove the theorem. Suppose that Algorithm 2 outputs CALG. We show528

that the CALG is a multiway k-cut and that the value of CALG is at most w(E(V)) +
P

k

i=1 �(Vi) +529

2 log (k)e(n). We will first perform the analysis of approximation assuming that A provides the530

stated approximation deterministically, and at the end of this proof, we will take into account that the531

approximation guarantee holds with probability 1� ↵.532

Base case: k = 1. If k = 1, then CALG = ;, and so it is a multiway 1-cut and w(CALG) = 0 533

�(V1) + w(E(V)).534

Inductive step: k � 2. So suppose that k � 2. Hence, k0 � 1 and k�k
0 � 1, where k0 is defined on535

Line 4. Let (A,B) be the s-t cut obtained in Line 6, where eG1 is the graph induced on A and eG2 is the536

graph induced on B. Since the only terminals in eG1 are s1, . . . , sk0 , we have that V1\A, . . . , Vk0 \A537

is a partial multiway k
0-cut on eG1. By the induction hypothesis, the cost of the multiway cut that538

Algorithm 2 finds on eG1 is at most w(E(V \A))+
P

k
0

i=1 � eG1
(Vi\A)+2 log (k0)e(|A|). Similarly, by539

considering the partial multiway (k�k
0) cut Vk0+1\B, . . . , Vk\B on eG2, the cost of the multiway cut540

that Algorithm 2 finds on eG2 is at most w(E(V \B))+
P

k

i=k0+1 � eG2
(Vi\B)+2 log (k � k

0)e(|B|).541

So the total cost w(CALG) of the multiway cut that Algorithm 2 outputs is at most542

w(CALG)  w(E(V \A)) + w(E(V \B)) (13)

+
k
0X

i=1

� eG1
(Vi \A) +

kX

i=k0+1

� eG2
(Vi \B)

+ w(E(A,B))

+ 2 log (k0)e(|A|) + 2 log (k � k
0)e(|B|)

First note that CALG is a multiway k-cut: this is because by induction the output of the algorithm on543

eG1 is a multiway k
0-cut and the output of the algorithm on eG2 is a multiway (k � k

0)-cut. Moreover,544

15

A B

∗U1 ∩A∗

U2 ∩A

V ∩A

∗U2 ∩B∗

U1 ∩B

V ∩B

Figure 2: Node subsets of graph G. The subsets in asterisks have terminals in them. Red edges
indicate the left-hand side edges in Eq. (14), and purple edges indicate the edges on the right-hand
side in Eq. (14).

E(A,B) 2 CALG. So the union of these cuts and E(A,B) is a k-cut, and since each terminal is in545

exactly one partition, it is a multiway k-cut.546

Now we prove the value guarantees. Let U1 = V1 [. . . [Vk0 and U2 = Vk0+1 [. . . [Vk. So547

U = U1 [U2 = V1 [. . . [Vk is the set of nodes that are in at least one partition. Recall that548

V = V \ U is the set of nodes that are not in any partition.549

Consider the following cut that separates {s1, . . . , sk0} from {sk0+1, . . . , sk}: Let A0 = [U1 \550

A] [[U1 \ B] [[V \ A]. Let B0 = [U2 \ B] [[U2 \ A] [[V \ B]. Since (A,B) is a min cut551

that separates {s1, . . . , sk0} from {sk0+1, . . . , sk} with additive error e(n), we have w(E(A,B)) 552

w(E(A0
, B

0))+e(n). Note that A = [U1\A][[U2\A][[V \A] and B = [U1\B][[U2\B][[V \B].553

So turning (A,B) into (A0
, B

0) is equivalent to switching U2 \A and U1 \B between A and B. So554

we have that555

w(E(U2 \A,U2 \B)) + w(E(U2 \A, V \B)) + w(E(U1 \B,U1 \A)) + w(E(U1 \B, V \A))

 (14)

w(E(U2 \A,U1 \A)) + w(E(U2 \A, V \A)) + w(E(U1 \B,U2 \B)) + w(E(U1 \B, V \B))

+ e(n)

Eq. (14) is illustrated in Figure 2. Using Eq. (14), we obtain that556

w(E(A,B)) = w(E(U2 \A,U2 \B)) + w(E(U2 \A, V \B))

+ w(E(U1 \B,U1 \A)) + w(E(U1 \B, V \A))

+ w(E(U2 \A,U1 \B)) + w(E([U1 \A] [[V \A], [U2 \B] [[V \B]))

 w(E(U2 \A,U1 \A)) + w(E(U2 \A, V \A))

+ w(E(U1 \B,U2 \B)) + w(E(U1 \B, V \B))

+ w(E(U2 \A,U1 \B)) + w(E([U1 \A] [[V \A], [U2 \B] [[V \B]))

+ e(n)

So we conclude that557

w(E(A,B))  w(E(U1 \B, [U2 \B] [[V \B] [[U2 \A])) (15)

+ w(E(U1 \A, [U2 \B] [[V \B]))

+ w(E(U2 \A, [U1 \A] [[V \A]))

+ w(E(U2 \B, V \A))

+ w(E(V \A, V \B))

+ e(n)

We substitute w(E(A,B)) in Eq. (13) using Eq. (15). Recall that U1 = [k
0

i=1Vi, � eG1
(Vi \ A) =558

w(E(Vi \ A,A \ Vi)) and �G(Vi) = w(E(Vi, V \ Vi)). For any i 2 {1, . . . , k0}, we have that559

16

E(Vi \ B, [U2 \ B] [[V \ B] [[U2 \ A]) and E(Vi \ A, [U2 \ B] [[V \ B]) are both disjoint560

from E(Vi \A,A \ Vi). Moreover all these three terms appear in E(Vi, V \ Vi). So we have561

w(E(U1 \B, [U2 \B] [[V \B] [[U2 \A]))

+ w(E(U1 \A, [U2 \B] [[V \B])) +
k
0X

i=1

� eG1
(Vi \A)


k
0X

i=1

�G(Vi)

Note that the first two terms above are the first two terms in Eq. (15). Similarly, we have562

w(E(U2\A, [U1\A][[V \A]))+w(E(U2\B, V \A))+
kX

i=k0+1

� eG2
(Vi\B) 

kX

i=k0+1

�G(Vi) (16)

Note that the first two terms above are the third and forth terms in Eq. (15). Finally w(E(V \A)) +563

w(E(V \B)) + w(E(V \A, V \B))  w(E(V)). So, we upper-bound Eq. (13) as564

w(CALG) 
kX

i=1

�G(Vi) + w(E(V))

+ e(n) + 2 log (k0)e(|A|) + 2 log (k � k
0)e(|B|).

Since k
0 = bk/2c and k � k

0 = dk/2e, we have that k0 
⌅
k+1
2

⇧
and k � k

0 
⌅
k+1
2

⇧
. Moreover,565

since e = cn/✏ for ✏ > 0 and c � 0, we have that e(|A|)+e(|B|)  e(|A|+ |B|) = e(n). Therefore,566

e(n) + 2 log (k0)e(|A|) + 2 log (k � k
0)e(|B|)

e(n)(1 + 2 log

✓�
k + 1

2

⌫
)

◆
 2 log(k)e(n).

The above inequality finishes the approximation proof.567

The success probability. As proved by Lemma 4.1, the min s-t cut computations by Algorithm 2568

can be seen as invocations of a min s-t cut algorithm on O(log k) many n-node graphs; in this claim,569

we use A to compute min s-t cuts. By union bound, each of those O(log k) invocations output the570

desired additive error by probability at least 1� ↵O(log k).571

17

	Introduction
	Preliminaries
	DP Algorithm for Min s-t Cut
	Differential Privacy Analysis
	Approximation Analysis

	DP algorithm for multiway cut
	Solving Multiway Cut in k Rounds of Min s-t Cut
	Differentially Private Multiway Cut

	Empirical Evaluation
	Conclusion And Future Work
	Multiple min s-t cuts
	Lower Bound for min s-t cut error
	Omitted Proofs
	Proof of claim:ratio
	Proof of lemma:a-mish-mash-of-two-Lap-rv
	Proof of Theorem 4.1

