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Abstract1

Link prediction is a crucial problem in graph-structured data. Due to the re-2

cent success of graph neural networks (GNNs), a variety of GNN-based models3

were proposed to tackle the link prediction task. Specifically, GNNs leverage4

the message passing paradigm to obtain node representation, which relies on link5

connectivity. However, in a link prediction task, links in the training set are always6

present while ones in the testing set are not yet formed, resulting in a discrepancy7

of the connectivity pattern and bias of the learned representation. It leads to a8

problem of dataset shift which degrades the model performance. In this paper,9

we first identify the dataset shift problem in the link prediction task and provide10

theoretical analyses on how existing link prediction methods are vulnerable to it.11

We then propose FakeEdge, a model-agnostic technique, to address the problem by12

mitigating the graph topological gap between training and testing sets. Extensive13

experiments demonstrate the applicability and superiority of FakeEdge on multiple14

datasets across various domains.15

1 Introduction16

Graph structured data is ubiquitous across a variety of domains, including social networks [1],17

protein-protein interactions [2], movie recommendations [3], and citation networks [4]. It provides a18

non-Euclidean structure to describe the relations among entities. The link prediction task is to predict19

missing links or new forming links in an observed network [5]. Recently, with the success of graph20

neural networks (GNNs) for graph representation learning [6–9], several GNN-based methods have21

been developed [10–14] to solve link prediction tasks. These methods encode the representation of22

target links with the topological structures and node/edge attributes in their local neighborhood. After23

recognizing the pattern of observed links (training sets), they predict the likelihood of forming new24

links between node pairs (testing sets) where no link is yet observed.25

Nevertheless, existing methods pose a discrepancy of the target link representation between training26

and testing sets. As the target link is never observed in the testing set by the nature of the task, it will27

have a different local topological structure when compared to its counterpart from the training set.28

Thus, the corrupted topological structure shifts the target link representation in the testing set, which29

we recognize it as a dataset shift problem [15, 16] in link prediction. Note that there are some existing30

work [11] applying edge masking to moderate such a problem, similar to our treatment. However,31

they tend to regard it as an empirical trick and fail to identify the fundamental cause as a problem of32

dataset shift.33

We give a concrete example to illustrate how dataset shift can happen in the link prediction task,34

especially for GNN-based models with message passing paradigm [17] simulating the 1-dimensional35

Weisfeiler-Lehman (1-WL) test [18]. In Figure 1, we have two local neighborhoods sampled as36

subgraphs from the training (top) and testing (bottom) set respectively. The node pairs of interest,37

which we call focal node pairs, are denoted by black bold circles. From a bird’s-eye viewpoint, these38

two subgraphs are isomorphic when we consider the existence of the positive test link (dashed line),39

even though the test link has not been observed. Ideally, two isomorphic graphs should have the40

same representation encoded by GNNs, leading to the same link prediction outcome. However, one41

iteration of 1-WL in Figure 1 produces different colors for the focal node pairs between training and42
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Figure 1: 1-WL test is performed to exhibit the learning process of GNNs. Two node pairs (denoted
as bold black circles) and their surrounding subgraphs are sampled from the graph as a training (top)
and testing (bottom) instance respectively. Two subgraphs are isomorphic when we omit the focal
links. One iteration of 1-WL assigns different colors, indicating the occurrence of dataset shift.

testing sets, which indicates that the one-layer GNN can encode different representations for these43

two isomorphic subgraphs, giving rise to dataset shift issue.44

Dataset shift can substantially degrade model performance since it violates the common assumption45

that the joint distribution of inputs and outputs stays the same in both the training and testing set. The46

root cause of this phenomenon in link prediction is the unique characteristic of the target link: the47

link always plays a dual role in the problem setting and determines both the input and the output for a48

link prediction task. The existence of the link apparently decides whether it is a positive or negative49

sample (output). Simultaneously, the presence of the link can also influence how the representation is50

learned through the introduction of different topological structures around the link (input). Thus, it51

entangles representation learning and labels in the link prediction problem.52

To decouple the dual role of the link, we advocate a framework, namely subgraph link prediction,53

which disentangles the label of the link and its topological structure. As most practical link prediction54

methods make a prediction by capturing the local neighborhood of the link [1, 11, 12, 19, 20], we55

unify them all into this framework, where the input is the extracted subgraph around the focal node56

pair and the output is the likelihood of forming a link incident with the focal node pair in the subgraph.57

From the perspective of the framework, we find that the dataset shift issue is mainly caused by the58

presence/absence of the focal link in the subgraph from the training/testing set. This motivates us59

to propose a simple but effective technique, FakeEdge, to deliberately add or remove the focal link60

in the subgraph so that the subgraph can stay consistent across training and testing. FakeEdge is a61

model-agnostic technique, allowing it to be applied to any subgraph link prediction model. It assures62

that the model would learn the same subgraph representation regardless of the existence of the focal63

link. Lastly, empirical experiments prove that diminishing the dataset shift issue can significantly64

boost the link prediction performance on different baseline models.65

We summarize our contributions as follows. We first unify most of the link prediction methods into a66

common framework named as subgraph link prediction, which treats link prediction as a subgraph67

classification task. In the view of the framework, we theoretically investigate the dataset shift issue68

in link prediction tasks, which motivates us to propose FakeEdge, a model-agnostic augmentation69

technique, to ease the distribution gap between the training and testing. We further conduct extensive70

experiments on a variety of baseline models to reveal the performance improvement with FakeEdge71

to show its capability of alleviating the dataset shift issue on a broad range of benchmarks.72

2 Related work73

74

Dataset Shift. Dataset shift is a fundamental issue in the world of machine learning. Within the75

collection of dataset shift issues, there are several specific problems based on which part of the data76

experience the distributional shift, including covariate shift, concept shift, and prior probability shift.77

[16] gives a rigorous definition about different dataset shift situations. In the context of GNNs, [21]78

investigates the generalization ability of GNN models, and propose a self-supervised task to improve79

the size generalization. [22] studies the problem that the node labels in training set are not uniformly80

sampled and suggests applying a regularizer to reduce the distributional gap between training and81

testing. [23] proposes a risk minimization method by exploring multiple context of the observed82
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graph to enable GNNs to generalize to out-of-distribution data. [24] demonstrates that the existing83

link prediction models can fail to generalize to testing set with larger graphs and designs a structural84

pairwise embedding to achieve size stability. [25–27] study the dataset shift problem for graph-level85

tasks, especially focusing on the graphs in the training and testing set with varying sizes.86

Graph Data Augmentation. Several data augmentation methods are introduced to modify the87

graph connectivity by adding or removing edges [28]. DropEdge [29] acts like a message passing88

reducer to tackle over-smoothing or overfitting problems [30]. Topping et al. modify the graph’s89

topological structure by removing negatively curved edges to solve the bottleneck issue [32] of90

message passing [31]. GDC [33] applies graph diffusion methods on the observed graph to generate91

a diffused counterpart as the computation graph. For the link prediction task, CFLP [34] generates92

counterfactual links to augment the original graph. Edge Proposal Set [35] injects edges into the93

training graph, which are recognized by other link predictors in order to improve performance.94

3 A proposed unified framework for link prediction95

In this section, we formally introduce the link prediction task and formulate several existing GNN-96

based methods into a common general framework.97

3.1 Preliminary98

Let G = (V,E,xV ,xE) be an undirected graph. V is the set of nodes with size n, which can be99

indexed as {i}ni=1. E ⊆ V ×V is the observed set of edges. xV
i ∈ X V represents the feature of node100

i. xE
i,j ∈ XE represents the feature of the edge (i, j) if (i, j) ∈ E. The other unobserved set of edges101

is Ec ⊆ V × V \E, which are either missing or going to form in the future in the original graph G.102

d(i, j) denotes the shortest path distance between node i and j. The r-hop enclosing subgraph Gr
i,j for103

node i, j is the subgraph induced from G by node sets V r
i,j = {v|v ∈ V, d(v, i) ≤ r or d(v, j) ≤ r}.104

The edges set of Gr
i,j are Er

i,j = {(p, q)|(p, q) ∈ E and p, q ∈ V r
i,j}. An enclosing subgraph105

Gr
i,j = (V r

i,j , E
r
i,j ,x

V
V r
i,j
,xE

Er
i,j
) contains all the information in the neighborhood of node i, j. The106

node set {i, j} is called the focal node pair, where we are interested in if there exists (observed) or107

should exist (unobserved) an edge between nodes i, j. In the context of link prediction, we will use108

the term subgraph to denote enclosing subgraph in the following sections.109

3.2 Subgraph link prediction110

In this section, we discuss the definition of Subgraph Link Prediction and investigate how current111

link prediction methods can be unified in this framework. We mainly focus on link prediction112

methods based on GNNs, which propagate the message to each node’s neighbors in order to learn the113

representation. We start by giving the definition of the subgraph’s properties:114

Definition 1. Given a graph G = (V,E,xV ,xE) and the unobserved edge set Ec, a subgraph Gr
i,j115

have the following properties:116

1. a label y ∈ {0, 1} of the subgraph indicates if there exists, or will form, an edge incident with focal117

node pair {i, j}. That is, Gr
i,j label y = 1 if and only if (i, j) ∈ E ∪ Ec. Otherwise, label y = 0.118

2. the existence e ∈ {0, 1} of an edge in the subgraph indicates whether there is an edge observed at119

the focal node pair {i, j}. If (i, j) ∈ E, e = 1. Otherwise e = 0.120

3. a phase c ∈ {train, test} denotes whether the subgraph belongs to training or testing stage.121

Especially for a positive subgraph (y = 1), if (i, j) ∈ E, then c = train. If (i, j) ∈ Ec, then c = test.122

Note that, the label y = 1 does not necessarily indicate the observation of the edge at the focal node123

pair {i, j}. A subgraph in the testing set may have the label y = 1 but the edge may not be present.124

The existence e = 1 only when the edge is observed at the focal node pair.125

Definition 2. Given a subgraph Gr
i,j , Subgraph Link Prediction is a task to learn a feature h of the126

subgraph Gr
i,j and uses it to predict the label y ∈ {0, 1} of the subgraph.127

Generally, subgraph link prediction regards the link prediction task as a subgraph classification task.128

The pipeline of subgraph link prediction starts with extracting the subgraph Gr
i,j around the focal129

node pair {i, j}, and then applies GNNs to encode the node representation Z. The latent feature h of130

the subgraph is obtained by pooling methods on Z. In the end, the subgraph feature h is fed into a131

classifier. In summary, the whole pipeline entails:132
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1. Subgraph Extraction: Extract the subgraph Gr
i,j around the focal node pair {i, j};133

2. Node Representation Learning: Z = GNN(Gr
i,j), where Z ∈ R|V r

i,j |×Fhidden is the node embed-134

ding matrix learned by the GNN encoder;135

3. Pooling: h = Pooling(Z;Gr
i,j), where h ∈ RFpooled is the latent feature of the subgraph Gr

i,j ;136

4. Classification: y = Classifier(h).137

There are two main streams of GNN-based link prediction models. Models like SEAL [11] and138

WalkPool [12] can naturally fall into the subgraph link prediction framework, as they thoroughly139

follow the pipeline. In SEAL, SortPooling [36] serves as a readout to aggregate the node’s features in140

the subgraph. WalkPool designs a random-walk based pooling method to extract the subgraph feature141

h. Both methods take advantage of the node’s representation from the entire subgraph.142

In addition, there is another stream of link prediction models, such as GAE [10] and PLNLP [14],143

which learns the node representation and then devises a score function on the representation of the144

focal node pair to represent the likelihood of forming a link. We find that these GNN-based methods145

with the message passing paradigm also belong to a subgraph link prediction task. Considering a146

GAE with l layers, each node v essentially learns its embedding from its l-hop neighbors {i|i ∈147

V, d(i, v) ≤ l}. The score function can be then regarded as a center pooling on the subgraph, which148

only aggregates the features of the focal node pair as h to represent the subgraph. For a focal node149

pair {i, j} and GAE with l layers, an l-hop subgraph Gl
i,j sufficiently contains all the information150

needed to learn the representation of nodes in the subgraph and score the focal node pair {i, j}. Thus,151

the GNN-based models can also be seen as a citizen of subgraph link prediction. In terms of the152

score function, there are plenty of options depending on the predictive power in practice. In general,153

the common choices are: (1) Hadamard product: h = zi ◦ zj ; (2) MLP: h = MLP(zi ◦ zj) where154

MLP is the Multi-Layer Perceptron; (3) BiLinear: h = ziW zj where W is a learnable matrix; (4)155

BiLinearMLP: h = MLP(zi) ◦ MLP(zj).156

In addition to GNN-based methods, the concept of the subgraph link prediction can be extended to low-157

order heuristics link predictors, like Common Neighbor [1], Adamic–Adar index [20], Preferential158

Attachment [37], Jaccard Index [38], and Resource Allocation [39]. The predictors with the order r159

can be computed by the subgraph Gr
i,j . The scalar value can be seen as the latent feature h.160

4 FakeEdge: Mitigates dataset shift in subgraph link prediction161

In this section, we start by giving the definition of dataset shift in the general case, and then formally162

discuss how dataset shift occurs with regard to subgraph link prediction. Then we propose FakeEdge163

as a graph augmentation technique to ease the distribution gap of the subgraph representation between164

the training and testing sets. Lastly, we discuss how FakeEdge can enhance the expressive power of165

any GNN-based subgraph link prediction model.166

4.1 Dataset shift167

Definition 3. Dataset Shift happens when the joint distribution between train and test is different.168

That is, p(h, y|c = train) ̸= p(h, y|c = test).169

A simple example of dataset shift is an object detection system. If the system is only designed and170

trained under good weather conditions, it may fail to capture objects in bad weather. In general,171

dataset shift is often caused by some unknown latent variable, like the weather condition in the172

example above. The unknown variable is not observable during the training phase so the model173

cannot fully capture the conditions during testing. Similarly, the edge existence e ∈ {0, 1} in the174

subgraph poses as an "unknown" variable in the subgraph link prediction task. Most of the current175

GNN-based models neglect the effect of the edge existence on encoding the subgraph’s feature.176

Definition 4. A subgraph’s feature h is called Edge Invariant if p(h, y|e) = p(h, y).177

To explain, the Edge Invariant subgraph embedding stays the same no matter if the edge is present178

at the focal node pair or not. It disentangles the edge’s existence and the subgraph representation179

learning. For example, common neighbor predictor is Edge Invariant because the existence of an180

edge at the focal node pair will not affect the number of common neighbors that two nodes can have.181

However, Preferential Attachment, another widely used heuristics link prediction predictor, is not182

Edge Invariant because the node degree varies depending on the existence of the edge. A further183

discussion can be found in Appendix I.184
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Figure 2: The proposed four FakeEdge methods. In general, FakeEdge encourages the link prediction
model to learn the subgraph representation by always deliberately adding or removing the edges at
the focal node pair in each subgraph. In this way, FakeEdge can reduce the distribution gap of the
learned subgraph representation between the training and testing set.

Theorem 1. GNN cannot learn the subgraph feature h to be Edge Invariant.185

Recall that the subgraphs in Figure 1 are encoded differently between the training and testing set186

because of the presence/absence of the focal link. Thus, the vanilla GNN cannot learn the Edge187

Invariant subgraph feature. Learning Edge Invariant subgraph feature is crucial to mitigate the dataset188

shift problem. Here, we give our main theorem about the issue in the link prediction task:189

Theorem 2. Given p(h, y|e, c) = p(h, y|e), there is no Dataset Shift in the link prediction if the190

subgraph embedding is Edge Invariant. That is, p(h, y|e) = p(h, y) =⇒ p(h, y|c) = p(h, y).191

The assumption p(h, y|e, c) = p(h, y|e) states that when the edge at the focal node pair is taken192

into consideration, the joint distribution keeps the same across the training and testing stages, which193

means that there is no other underlying unobserved latent variable shifting the distribution. The194

theorem shows an Edge Invariant subgraph embedding will not cause a dataset shift phenomenon.195

Theorem 2 gives us the motivation to design the subgraph embedding to be Edge Invariant. When196

it comes to GNNs, the practical GNN is essentially a message passing neural network [17]. The197

existence of the edge incident at the focal node pair can determine the computational graph for198

message passing when learning the node representation.199

4.2 Proposed methods200

Having developed conditions of dataset shift phenomenon in link prediction, we next introduce a201

collection of subgraph augmentation techniques named as FakeEdge (Figure 2), which satisfies202

the conditions in Theorem 2. The motivation is to mitigate the distribution shift of the subgraph203

embedding by eliminating the different patterns of target link existence between training and testing204

sets. Note that all of the strategies follow the same discipline: align the topological structure205

around the focal node pair in the training and testing datasets, especially for the isomorphic subgraphs.206

Therefore, we expect that it can gain comparable performance improvement across different strategies.207

Compared to the vanilla GNN-based subgraph link prediction methods, FakeEdge augments the208

computation graph for node representation learning and subgraph pooling step to obtain an Edge209

Invariant embedding for the entire subgraph.210

Edge Plus A simple strategy is to always make the edge present at the focal node pair for all training211

and testing samples. Namely, we add an edge into the edge set of subgraph by Er+
i,j = Er

i,j ∪{(i, j)},212

and use this edge set to calculate the representation hplus of the subgraph Gr+
i,j .213

Edge Minus Another straightforward modification is to remove the edge at the focal node pair if214

existing. That is, we remove the edge from the edge set of subgraph by Er−
i,j = Er

i,j\{(i, j)}, and215

obtain the representation hminus from Gr−
i,j .216

For GNN-based models, adding or removing edges at the focal node pair can amplify or reduce217

message propagation along the subgraph. It may also change the connectivity of the subgraph. We218

are interested to see if it can be beneficial to take both situations into consideration by combining219

them. Based on Edge Plus and Edge Minus, we further develop another two Edge Invariant methods:220
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Edge Mean To combine Edge Plus and Edge Minus, one can extract these two features and fuse them221

into one view. One way is to take the average of the two latent features by hmean = hplus+hminus

2 .222

Edge Att Edge Mean weighs Gr+
i,j and Gr−

i,j equally on all subgraphs. To vary the importance of two223

modified subgraphs, we can apply an adaptive weighted sum operation. Similar to the practice in the224

text translation [40], we apply an attention mechanism to fuse the hplus and hminus by:225

hatt = wplus ∗ hplus + wminus ∗ hminus, (1)
where w· = SoftMax(q⊺ · tanh(W · h· + b)) (2)

4.3 Expressive power of structural representation226

u v

w

Subgraph A Subgraph B

Figure 3: Given two isomorphic but non-
overlapping subgraphs A and B, GNNs learn the
same representation for the nodes u and v. Hence,
GNN-based methods cannot distinguish focal node
pairs {u,w} and {v, w}. However, by adding a Fa-
keEdge at {u,w} (shown as the dashed line in the
figure), it can break the tie of the representation for
u and v, thanks to u’s modified neighborhood.

In addition to solving the issue of dataset shift,227

FakeEdge can tackle another problem that im-228

pedes the expressive power of link prediction229

methods on the structural representation [41].230

In general, a powerful model is expected to231

discriminate most of the non-isomorphic focal232

node pairs. For instance, in Figure 3 we have233

two isomorphic subgraphs A and B, which do234

not have any overlapping nodes. Suppose that235

the focal node pairs we are interested in are236

{u,w} and {v, w}. Obviously, those two fo-237

cal node pairs have different structural roles in238

the graph, and we expect different structural239

representations for them. With GNN-based240

methods like GAE, the node representation of241

the node u and v will be the same zu = zv,242

due to the fact that they have isomorphic neigh-243

borhoods. GAE applies a score function on the244

focal node pair to pool the subgraph’s feature.245

Hence, the structural representation of node246

sets {u,w} and {v, w} would be the same,247

leaving them inseparable in the embedding248

space. This issue is caused by the limitation249

of GNNs, whose expressive power is bounded250

by 1-WL test [42].251

Zhang et al. address this problem by assigning distinct labels between the focal node pair and the252

rest of the nodes in the subgraph [19]. FakeEdge manages to resolve the issue by augmenting the253

neighborhoods of those two isomorphic nodes. For instance, we can utilize the Edge Plus strategy to254

deliberately add an edge between nodes u and w (shown as the dashed line in Figure 3). Note that the255

edge between v and w has already existed. There is no need to add an edge between them. Therefore,256

the node u and v will have different neighborhoods (u has 4 neighbors and v has 3 neighbors),257

resulting in the different node representation between the node u and v after the first iteration of258

message propagation with GNN. In the end, we can obtain different representations for two focal259

node pairs. Other FakeEdge methods like Edge Minus can also tackle the issue in a similar way.260

According to Theorem 2 in [19], such non-isomorphic focal node pairs {u,w}, {v, w} are not261

sporadic cases in a graph. Given an n nodes graph whose node degree is O(log
1−ϵ
2r n) for any262

constant ϵ > 0, there exists ω(n2ϵ) pairs of such kind of {u,w} and {v, w}, which cannot be263

distinguished by GNN-based models like GAE. However, FakeEdge can enhance the expressive264

power of link prediction methods by modifying the subgraph’s local connectivity.265

5 Experiments266

In this section, we conduct extensive experiments to evaluate how FakeEdge can mitigate the dataset267

shift issue on various baseline models in the link prediction task. Then we empirically show the268

distribution gap of the subgraph representation between the training and testing and discuss how the269

dataset shift issue can worsen with deeper GNNs.270
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Table 1: Comparison with and without FakeEdge (AUC). The best results are highlighted in bold.

Models FakeEdge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN

Original 84.92±1.95 77.05±2.18 81.58±4.62 94.07±1.50 96.92±0.73 93.17±0.45 93.76±0.65 88.78±1.85 76.32±4.65 60.72±5.88 95.35±0.36

Edge Plus 91.94±0.90 89.54±1.17 97.91±0.14 97.10±1.01 98.03±0.72 95.48±0.42 97.86±0.27 89.65±1.74 85.42±0.91 95.96±0.41 98.05±0.30

Edge Minus 92.01±0.94 90.29±0.88 97.87±0.15 97.16±0.97 98.14±0.66 95.50±0.43 97.90±0.29 89.47±1.86 85.39±1.08 96.05±0.37 97.97±0.31

Edge Mean 91.86±0.76 89.61±0.96 97.94±0.13 97.19±1.00 98.08±0.66 95.52±0.43 97.70±0.36 89.62±1.82 85.23±1.00 96.08±0.35 98.07±0.27

Edge Att 92.06±0.85 88.96±1.05 97.96±0.12 97.20±0.69 97.96±0.39 95.46±0.45 97.65±0.17 89.76±2.06 85.26±1.32 95.90±0.47 98.04±0.16

SAGE

Original 89.12±0.90 87.76±0.97 94.95±0.44 96.57±0.57 98.11±0.48 94.12±0.45 97.11±0.31 87.62±1.63 79.35±1.66 88.37±1.46 95.70±0.44

Edge Plus 93.21±0.82 90.88±0.80 97.91±0.14 97.64±0.73 98.72±0.59 95.68±0.39 98.20±0.13 90.94±1.48 86.36±0.97 96.46±0.38 98.41±0.19

Edge Minus 92.45±0.78 90.14±1.04 97.93±0.14 97.50±0.67 98.66±0.55 95.57±0.39 98.13±0.10 90.83±1.59 85.62±1.17 92.91±1.09 98.34±0.26

Edge Mean 92.77±0.69 90.60±0.94 97.96±0.13 97.67±0.70 98.62±0.61 95.69±0.37 98.20±0.13 90.86±1.51 86.24±1.01 96.22±0.38 98.41±0.21

Edge Att 93.31±1.02 91.01±1.14 98.01±0.13 97.40±0.94 98.70±0.59 95.49±0.49 98.22±0.24 90.64±1.88 86.46±0.91 96.31±0.59 98.43±0.13

GIN

Original 82.70±1.93 77.85±2.64 91.32±1.13 94.89±0.89 96.05±1.10 92.95±0.51 94.50±0.65 85.23±2.56 73.29±3.88 84.29±1.20 94.34±0.57

Edge Plus 90.72±1.11 89.54±1.19 97.63±0.14 96.03±1.37 98.51±0.55 95.38±0.35 97.84±0.40 89.71±2.06 86.61±0.87 95.79±0.48 97.67±0.23

Edge Minus 89.88±1.26 89.30±1.08 97.27±0.17 96.36±0.83 98.62±0.45 95.35±0.35 97.80±0.41 89.40±1.91 86.55±0.83 95.72±0.45 97.33±0.36

Edge Mean 90.30±1.22 89.47±1.13 97.53±0.19 96.45±0.90 98.66±0.45 95.39±0.37 97.78±0.40 89.66±2.00 86.51±0.92 95.73±0.43 97.57±0.32

Edge Att 90.76±0.88 89.55±0.61 97.50±0.15 96.34±0.82 98.35±0.54 95.29±0.29 97.66±0.33 89.39±1.61 86.21±0.67 95.78±0.52 97.74±0.33

PLNLP

Original 82.37±1.70 82.93±1.73 87.36±4.90 95.37±0.87 97.86±0.93 92.99±0.71 95.09±1.47 88.31±2.21 81.59±4.31 86.41±1.63 90.63±1.68

Edge Plus 91.62±0.87 89.88±1.19 98.31±0.21 98.09±0.73 98.77±0.39 95.33±0.39 98.10±0.33 91.77±2.16 90.04±0.57 96.45±0.40 98.03±0.23

Edge Minus 91.84±1.42 88.99±1.48 98.44±0.14 97.92±0.52 98.59±0.44 95.20±0.34 98.01±0.38 91.60±2.23 89.26±0.58 95.01±0.47 97.80±0.16

Edge Mean 91.77±1.49 89.45±1.50 98.36±0.16 98.17±0.60 98.66±0.56 95.30±0.37 98.10±0.39 91.70±2.18 90.05±0.52 96.29±0.47 98.02±0.20

Edge Att 91.22±1.34 88.75±1.70 98.41±0.17 98.13±0.61 98.70±0.40 95.32±0.38 98.06±0.37 91.72±2.12 90.08±0.54 96.40±0.40 98.01±0.18

SEAL

Original 90.13±1.94 87.59±1.57 95.79±0.78 97.26±0.58 97.44±1.07 95.06±0.46 96.91±0.45 88.75±1.90 78.14±3.14 92.35±1.21 97.33±0.28

Edge Plus 90.01±1.95 89.65±1.22 97.30±0.34 97.34±0.59 98.35±0.63 95.35±0.38 97.67±0.32 89.20±1.86 85.25±0.80 95.47±0.58 97.84±0.25

Edge Minus 91.04±1.91 89.74±1.16 97.50±0.33 97.27±0.63 98.17±0.74 95.36±0.37 97.64±0.30 89.35±1.98 85.30±0.91 95.77±0.79 97.79±0.30

Edge Mean 90.36±2.17 89.87±1.14 97.52±0.34 97.38±0.68 98.23±0.70 95.30±0.34 97.68±0.33 89.19±1.85 85.30±0.87 95.61±0.64 97.83±0.23

Edge Att 91.08±1.67 89.35±1.43 97.26±0.45 97.04±0.79 98.52±0.57 95.19±0.43 97.70±0.40 89.37±1.40 85.24±1.39 95.14±0.62 97.90±0.33

WalkPool

Original 92.00±0.79 89.64±1.01 97.70±0.19 97.83±0.97 99.00±0.45 94.53±0.44 96.81±0.92 93.71±1.11 82.43±3.57 87.46±7.45 95.00±0.90

Edge Plus 91.96±0.79 89.49±0.96 98.36±0.13 97.97±0.96 98.99±0.58 95.47±0.32 98.28±0.24 93.79±1.11 91.24±0.84 97.31±0.26 98.65±0.17

Edge Minus 91.97±0.80 89.61±1.04 98.43±0.10 98.03±0.95 99.02±0.54 95.47±0.32 98.30±0.23 93.83±1.13 91.28±0.90 97.35±0.28 98.66±0.17

Edge Mean 91.77±0.74 89.55±1.09 98.39±0.11 98.01±0.89 99.02±0.56 95.47±0.29 98.30±0.24 93.70±1.12 91.26±0.81 97.27±0.29 98.65±0.19

Edge Att 91.98±0.80 89.36±0.74 98.37±0.19 98.12±0.81 99.03±0.50 95.47±0.27 98.28±0.24 93.63±1.11 91.25±0.60 97.27±0.27 98.70±0.14

5.1 Experimental setup271

Baseline methods. We show how FakeEdge techniques can improve the existing link prediction272

methods, including GAE-like models [10], PLNLP [14], SEAL [11], and WalkPool [12]. To examine273

the effectiveness of FakeEdge, we compare the model performance with subgraph representation274

learned on the original unmodified subgraph and the FakeEdge augmented ones. For GAE-like275

models, we apply different GNN encoders, including GCN [9], SAGE [43] and GIN [42]. SEAL and276

WalkPool have already been implemented in the fashion of the subgraph link prediction. However,277

a subgraph extraction preprocessing is needed for GAE and PLNLP, since they are not initially278

implemented as the subgraph link prediction. GCN, SAGE, and PLNLP use a score function to279

pool the subgraph. GCN and SAGE use the Hadamard product as the score function, while MLP is280

applied for PLNLP (see Section 3.2 for discussions about the score function). Moreover, GIN applies281

a subgraph-level pooling strategy, called "mean readout" [42], whose pooling is based on the entire282

subgraph. Similarly, SEAL and WalkPool also utilize the pooling on the entire subgraph to aggregate283

the representation. More details about the model implementation can be found in Appendix D.284

Benchmark datasets. For the experiment, we use 3 datasets with node attributes and 8 without285

attributes. The graph datasets with node attributes are three citation networks: Cora [44], Cite-286

seer [45], and Pubmed [46]. The graph datasets without node attributes are eight graphs in a variety287

of domains: USAir [47], NS [48], PB [49], Yeast [50], C.ele [51], Power [51], Router [52], and288

E.coli [53]. More details about the benchmark datasets can be found in Appendix E.289

Evaluation protocols. Following the same experimental setting as of [11, 12], the links are split290

into 3 parts: 85% for training, 5% for validation, and 10% for testing. The links in validation and291

testing are unobserved during the training phase. We also implement a universal data pipeline for292

different methods to eliminate the data perturbation caused by train/test split. We perform 10 random293

data splits to reduce the performance disturbance. Area under the curve (AUC) [54] is used as the294

evaluation metrics and is reported by the epoch with the highest score on the validation set.295

5.2 Results296

FakeEdge on GAE-like models. The results of models with (Edge Plus, Edge Minus, Edge Mean,297

and Edge Att) and without (Original) FakeEdge are shown in Table 1. We observe that FakeEdge is a298

vital component for all different methods. With FakeEdge, the link prediction model can obtain a299

significant performance improvement on all datasets. GAE-like models and PLNLP achieve the most300
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Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli
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Figure 4: Distribution gap (AUC) of the positive samples between the training and testing set.

remarkable performance improvement when FakeEdge alleviates the dataset shift issue. FakeEdge301

boosts them by 2%-11% on different datasets. GCN, SAGE, and PLNLP all have a score function302

as the pooling methods, which is solely based on the focal node pair. In particular, the focal node303

pair is incident with the target link, which determines how the message passes around it. Therefore,304

the most severe dataset shift issues happen at the embedding of the focal node pair during the node305

representation learning step. FakeEdge is expected to bring a notable improvement to these situations.306

Encoder matters. In addition, the choice of encoder plays an important role when GAE is deployed307

on the Original subgraph. We can see that SAGE shows the best performance without FakeEdge308

among these 3 encoders. However, after applying FakeEdge, all GAE-like methods achieve com-309

parable better results regardless of the choice of the encoder. We come to a hypothesis that the310

plain SAGE itself leverages the idea of FakeEdge to partially mitigate the dataset shift issue. Each311

node’s neighborhood in SAGE is a fixed-size set of nodes, which is uniformly sampled from the full312

neighborhood set. Thus, when learning the node representation of the focal node pair in the positive313

training sets, it is possible that one node of the focal node pair is not selected as the neighbor of314

the other node during the neighborhood sampling stage. In this case, the FakeEdge technique Edge315

Minus is applied to modify such a subgraph.316

FakeEdge on subgraph-based models. In terms of SEAL and WalkPool, FakeEdge can still317

robustly enhance the model performance across different datasets. Especially for datasets like Power318

and Router, FakeEdge increases the AUC by over 10% on both methods. Both methods achieve better319

results across different datasets, except WalkPool model on datasets Cora and Citeseer. One of the320

crucial components of WalkPool is the walk-based pooling method, which actually operates on both321

the Edge Plus and Edge Minus graphs. Different from FakeEdge technique, WalkPool tackles the322

dataset shift problem mainly on the subgraph pooling stage. Thus, WalkPool shows similar model323

performance between the Original and FakeEdge augmented graphs. Moreover, SEAL and WalkPool324

have utilized one of the FakeEdge techniques as a trick in their initial implementations. However,325

they have failed to explicitly point out the fix of dataset shift issue from such a trick in their papers.326

Different FakeEdge techniques. When comparing different FakeEdge techniques, Edge Att ap-327

pears to be the most stable, with a slightly better overall performance and a smaller variance. However,328

there is no significant difference between these techniques. This observation is consistent with our329

expectation since all FakeEdge techniques follow the same discipline to fix the dataset shift issue.330

5.3 Further discussions331

In this section, we conduct experiments to more thoroughly study why FakeEdge can improve the332

performance of the link prediction methods. We first give an empirical experiment to show how333

severe the distribution gap can be between training and testing. Then, we discuss the dataset shift334

issue with deeper GNNs.335

5.3.1 Distribution gap between the training and testing336

FakeEdge aims to produce Edge Invariant subgraph embedding during the training and testing phases337

in the link prediction task, especially for those positive samples p(h|y = 1). That is, the subgraph338

representation of the positive samples between the training and testing should be difficult, if at all,339

to be distinguishable from each other. Formally, we ask whether p(h|y = 1, c = train) = p(h|y =340

1, c = test), by conducting an empirical experiment on the subgraph embedding.341
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Table 2: GIN’s performance improvement by Edge Att compared to Original with a different number
of layers. GIN utilizes mean-pooling as the subgraph-level readout.

Layers Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli
1 ↑2.80% ↑3.65% ↑4.53% ↑0.29% ↑1.30% ↑1.02% ↑1.54% ↑2.13% ↑5.24% ↑11.19% ↑1.67%
2 ↑4.66% ↑14.53% ↑6.64% ↑0.73% ↑1.55% ↑2.16% ↑3.40% ↑5.41% ↑25.32% ↑14.73% ↑2.59%
3 ↑9.78% ↑15.19% ↑6.57% ↑0.98% ↑2.49% ↑2.43% ↑3.60% ↑4.48% ↑20.46% ↑13.38% ↑3.14%

We retrieve the subgraph embedding of the positive samples from both the training and testing stages,342

and randomly shuffle the embedding. Then we classify whether the sample is from training (c = train)343

or testing (c = test). The shuffled positive samples are split 80%/20% as train and inference sets.344

Note that the train set here, as well as the inference set, contains both the shuffled positive samples345

from the training and testing set in the link prediction task. Then we feed the subgraph embedding346

into a 2-layer MLP classifier to investigate whether the classifier can differentiate the training samples347

(c = train) and the testing samples (c = test). In general, the classifier will struggle to undertake the348

classification if the embedding of training and testing samples is drawn from the same underlying349

distribution, which indicates there is no significant dataset shift issue.350

We use GAE with the GCN as the encoder to run the experiment. AUC is used to measure the351

discriminating power of the classifier. The results are shown in Figure 4. Without FakeEdge, the352

classifier shows a significant ability to separate positive samples between training and testing. When353

it comes to the subgraph embedding with FakeEdge, the classifier stumbles in distinguishing the354

samples. The comparison clearly reveals how different the subgraph embedding can be between the355

training and testing, while FakeEdge can both provably and empirically diminish the distribution gap.356

5.3.2 Dataset shift with deeper GNNs357

Given two graphs with n nodes in each graph, 1-WL test may take up to n iterations to determine358

whether two graphs are isomorphic [55]. Thus, GNNs, which mimic 1-WL test, tend to discriminate359

more non-isomorphic graphs when the number of GNN layers increases. SEAL [19] has empirically360

witnessed a stronger representation power and obtained more expressive link representation with361

deeper GNNs. However, we notice that the dataset shift issue in the subgraph link prediction becomes362

more severe when GNNs try to capture long-range information with more layers.363

We reproduce the experiments on GIN by using l = 1, 2, 3 message passing layers and compare364

the model performance by AUC scores with and without FakeEdge. Here we only apply Edge Att365

as the FakeEdge technique. The relative AUC score improvement of Edge Att is reported, namely366

(AUCEdgeAtt −AUCOriginal)/AUCOriginal. The results are shown in Table 2. As we can observe,367

the relative performance improvement between Edge Att and Original becomes more significant with368

more layers, which indicates that the dataset shift issue can be potentially more critical when we seek369

deeper GNNs for greater predictive power.370

To explain such a phenomenon, we hypothesize that GNNs with more layers will involve more nodes371

in the subgraph, such that their computation graph is dependent on the existence of the edge at the372

focal node pair. For example, select a node v from the subgraph Gr
i,j , which is at least l hops away373

from the focal node pair {i, j}, namely l = min(d(i, v), d(j, v)). If the GNN has only l layers, v374

will not include the edge (i, j) in its computation graph. But with a GNN with l + 1 layers, the edge375

(i, j) will affect v’s computation graph. We leave the validation of the hypothesis to future work.376

6 Conclusion377

Dataset shift is arguably one of the most challenging problems in the world of machine learning.378

However, to the best of our knowledge, none of the previous studies sheds light on this notable379

phenomenon in link prediction. In this paper, we studied the issue of dataset shift in link prediction380

tasks with GNN-based models. We first unified several existing models into a framework of subgraph381

link prediction. Then, we theoretically investigated the phenomenon of dataset shift in subgraph link382

prediction and proposed a model-agnostic technique FakeEdge to amend the issue. Experiments with383

different models over a wide range of datasets verified the effectiveness of FakeEdge.384

9



FakeEdge: Alleviate Dataset Shift in Link Prediction

References385

[1] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In386

Proceedings of the twelfth international conference on Information and knowledge management,387

CIKM ’03, pages 556–559, New York, NY, USA, November 2003. Association for Computing388

Machinery. ISBN 978-1-58113-723-1. doi: 10.1145/956863.956972. URL http://doi.org/389

10.1145/956863.956972. 1, 2, 4, 14, 17390

[2] Damian Szklarczyk, Annika L. Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime391

Huerta-Cepas, Milan Simonovic, Nadezhda T. Doncheva, John H. Morris, Peer Bork, Lars J.392

Jensen, and Christian von Mering. STRING v11: protein-protein association networks with393

increased coverage, supporting functional discovery in genome-wide experimental datasets.394

Nucleic Acids Research, 47(D1):D607–D613, January 2019. ISSN 1362-4962. doi: 10.1093/395

nar/gky1131. 1396

[3] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-397

mender systems. Computer, 42(8):30–37, 2009. Publisher: IEEE. 1398

[4] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning399

with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,400

2016. 1401

[5] Yang Yang, Ryan N. Lichtenwalter, and Nitesh V. Chawla. Evaluating link prediction methods.402

Knowledge and Information Systems, 45(3):751–782, December 2015. ISSN 0219-3116. doi:403

10.1007/s10115-014-0789-0. URL https://doi.org/10.1007/s10115-014-0789-0. 1404

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks405

on Graphs with Fast Localized Spectral Filtering. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,406

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.407

Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/408

file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf. 1409

[7] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy410

Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. Convolutional Networks on Graphs for411

Learning Molecular Fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and412

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Cur-413

ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/414

f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.415

[8] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and416

Locally Connected Networks on Graphs. arXiv:1312.6203 [cs], May 2014. URL http:417

//arxiv.org/abs/1312.6203. arXiv: 1312.6203.418

[9] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional419

Networks. arXiv:1609.02907 [cs, stat], February 2017. URL http://arxiv.org/abs/1609.420

02907. arXiv: 1609.02907. 1, 7, 14, 15421

[10] Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders, 2016. _eprint:422

1611.07308. 1, 4, 7, 14423

[11] Muhan Zhang and Yixin Chen. Link Prediction Based on Graph Neural Networks.424

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-425

nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran426

Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/427

53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf. 1, 2, 4, 7, 14, 15428
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A Related work of link predictions598

Early studies on link prediction problems mainly focus on heuristics methods, which require exper-599

tise on the underlying trait of network or hand-crafted features, including Common Neighbor [1],600

Adamic–Adar index [20] and Preferential Attachment [37], etc. WLNM [56] suggests a method to601

encode the induced subgraph of the target link as an adjacency matrix to represent the link. With the602

huge success of GNN [9], GNN-based link prediction methods have become dominant across different603

areas. Graph Auto Encoder(GAE) and Variational Graph Auto Encoder(VGAE) [10] perform link604

prediction tasks by reconstructing the graph structure. SEAL [11] and DE [13] propose methods605

to label the nodes according to the distance to the focal node pair. To better exploit the structural606

motifs [57] in distinct graphs, a walk-based pooling method (WalkPool) [12] is designed to extract607

the representation of the local neighborhood. PLNLP [14] sheds light on pairwise learning to rank608

the node pairs of interest. Based on two-dimensional Weisfeiler-Lehman tests, Hu et al. propose a609

link prediction method that can directly obtain node pair representation [58].610

B Proof of Theorem 1611

We restate the Theorem 1: GNN cannot learn the subgraph feature h to be Edge Invariant.612

Proof. Recall that the computation of subgraph feature h involves steps such as:613

1. Subgraph Extraction: Extract the subgraph Gr
i,j around the focal node pair {i, j};614

2. Node Representation Learning: Z = GNN(Gr
i,j), where Z ∈ R|V r

i,j |×Fhidden is the node embed-615

ding matrix learned by the GNN encoder;616

3. Pooling: h = Pooling(Z;Gr
i,j), where h ∈ RFpooled is the latent feature of the subgraph Gr

i,j ;617

Here, GNN is Message Passing Neural Network [17]. Given a subgraph G = (V,E,xV ,xE), GNN618

with T layers applies following rules to update the representation of node i ∈ V :619

h
(t+1)
i = Ut(h

(t)
i ,

∑
w∈N (i)

Mt(h
(t)
i , h(t)

w ,xE
i,w)), (3)

where N (i) is the neighborhood of node i in G, Mt is the message passing function at layer t and Ut620

is the node update function at layer t. The hidden states at the first layer are set as h(0)
i = xV

i . The621

hidden states at the last layer are the outputs Zi = h
(T )
i .622

Given any subgraph Gr
i,j = (V r

i,j , E
r
i,j ,x

V
V r
i,j
,xE

Er
i,j
) with the edge present at the focal node pair623

(i, j) ∈ Er
i,j , we construct another isomorphic subgraph Gr

ī,j̄
= (V r

ī,j̄
, Er

ī,j̄
,xV

V r
ī,j̄
,xE

Er
ī,j̄
), but remove624

the edge (̄i, j̄) from the edge set Er
ī,j̄

of the subgraph. Gr
ī,j̄

can be seen as the counterpart of Gr
i,j in625

the testing set.626

Thus, for the first iteration of node updates t = 1:627

h
(1)
i = Ut(h

(0)
i ,

∑
w∈N (i)

Mt(h
(0)
i , h(0)

w ,xE
i,w)), (4)

h
(1)

ī
= Ut(h

(0)

ī
,

∑
w∈N (̄i)

Mt(h
(0)

ī
, h(0)

w ,xE
ī,w)), (5)

Note that N (̄i) ∪ {j} = N (i). We have:628

h
(1)
i = Ut(h

(0)
i ,

∑
w∈N (i)\{j}

Mt(h
(0)
i , h(0)

w ,xE
i,w) +Mt(h

(0)
i , h

(0)
j ,xE

i,j)) (6)

= Ut(h
(0)

ī
,

∑
w∈N (̄i)

Mt(h
(0)

ī
, h(0)

w ,xE
ī,w) +Mt(h

(0)

ī
, h

(0)

j̄
,xE

ī,j̄)), (7)

As Ut is injective, p(h(1)
i , y = 1|e = 1) ̸= p(h

(1)

ī
, y = 1) = p(h

(1)
i , y = 1|e = 0). Similarly, we can629

conclude that p(h(T )
i , y = 1|e = 1) ̸= p(h

(T )
i , y = 1|e = 0).630
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As we use the last iteration of node updates h
(T )
i as the final node representation Z, we have631

p(Z, y|e = 1) ̸= p(Z, y|e = 0), which leads to p(h, y|e = 1) ̸= p(h, y|e = 0) and concludes the632

proof.633

C Proof of Theorem 2634

We restate the Theorem 2: Given p(h, y|e, c) = p(h, y|e), there is no Dataset Shift in the link pre-635

diction if the subgraph embedding is Edge Invariant. That is, p(h, y|e) = p(h, y) =⇒ p(h, y|c) =636

p(h, y).637

Proof.
p(h = h, y = y|c = c) (8)
= Ee[p(h = h, y = y|c = c, e)p(e|c = c)] (9)
= Ee[p(h = h, y = y)p(e|c = c)] (10)
= p(h = h, y = y). (11)

638

D Details about the baseline methods639

To verify the effectiveness of FakeEdge, we tend to introduce minimal modification to the baseline640

models and make them compatible with FakeEdge techniques. The baseline models in our experiments641

are mainly from the two streams of link prediction models. One is the GAE-like model, including642

GCN [9], SAGE [43], GIN [42] and PLNLP [14]. The other includes SEAL [11] and WalkPool [12].643

GCN, SAGE and PLNLP learn the node representation and apply a score function on the focal node644

pair to represent the link. As GAE-like models are not implemented in the fashion of subgraph link645

prediction, the subgraph extraction step is necessary for them as preprocessing. We follow the code646

from the labeling trick [19], which implements the GAE models as the subgraph link prediction647

task. In particular, GIN concatenates the node embedding from different layers to learn the node648

representation and applies a subgraph-level readout to aggregate as the subgraph representation.649

For the selection of hyperparameters, we use the same configuration as [19] on datasets Cora, Citeseer650

and Pubmed. As they do not have experiments on other 8 networks without attributes, we set the651

subgraph hop number as 2 and leave the rest of them as default. For PLNLP, we also add a subgraph652

extraction step without modifying the core part of the pairwise learning strategy. Then, we find that653

the performance of PLNLP is very unstable on different train/test splits. The performance’s standard654

deviation of PLNLP is over 10% on each experiment. Therefore, we apply the Double-Radius Node655

Labeling [11] to stabilize the model.656

SEAL and WalkPool have applied one of the FakeEdge techniques in their initial implementation.657

SEAL uses a Edge Minus strategy to remove all the edges at focal node pair as a preprocessing step,658

while WalkPool applies Edge Plus to always inject edges into the subgraph for node representation659

learning. Additionally, WalkPool has the walk-based pooling method operating on both the Edge660

Plus and Edge Minus graphs. This design is kept in our experiment. Thus, our FakeEdge technique661

only takes effect on the node representation step for WalkPool. From the results in Section 5.2, we662

can conclude that the dataset shift issue on the node representation solely would significantly impact663

the model performance. We also use the same hyperparameter settings as originally reported in their664

paper. The code will be publicly available.665

E Benchmark dataset descriptions666

The graph datasets with node attributes are three citation networks: Cora [44], Citeseer [45] and667

Pubmed [46]. Nodes represent publications and edges represent citation links. The graph datasets668

without node attributes are: (1) USAir [47]: a graph of US Air lines; (2) NS [48]: a collaboration669

network of network science researchers; (3) PB [49]: a graph of links between web pages on US670

political topic; (4) Yeast [50]: a protein-protein interaction network in yeast; (5) C.ele [51]: the671

neural network of Caenorhabditis elegans; (6) Power [51]: the network of the western USś electric672

grid; (7) Router [52]: the Internet connection at the router-level; (8) E.coli [53]: the reaction network673

of metabolites in Escherichia coli. The detailed statistics of the datasets can be found in Table 3.674
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Table 3: Statistics of link prediction datasets.

Dataset #Nodes #Edges Avg. node deg. Density Attr. Dimension
Cora 2708 10556 3.90 0.2880% 1433
Citeseer 3327 9104 2.74 0.1645% 3703
Pubmed 19717 88648 4.50 0.0456% 500
USAir 332 4252 12.81 7.7385% -
NS 1589 5484 3.45 0.4347% -
PB 1222 33428 27.36 4.4808% -
Yeast 2375 23386 9.85 0.8295% -
C.ele 297 4296 14.46 9.7734% -
Power 4941 13188 2.67 0.1081% -
Router 5022 12516 2.49 0.0993% -
E.coli 1805 29320 16.24 1.8009% -

Table 4: Comparison with and without FakeEdge (Hits@20). The best results are highlighted in
bold.

Models FakeEdge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN

Original 65.35±3.64 61.71±2.60 48.97±1.92 87.69±3.92 92.77±1.72 41.60±2.52 85.26±1.90 65.33±7.55 39.64±5.47 39.41±2.38 82.21±2.02

Edge Plus 68.31±2.89 65.80±3.28 55.70±3.07 89.34±4.09 93.28±1.69 43.98±6.25 87.19±2.13 66.68±5.25 46.92±3.78 72.03±2.85 86.03±1.40

Edge Minus 67.97±2.62 66.13±3.30 54.29±2.66 90.57±3.30 93.61±1.68 43.92±5.82 86.66±2.18 66.07±6.14 47.97±2.58 72.34±2.58 85.68±1.84

Edge Mean 67.76±3.02 66.11±2.48 54.55±2.88 89.48±3.52 92.77±1.99 44.64±6.93 86.64±2.03 65.28±6.33 47.54±2.95 72.26±2.68 85.62±1.71

Edge Att 68.43±3.72 67.65±4.11 55.55±2.70 90.80±4.50 92.88±2.27 44.80±6.60 87.83±0.92 65.93±11.06 48.50±2.20 70.96±2.85 86.56±1.69

SAGE

Original 61.67±3.68 61.10±1.54 45.29±3.99 89.20±2.80 91.93±2.74 39.51±4.44 84.11±1.47 58.55±7.17 42.97±5.34 30.02±2.75 75.30±2.77

Edge Plus 68.58±2.77 65.47±3.58 55.23±2.81 92.59±3.71 93.83±2.54 49.10±5.38 89.36±0.72 69.72±6.02 49.70±2.57 74.90±3.73 88.16±1.29

Edge Minus 66.26±2.54 62.97±3.50 53.43±3.52 91.32±3.42 93.54±1.96 48.72±4.90 88.27±1.00 69.81±5.34 47.63±1.87 56.67±7.20 87.89±1.59

Edge Mean 66.74±2.71 65.96±2.62 55.21±2.84 91.51±3.49 93.25±2.88 48.89±6.14 89.30±0.72 69.21±7.17 47.54±3.52 73.89±3.50 88.05±1.62

Edge Att 68.80±2.65 66.62±3.67 55.18±2.99 92.92±3.11 94.09±1.60 48.53±5.15 89.10±1.17 69.30±7.53 47.06±2.21 73.60±4.68 87.63±1.66

GIN

Original 55.71±4.38 51.71±4.31 40.14±3.98 86.08±3.14 90.51±3.45 38.79±5.32 79.57±1.74 54.95±5.91 41.56±1.47 55.47±4.37 77.37±2.84

Edge Plus 64.42±2.67 63.56±2.92 49.75±4.50 88.68±4.10 94.85±1.90 46.17±6.12 87.58±2.22 64.49±6.52 48.59±3.33 70.67±3.58 84.13±2.12

Edge Minus 63.17±2.96 63.65±4.63 50.37±4.01 89.81±1.80 94.53±2.09 45.93±6.09 88.37±2.00 67.06±11.03 47.56±1.88 71.10±1.90 83.23±2.62

Edge Mean 61.46±4.64 63.74±4.20 46.97±6.49 89.86±2.62 93.98±2.88 43.48±7.74 88.16±2.11 66.73±6.79 47.66±2.91 71.09±2.68 82.48±1.99

Edge Att 63.26±3.33 60.64±4.29 49.71±4.40 88.87±4.71 94.49±1.51 44.94±5.37 87.92±1.45 65.93±8.55 48.19±2.70 70.03±3.05 84.38±2.54

PLNLP

Original 58.77±2.59 57.21±3.91 40.03±3.46 88.87±2.75 93.76±1.65 38.90±4.38 81.17±3.54 66.36±5.65 43.52±6.47 34.61±11.29 65.68±1.56

Edge Plus 66.79±2.77 67.69±4.13 44.44±14.29 95.19±1.60 95.84±1.09 45.18±4.87 88.04±2.42 71.21±8.04 52.37±3.95 75.01±1.83 84.73±1.70

Edge Minus 67.40±3.53 62.84±2.88 47.80±11.11 94.10±2.42 95.22±1.60 45.40±6.29 87.94±1.64 69.91±6.80 52.19±4.23 68.24±4.01 83.59±1.56

Edge Mean 68.61±3.40 64.81±3.57 51.92±13.30 95.24±2.09 95.95±0.78 45.37±5.07 88.08±2.30 71.26±8.05 51.97±3.41 74.42±2.33 84.78±1.82

Edge Att 67.82±3.58 64.37±3.73 48.47±12.01 95.38±2.02 95.62±0.81 45.28±5.11 88.57±1.80 70.65±8.11 51.79±4.07 74.99±1.92 85.10±1.88

SEAL

Original 60.95±8.00 61.56±2.12 48.80±3.33 91.27±2.53 91.72±2.01 43.44±6.82 85.33±1.76 64.21±5.86 39.30±3.79 59.47±6.66 84.15±2.16

Edge Plus 60.51±7.70 65.12±2.18 50.90±3.96 90.85±4.12 93.61±1.87 46.77±4.80 86.66±1.59 65.47±7.68 45.90±2.85 70.06±3.57 85.76±2.04

Edge Minus 60.74±6.60 65.14±2.93 51.23±3.82 90.66±3.49 92.19±2.03 47.21±4.73 86.49±2.08 63.64±6.93 46.42±3.42 70.43±4.40 85.50±2.06

Edge Mean 62.94±5.78 64.99±4.36 51.83±3.66 91.84±2.93 92.92±2.12 46.02±4.22 86.25±2.17 65.93±6.87 46.57±3.22 70.08±3.85 85.85±1.81

Edge Att 62.03±4.95 63.52±4.39 48.42±5.69 91.42±3.31 94.64±1.49 44.73±5.29 86.83±1.63 65.93±4.74 47.91±3.45 67.46±3.49 86.02±1.58

WalkPool

Original 69.98±3.37 64.22±2.84 57.30±2.56 95.09±2.78 96.02±1.64 47.74±5.81 88.24±1.33 78.55±5.83 43.58±4.40 56.21±13.92 83.41±1.72

Edge Plus 69.13±2.31 64.51±2.25 59.23±3.09 95.00±3.09 96.06±1.65 46.18±5.40 89.79±0.70 78.36±5.30 56.27±4.17 77.65±2.83 86.44±1.52

Edge Minus 69.34±2.45 64.26±1.93 59.44±3.10 95.14±2.93 95.99±1.67 46.79±4.88 89.57±0.85 77.90±4.49 55.72±3.63 77.62±2.64 87.24±0.77

Edge Mean 70.27±2.96 62.84±4.79 59.85±3.84 95.24±2.45 96.17±1.63 46.27±5.00 89.58±0.91 77.94±4.55 56.18±3.74 76.88±2.76 86.89±0.84

Edge Att 69.60±4.11 64.35±3.64 59.63±3.28 95.61±2.53 96.06±1.62 46.77±5.36 89.84±0.71 77.94±4.89 56.46±3.55 76.90±2.82 87.02±1.64

F Results measured by Hits@20 and statistical significance of results675

We adopt another widely used metrics in the link prediction task [59], Hits@20, to evaluate the model676

performance with and without FakeEdge. The results are shown in Table 4. FakeEdge can boost all677

the models predictive power on different datasets.678

Table 5: p-values by comparing AUC scores with Original and Edge Att. Significant differences are
highlighted in bold.

Models Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN 3.50 · 10−09 6.92 · 10−12 1.52 · 10−09 1.10 · 10−05 9.89 · 10−04 1.21 · 10−09 4.95 · 10−13 2.76 · 10−01 1.55 · 10−05 2.62 · 10−13 2.44 · 10−14

SAGE 1.32 · 10−08 2.04 · 10−06 3.48 · 10−14 2.78 · 10−02 2.33 · 10−02 4.13 · 10−06 4.87 · 10−08 1.23 · 10−03 6.12 · 10−10 4.40 · 10−12 3.54 · 10−13

GIN 4.86 · 10−10 6.09 · 10−11 1.46 · 10−12 1.27 · 10−03 1.29 · 10−05 2.47 · 10−10 5.34 · 10−11 3.84 · 10−04 5.10 · 10−09 3.11 · 10−16 3.04 · 10−12

PLNLP 1.47 · 10−10 5.30 · 10−07 1.22 · 10−06 1.66 · 10−07 1.70 · 10−02 3.40 · 10−08 7.69 · 10−06 2.46 · 10−03 7.84 · 10−06 2.68 · 10−13 5.27 · 10−11

SEAL 2.59 · 10−01 1.72 · 10−02 6.45 · 10−05 4.82 · 10−01 1.15 · 10−02 5.20 · 10−01 5.91 · 10−04 4.12 · 10−01 3.78 · 10−06 3.91 · 10−06 5.67 · 10−04

WalkPool 9.52 · 10−01 4.96 · 10−01 2.83 · 10−07 4.77 · 10−01 8.91 · 10−01 1.84 · 10−05 1.07 · 10−04 8.74 · 10−01 4.15 · 10−07 5.89 · 10−04 1.83 · 10−10
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Table 6: Model performance with only 20% training data (AUC). The best results are highlighted in
bold.

Models Fake Edge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN Original 55.02±1.00 56.34±0.73 57.09±1.46 80.44±1.43 61.23±1.22 88.52±0.37 81.12±0.52 66.67±2.34 49.15±0.56 62.98±8.98 81.79±0.76

Edge Att 63.27±1.20 62.17±0.92 85.55±0.29 88.19±1.27 61.86±1.75 92.57±0.25 85.54±0.34 70.27±1.44 52.37±1.49 77.45±0.63 91.60±0.33

SEAL Original 59.00±1.79 59.11±0.76 77.93±2.12 87.21±1.29 62.54±1.15 91.29±0.26 83.18±0.91 69.12±1.30 51.01±0.87 71.88±1.42 90.86±0.40

Edge Att 62.11±1.67 62.08±0.60 85.11±0.50 87.74±0.83 63.66±1.54 91.92±0.35 85.62±0.54 68.89±1.35 52.99±1.02 77.78±0.49 91.06±0.34

Note that the AUC scores on several datasets are almost saturated in Table 1. To further verify the679

statistical significance of the improvement, a two-sided t-test is conducted with the null hypothesis that680

the augmented Edge Att and the Original representation learning would reach at the identical average681

scores. The p-values of different methods can be found in Table 5. Recall that the p-value smaller682

than 0.05 is considered as statistically significant. GAE-like methods obtain significant improvement683

on almost all of the datasets, except GCN on C.ele. SEAL shows significant improvement with Edge684

Att on 7 out of 11 datasets. For WalkPool, more than half of the datasets are significantly better.685

686

G FakeEdge with extremely sparse graphs687

In real applications, the size of testing set often outnumbers the training set. When it happens to a688

link prediction task, the graph will become more sparse because of the huge number of unseen links.689

We are interested to see how FakeEdge can handle situations where the ratio of training set is low and690

there exists a lot of “true” links missing in the training graph.691

We reset the train/test split as 20% for training, 30% for validation and 50% for testing and reevaluate692

the model performance. The results can be found in Table 6. As shown in the table, FakeEdge can693

still consistently improve the model performance under such an extreme setting. It shows that the694

dataset shift for link prediction is a common issue and FakeEdge has the strength to alleviate it in695

various settings.696

However, we still observe a significant performance drop when compared to the 85/5/10 evaluation697

setting. This degradation may be caused by a more fundamental dataset shift problem of link698

prediction: the nodes in a graph are not sampled independently. Existing link prediction models699

often assume that the likelihood of forming a link relies on its local neighborhood. Nevertheless,700

an intentionally-sparsified graph can contain a lot of missing links from the testing set, leading701

to corrupted local neighborhoods of links which cannot reflect the real environments surrounding.702

FakeEdge does not have the potential to alleviate such a dataset shift. We leave this as a future work.703

704

H Concatenation as another valid Edge Invariant subgraph embedding705

Edge Concat To fuse the feature from Edge Plus and Edge Minus, another simple and intuitive way706

is to concatenate two embedding into one representation. Namely, hconcat = [hplus;hminus], where707

[·; ·] is the concatenation operation. hconcat is also an Edge Invariant subgraph embedding. In Table 7,708

we observe that Edge Concat has the similar performance improvement like other FakeEdge methods709

on all different backbone models.710

711

I Heuristic methods with FakeEdge712

FakeEdge, as a model-agnostic technique, not only has the capability of alleviating the dataset713

shift issue for GNN-based models, but also can tackle the problem for heuristic methods. Some714

of the conventional heuristic link predictors, like Common Neighbor [1], Adamic–Adar index [20],715

or Resource Allocation [39], are Edge Invariant because these predictors are independent of the716

existence of the target link.717

However, other link predictors, including Preferential Attachment (PA) [37] and Jaccard Index718

(Jac) [38], are not Edge Invariant. The existence/absence of target link can change the values of719
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Table 7: Comparison for concatenation operation (AUC). The best results are highlighted in bold.

Models Fake Edge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN
Original 84.92±1.95 77.05±2.18 81.58±4.62 94.07±1.50 96.92±0.73 93.17±0.45 93.76±0.65 88.78±1.85 76.32±4.65 60.72±5.88 95.35±0.36

Edge Att 92.06±0.85 88.96±1.05 97.96±0.12 97.20±0.69 97.96±0.39 95.46±0.45 97.65±0.17 89.76±2.06 85.26±1.32 95.90±0.47 98.04±0.16
Edge Concat 92.63±1.00 89.88±1.00 97.96±0.11 97.27±0.95 98.07±0.78 95.39±0.44 97.55±0.46 89.78±1.59 85.71±0.75 96.19±0.59 98.06±0.23

SAGE
Original 89.12±0.90 87.76±0.97 94.95±0.44 96.57±0.57 98.11±0.48 94.12±0.45 97.11±0.31 87.62±1.63 79.35±1.66 88.37±1.46 95.70±0.44

Edge Att 93.31±1.02 91.01±1.14 98.01±0.13 97.40±0.94 98.70±0.59 95.49±0.49 98.22±0.24 90.64±1.88 86.46±0.91 96.31±0.59 98.43±0.13
Edge Concat 93.03±0.57 91.14±1.46 98.08±0.07 97.54±0.70 98.59±0.26 95.66±0.39 98.04±0.37 91.14±1.19 86.46±1.04 96.19±0.54 98.40±0.22

GIN
Original 82.70±1.93 77.85±2.64 91.32±1.13 94.89±0.89 96.05±1.10 92.95±0.51 94.50±0.65 85.23±2.56 73.29±3.88 84.29±1.20 94.34±0.57

Edge Att 90.76±0.88 89.55±0.61 97.50±0.15 96.34±0.82 98.35±0.54 95.29±0.29 97.66±0.33 89.39±1.61 86.21±0.67 95.78±0.52 97.74±0.33
Edge Concat 90.90±0.92 89.94±0.89 97.48±0.16 96.17±0.64 98.41±0.73 95.45±0.39 97.71±0.38 88.81±1.41 86.77±0.99 95.72±0.47 97.72±0.18

PLNLP
Original 82.37±1.70 82.93±1.73 87.36±4.90 95.37±0.87 97.86±0.93 92.99±0.71 95.09±1.47 88.31±2.21 81.59±4.31 86.41±1.63 90.63±1.68

Edge Att 91.22±1.34 88.75±1.70 98.41±0.17 98.13±0.61 98.70±0.40 95.32±0.38 98.06±0.37 91.72±2.12 90.08±0.54 96.40±0.40 98.01±0.18
Edge Concat 93.01±1.16 91.19±1.52 98.45±0.12 97.86±0.37 98.81±0.33 95.18±0.24 98.04±0.21 91.79±1.79 89.16±1.01 96.31±0.36 98.13±0.18

SEAL
Original 90.13±1.94 87.59±1.57 95.79±0.78 97.26±0.58 97.44±1.07 95.06±0.46 96.91±0.45 88.75±1.90 78.14±3.14 92.35±1.21 97.33±0.28

Edge Att 91.08±1.67 89.35±1.43 97.26±0.45 97.04±0.79 98.52±0.57 95.19±0.43 97.70±0.40 89.37±1.40 85.24±1.39 95.14±0.62 97.90±0.33
Edge Concat 90.22±1.60 89.93±1.31 97.40±0.24 96.83±1.01 98.23±0.49 95.29±0.43 97.68±0.34 88.99±1.13 85.60±1.03 95.76±0.74 97.72±0.25

WalkPool
Original 92.00±0.79 89.64±1.01 97.70±0.19 97.83±0.97 99.00±0.45 94.53±0.44 96.81±0.92 93.71±1.11 82.43±3.57 87.46±7.45 95.00±0.90

Edge Att 91.98±0.80 89.36±0.74 98.37±0.19 98.12±0.81 99.03±0.50 95.47±0.27 98.28±0.24 93.63±1.11 91.25±0.60 97.27±0.27 98.70±0.14
Edge Concat 91.77±1.06 89.79±0.87 98.48±0.09 98.07±0.86 99.05±0.44 95.46±0.35 98.30±0.25 93.82±1.09 91.29±0.77 97.31±0.27 98.70±0.17

Table 8: Heuristic methods with/without FakeEdge (AUC). The best results are highlighted in bold.

Models Fake Edge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

PA
Original 63.15±1.38 58.20±2.18 71.72±0.36 88.84±1.41 66.19±1.82 90.05±0.52 82.10±1.15 75.72±2.20 44.47±1.58 48.20±0.83 91.99±0.78

Edge Plus 65.05±1.31 61.05±1.96 84.04±0.37 90.36±1.45 65.29±1.97 90.47±0.49 82.66±0.98 75.98±2.31 46.83±1.61 74.03±1.05 91.98±0.78
Edge Minus 63.15±1.38 58.20±2.18 71.72±0.36 88.84±1.41 66.19±1.82 90.05±0.52 82.10±1.15 75.72±2.20 44.47±1.58 48.20±0.83 91.99±0.78

Jac
Original 71.76±0.85 66.33±1.23 64.41±0.20 88.89±1.55 92.19±0.80 86.82±0.60 88.49±0.53 78.77±1.94 58.18±0.50 55.77±0.55 81.43±0.92

Edge Plus 71.77±0.85 66.33±1.23 64.42±0.20 89.65±1.45 92.19±0.80 87.20±0.58 88.52±0.53 79.33±1.88 58.18±0.50 55.77±0.55 81.79±0.90
Edge Minus 71.76±0.85 66.33±1.23 64.41±0.20 88.89±1.55 92.19±0.80 86.82±0.60 88.49±0.53 78.77±1.94 58.18±0.50 55.77±0.55 81.43±0.92

the predictors. Following the protocol in the previous experiment, we apply FakeEdge on such link720

predictors to evaluate if the dataset shift issue can also be mitigated. The results are shown in Table 8.721

As shown in the table, FakeEdge can significantly improve the performance of the PA predictor on722

several datasets. With FakeEdge, PA performs over 10% better on Pubmed. Surprisingly, even though723

PA is not able to predict the links on Router dataset with AUC score lower than 50%, PA with Edge724

Plus achieves 74% AUC score and becomes a functional link predictor. In terms of Jac, we observe725

that Jac with FakeEdge can only gain marginal improvement. Even though Jac is dependent on the726

existence of target link, its change is relatively small when the existence of the target link flips.727

728

J Dataset shift vs expressiveness: which contributes more with FakeEdge?729

In Section 4.3, we discussed how FakeEdge can enhance the expressive power of GNN-based models730

on non-isomorphic focal node pairs. Meanwhile, we have witnessed the boost of model performance731

brought by FakeEdge in the experiments. One natural question to ask is whether resolving the dataset732

shift issue or lifting up expressiveness contributes more to make the model perform better.733

To answer the question, we first revisit the condition of achieving greater expressiveness. FakeEdge734

will lift up the expressive power when there exists two nodes being isomorphic in the graph, where we735

can construct a pair of non-isomorphic focal node pairs which GNNs cannot distinguish. Therefore,736

how often such isomorphic nodes exist in a graph will determine how much improvement FakeEdge737

can make by bringing greater expressiveness. Even though isomorphic nodes are common in specific738

types of graphs like regular graphs, it can be rare in the real world datasets [60]. Thus, we tend to739

conclude that the effect of solving dataset shift issue by FakeEdge contributes more to the performance740

improvement rather than greater expressive power. But fully answering the question needs a further741

rigorous study.742

K Limitation743

FakeEdge can align the embedding of isomorphic subgraphs in training and testing sets. However, it744

can pose a limitation that hinders one aspect of the GNN-based model’s expressive power. Figure 1745

gives an example where subgraphs are from training and testing phases, respectively. Now consider746

that those two subgraphs are both from training set (c = train). Still, the top subgraph has edge747

observed at focal node pair (y = 1), while the other does not (y = 0). With FakeEdge, two748

18



FakeEdge: Alleviate Dataset Shift in Link Prediction

subgraphs will be modified to be isomorphic, yielding the same representation. However, they are749

non-isomorphic before the modification. To the best of our knowledge, no existing method can750

simultaneously achieve the most expressive power and get rid of dataset shift issue, because the edge751

at the focal node pair in the testing set can never be observed under a practical problem setting.752
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