Appendix

This appendix contains additional theoretical and numerical results as well as the proofs of the results
presented in the paper. The appendix is organized as follows.

Sec. A summarizes the notation used in the paper;
Sec. B contains additional numerical experiments;

Sec. C contains some consequences of Theorem 1 for (i) the ¢ constrained sub-Gaussian regression
problem under Assumption 5(ii) (Corollary 3); and (ii) and the nuclear norm constrained ma-
trix regression problem under Assumption 5(ii) (Corollary 4). The proof of these corollaries
along with Corollary 1 and Corollary 2 in the main text can be found in Sec. G;

Sec. D contains the main theorem of the paper (Theorem 2) along with its proof, which is a more
general version of Theorem 1;

Sec. E contains the proof of some intermediate results stated in Sec. D and instrumental to prove
Theorem 2;

Sec. F summarizes some concentration bounds regarding the discrepancy between empirical and
population Hessian matrices, for the data models considered in Assumption 5, which are
instrumental to show that Assumptions 3 and 4 hold with high probability; and

Sec. H studies statistical and computational guarantees of the DGD algorithm (4), applied to the
£ -constrained sparse regression problem. This validates (5) (with a slightly better scaling
with m) and complements results in [13] obtained for the DGD algorithm applied to a
Lagrangian formulation of the LASSO problem over networks.

A Summary of the Main Notaton Adopted in the Paper

Problem size:

Symbols Location Description
d Section 1 Problem dimension
n (D) Number of local samples
m (D) Number of agents
N =n-m | Section 1 | Total number of samples

Population and Empirical risk variants:

Symbols | Location Description
L; (O Local Empirical Loss
L (DO Global Empirical Loss
L 2) Population Loss
L(0) @) Stacked empirical risk
L(0) (16) Staked population risk
L°(0) (16) Augmented stacked population risk

Population curvature parameters:

Symbols Location Description
K (5), Assumption 1 Condition number
L, u Assumption 1 Lipschitz and strong convexity constants
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Network quantities:

Symbols Location Description
p (5), Assumption 6 Network connectivity
w, W Assumption 6 Gossip matrices
W, W Section 3 Stacked Gossip matrices
J Section 3 J=2111]
J Section 3 Staked fully connected network

Regularization quantities:

Symbols Location Description
R [@)) Norm constraint
R [@)) Constraint radius
M Assumption 2 Model subspace
M+ Assumption 2 Perturbation subspace
W2(M) | Assumption 2 | R — £ Lipschitz constant on M
R* Section 4 Dual norm to R
Tolerances:
Symbols Location Description
Ya.1> V.2, Ve, Ve,2, Tg= | Assumption 3 | Tolerances in global Hessian deviation
Ye,1s Ye,2, Te Assumption 4 | Tolerances in local Hessian deviations
Miscellanea:
Symbols | Location Description
S; (1) Indexes of samples corresponding to agent @
« @ Step size

For any given matrix A € RP*P we denote by

p p
1Al £ ) laigl, lAll, £ max " ail,
=1

g1 1<j<p
, 1/2
1Al r = |ai ;| Ally 2 Qe (AT A))
F= Z a; ) I Alll, = ( max )) )
i,j=1
P
A
Al 2 max Ja,, 4l 2 e ||
J:

B Additional Numerical Experiments

This section contains additional numerical experiments on read and synthetic data.

1) Simulations on real data: We test DGD? on the data set eyedata in the NormalBetaPrime
package [3]; d = 200 and N = 120. We generate a base graph with m = 10 and p = 0.9,
yielding a gossip matrix 1. To achieve p ~ m™2"5 we build W = W7. We split the data set into
Niest = 40 and Nyyain = 80, and further split the train data evenly across 10 agents. Fig 1(e) plots
the logarithm of the objective function value along the iterates generated by PGA (as benchmark),
DGD? and NetLLASSO. Observe that the distributed schemes converge linearly at the same rate as
the centralized scheme. Fig 1(f) evaluates the prediction errors on the test set, as follows. Denote
by y the output of the test set and by X the test covariates. Then, we build the predictors y! = X 6!
i € [m], where 6! is the estimate of §* at agent i’s side at iteration ¢ based on the training set.
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(a) Real data: Train average empirical loss (b) Real data: Test average prediction error
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Figure 2: PGA, DGD? and NetLASSO on real data. (a): Rates (logarithm of objective function) vs. iterations;
(b): Average prediction error on the test set (compared to centralized predictor on the test set).
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Figure 3: Estimation error generated by DGD? (solid line) vs. iterations, for different values of d/N
and slogd/N = 0.0921, m = 5; horizontal dashed line curves mark centralized statistical accuracy.

Fig 1(f) plots log ((mNeest) ' >oim ly — yt||3) versus the iterations, for DGD? and NetLASSO.
The dashed line-curve corresponds to log((Nyestm) ™|y — §|2) with § = X6, where 8 denotes the

estimator obtained via PGA. As on synthetic data, both distributed schemes converge linearly up to
the (estimated) statistical error (as our theory predicts), which matches centralized guarantees.

2) Synthetic data: We provide some additional numerical results (on synthetic data) validating the rate
invariance under the asymptotic scaling s, d, N growing, for fixed m and slog d/N. Specifically, we
simulate the distributed s—sparse linear regression problem as described in Section 5; we set ¢ = 0,
Ry=s=1,% = I, 02 = 0.25 and R = ||0*||;. We use the same communication network and

number of communications as in Fig. 1(a), and set the step size o = % We vary d = {10%,10°,10°}
and n = {20, 25,30}, so that % ~ 0.0921 for the three cases. We observe that, as predicted

by the theory, the performance (convergence rate and achieved statistical error) of DGD? remain
invariant as d/N grows.

C Additional Statistical Models

In this section we apply Theorem 1 to the ¢; -constrained regression problem (Sec. C.1) and the nuclear
norm constrained matrix regression (Sec. C.2), under the data model satisfying Assumption 5(ii) and
(i), respectively.

16



C.1 Sub-Gaussian linear regression

Let 6* be (either hard-or weak-)sparse, which we capture by assuming ||6*||, < R, with ¢ € [0, 1].
Consider the network data generation model

y; = :zroH* +wj, j€S;, and i€ [m],
where wj is assumed to be w; € N'(0,0?). Denote

Xs, &2z ,...,xz] 17, 51€S;, 1€[n], and i€ [m)],

z Ji’ » Y Jm
where X5, is assumed to be C'-column normalized.

Corollary 3 (¢1-constrained sub-Gaussian regression). Consider the ERM (1) solving the linear
regression problem above, with R(-) = || - ||1, and Q = R®. Suppose that

_ 4 logd\ '~
\112(M).Tg:Cqumax{%,u} (0]%7 ) <Cy, qe€]0,1],

for some constants Co,Cy > 0. Let {(6)™,} be the sequence generated by DGD? under the
conditions of Theorem 2, where (14) becomes

Cy

pé—mS/Q,

for some constant Co > 0. Then, with probability at least

2
1-2 (—CQN min {'u—4, 1} + log(m + 1)> — 2d exp(—2log(d)) — 2md exp(—2log(md)),
T

for some constant cy > 0, there holds

1-1_¢C W2 (M)-1g
f( ) 0 (aY) +o(ad),

1 — Oy 2Ty

where C3, Cq > 0 and

log d =3 /00?2 02
2 _ _
A* = C4R, ( N > ( 2 + . (1-4(q)) q €10,1].

Proof. See Appendix G. ]

C.2 Gaussian Matrix Regression
Consider the observation model
yj:<Xj,G)*)+wj, jES’Z and iE[m],

where X; € RP*P is such that vec(X;) satistifes Assumption 5(i), and w; ~ N(0,0?) are i.i.d. and
independent of X;,. The unknown matrix ©* € RP*? satisfies ||©*|, < Ry, with ¢ € [0,1], and
R, > 0.

Corollary 4 (Nuclear norm constrained Gaussian Matrix Regression). Consider the ERM (1) solving
the matrix regression problem above with Q = RP*P R(O) = ||0||1, and R = ||©*||1. Suppose that

1

— p
VM) -7, = CiRgrso® (£)© < Co, ge 0,1,

for some Co, Cy > 0. Let {(0)™ , }1>0 be the sequence generated by DGD? under the conditions of
Theorem 1, where (14) reduces to

K,_l

m2y/m’

p < Co
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for some constant Co > 0. Then, with probability at least

N
1 — comexp (—5> —exp(—c1N) — (m+ 1) exp (—cap),
for some cg, c1, co > 0, there holds

_ q’(M)"'q
r2 < L +§;M L
1_03 (L)Tg

) + O(A?) + 0(A?),

where C'3, Cy > 0 and

-4 (o%s | on/”
A =R, (5) | S T 0,1
441q M /’L2 + L ( (q)) ) qc [ ’ }7
where 6(q) = 1 for ¢ = 0 and 0 otherwise.
Proof. See Appendix G. O

Corollaries 3 and 4 establish for the statistical models above the same type of statistical computational
guarantees as Corollary 1 and Corollary 2.

D Theorem 1 and some Generalizations

In this section we introduce and prove a more general version of Theorem 1, which will follow as a
special case. We begin introducing some notation. Denote by

64@2 M * * 24 * * *
Az, 2 %(R (VL)) + 2R (s (0) R (VL0).
2
2 m m
N 642 32 (wij —1/m)VL;(6%)
=1 7j=1
24 m m

+—R(HML NI RND  (wiy —1/m)VL;(6%) |
=1 7

=1

and the overall tolerance
M, W
A (Aftdt + Anet) <1 + M)

1 —al(M,W)
ag(cM, W)
- M, W) —_
e (1 )
where we recall that « is the stepsize and
C(M, W) 2 247,02 (M)(p*m? + 2pm/m) + 247,02 (M).

Finally, for any matrix V' € R**¥, we denote by o;(V'), i € [k], its i-th largest singular value.

144
R? (Upge (07)) €

We are now ready to provide our main result.

Theorem 2. Consider the ERM problem (1) and the associated population minimization (2) under
Assumptions 1-4, with parameters therein such that the following hold: R = R(0*),

5
veaX + £ 1 <V2L and (M, W) < 3—’(;
Let {Ht}tzo be the sequence generated by DGD? with stepsize
< 1
Q = T o
L+ ’)/9720'1(2’)
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and gossip matrix W satisfying Assumption 6 and such that

1
< .
= 108m1 50, (3) max{7e.1, veo}

Then, the estimation error v £ L 3" |10t — 0* |12 satisfies

2 _ (1 — %+ a1 (Y)3v.(2my/mp + p*m?) + al(M, W)

t
- 21 A2,
e s L al(M,W) ) ot

D.1 Proof of Theorem 2

The key idea in proving the theorem is characterizing the dynamics of the estimation error based
on the favorable landscape of the population risk while carefully controlling the error due to the
mismatch between the empirical and population gradients.

We begin introducing some notation. Recall that DGD? can be interpreted as the gradient descent
applied to the proxy problem

: «@ A 1 2
aielé?zl(r;)mﬂ LY0) = L(WO) + - 10117 _we- (18)

The population counterpart of (18) is based on the following population augmented loss:

= 1

L£°(0) £ L(WO) + 5[0 w. (19)
where
e LN
£(0)= — ;L(G’Z).
Consequently,
_ 1 = - N B 1
VLO)=—=[VLO)T,...,.VLO,)"]" and VZLE2 —VL®I,=—3®I,.
m m m

Notice that, by construction, Ea(()) inherits much of the properties of the population risk £; in
particular,

A Yol Lot 1
L(0') = £7(0) = (VL(0),0' = 0) = S[W(0 — 0[5 + 10— 07w, (20)

|
2am
for all 6, @ € R™?. Also, * is the unique minimizer of £ as well.

Our analysis begins exploiting the positive curvature of £ in (20) to establish a decrease of the
estimation error along the trajectory {0'} of DGD? (11), as stated next.

Lemma 2. Under Assumptions 1 and 6, the iterates {Ot}tzo generated by DGD? (11) for any o > 0,
satisfy

107" = 6713 < [W(0" — 0} ooz — aml|W(O ™ — 67|22
— (WO =07 oz — 167 1T we 2D

+2am(W (VL(WO') — VL(WE")), 0" —0%).
Proof. See Appendix E. O

Notice that the first term on the RHS of (21) captures the contraction properties of the gradient
algorithm applied to the population loss while the inner product accounts for the trajectory mismatch
between the empirical and population-based updates along sparse directions. The rest of the proof
consists in suitably bounding this inner-product term.
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Rewrite (21) as
10 — 0*[|3 < ||6° — 67|35 — am (|W(0" — 07) |32z + W (0" — 073 z)
— (1617w + 10" 7 _w=) + am||[W(O — 03,z — 16" — 0" |5
+ 2am(W(VL(WO') — VL(WOY)), 0" —6').

Using V2L < £1,,,; we have
107! — 013 < [WO' — 0[5 — am (|[W (0" — 0") |2z + [[W(O — 0")[|3.z)
— 10" 7w + (aL — 1) [W(6""" — 6%)||3 (22)
+2am(W (VL(WO') — VL(WE')), 0" —0%). (23)

When « < 1/L, the only detrimental term on the RHS of the above inequality is the inner product;
we aim at controlling this term using Assumptions 3 and 4. To do so, we add and subtract therein

2am(VL(0%) — VL(0*), W(O" — %)),
so that
20m(W(VL(WO') — VL(WO') — VL(0") + VL(O)), 0 —0%) =
2am((VEL — V2L)(WO' — %), W(0'™ — 6%)),

and consequently

20m(W (VL(WO') — VL(WEY)), 0" — 6%)

=2am((V2L —V2L)(J0" — 6*),J0" — %) (24)
+ 2am<(V2£ —V2L) (W —J)(6" —6%),3(0' — 6%)) (25)
+ 2am((V2L — V2L)(JO" — 6%), (W — J) (0" — 6%)) (26)
+ 2am<(v2c‘ — V2L) (W —J)(0" — 6%),(W — J) (6" — 6%)) (27)
+2am(W (VL(0%) — VL(6Y)),0'" — 0%).

The above factorization decomposes the quantities in the inner product in two contributions, those
along the consensus directions JO*** and JO', and those in the orthogonal space. Terms along
the consensus directions are bounded employing Lemma 3 (see Sec. E) while those orthogonal to
consensus, i.e. dependent on (W — J), are bounded using Lemma 4 (see Sec. E).

More specifically, denote by 7, £ max {7ve,1,7¢e2}; invoking Lemma 3 and Lemma 4, we have
20m(W(VL(WEO") - VL(WOY)),0" — 0*)
vy (196" — %% + |36 — 0% |3) + avy 2] 360" — TS,
+7 (6my/mpo1 (X )ye + 3p°m a1 (S) ) (116 — 673 + 110" — 673)
+ 3amt, (R*(0L, — 0*) + R*(055" — 0™))

+ a3 (p*m® + pmy/m) Zn (R2(6 — 6*) + R*(0T — 0%)) (28)

+admympy 7 (RP(6L, — 0%) + R0 — 6%))

+ 2am(W (VL(0*) — VL(6¥)),0" — 6%).
Observe that because 6* is the solution to (19) VL(6*) = 0.

In order to relate R(-) to || - ||2, we can proceed as in [2, Lemma 1] and write: for any a > 0,

R2(0F — 0*) < 4(1 + a)T*(M)||6 — 9*|2+4(1+ >R2(HML(9*)), Viem]. (29
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For convenience, we set ¢ = 1 and define
n £ 2R} (I (67)).

The analogous to (29) holds for 1!, and ¢, and 6%}' (the latter due to the convexity of the
norm-ball). Consequently

R (0a — 0%) + R* O3 — 0%) < STH(M)([105, — 075+ 1055 — 07[13) + 8n

W2 (M N "
= S (30t 073+ 30— 0413 450, (300
and
Z(R2(9§ —0*) + R0, — 6%) ZS‘I' V)67 — 9*H2+Z8‘I' M)|6iF — 63
i=1 j=1
+ 8mn = 8T(M)||0" — 0*||2 + 8T (M )||0t+1 — 0|3 + 8mn. (30b)

Combining (28) and (30) and rearranging terms, yields
20m(W(VZL(WO') — V2L(WEO")), 0" — 0") < avy1(|TO" — 0% |3 + (|TJOT —0%(|%)
+ avy 2| J0" — JO3,
+a (6m\/mﬂffl e+ 3pPmior () (/10 — 0[5+ 10 — 0*]3)
+a (24(p°m® + 20my/m) U (M)) (/10" — 67|13 + 6" — 67|13)
+ 24a7, U2(M) (||J0" — 0*[|3 + [|JO"" — 0%|3) + anm (247, + 127¢(p*m® + 2pmr/m))
+20(W(VL(0*)),0""" — 6%). (31)

We now focus on the remaining inner product, which is the main contributor to the final tolerance.
We separate the remaining inner product in two terms: a part that will correspond to the centralized

achievable statistical accuracy and an additional one which will represent the cost of decentralization.
Specifically,

20m(W (=VL(0*)),0™ —0*) = 2am(—VL(O%), IO — %))
+ 2am{((VL(0%)), (W — J) (0"t — 6%)).
Observe that
(=VL(0%),T(0 —0")) = <—VL(9*) oLl — g%y

(=VL©O"), (W —J)(0"" —6")) = —— Ly <Z (wij = 1/m) VL;(0%), 6,7 — 9*> :

Therefore, using Holder’s inequality

20m(W(=VL(0%)),0" — %) < 2amR* (VL(0*)) R(OLF — 6%)

+2uZR* (Zm: w; j — 1/m)vcj(e*)> RO —0%).
7j=1

From [2, Lemma 1] we deduce

R(0— 0%) < 20(M)||6 — 6%||2 + 2R(TTx((67)).-
Then, it holds

20m(W (—VL(0*)),0" — 0%) < damT(M)YR*(VLO) |6 — 0*2

+ 40T (M) Y |0 — 0% R ( > (wij— 1/m)vcj(e*))
=1

JEN;

+ AR e (6%)) (mR (VLE)) + Y R* (Z (wi; — 1/m)vcj(e*)>) .

i=1 JjEN;
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Applying Young’s inequality we have

2am(W (VL(0*) —VL(OY)),0 T —0*) < amg\ll2(/\;l)R*(V£(9*))2 (32)
2
+ 2ea|| 3O — 0%|12 + 2% > (\I/(M)R* ( ( > wi; l/m) (9*)) ) (33)
i=1 JEN;
+ 20e]| 0" — 0* |3 + 4aR (I v (6%)) (MR* (VL(6%))) (34)
+ 4R (I pe (0 ZR ((Z w;; — 1/m) vcj(e*)) (35)
JEN;

for any ¢, € > 0.
For convenience, let R? £ ||@" — 6*||3. Combining the bounds (23), (31) and (34) yields
* Yg,1 *
B2y < WO 0°[3 — com (IW(0' — 0°) 2z~ “22130° 0% + W0 — 0%)[2..)

+20 (e +€) Rl +am 2L |30 — 0% % + (1L — 1) [W(0' — 0" )|

— |07 we + (24 (p2m3 + pmy/m + my/mp + %) mI/%M)) (R} + R}, 1)
4
a (6my/mpo1 (X')ye + 3p*m’o1 (2)ve) (RY + Riy) + a2 36" — IO 3,

(R*(VL(6%)))? _ ik (R (Z;—”zl(wi,j - 1/m)V£j(9*)))2

+ 2am¥? (M) + 2002 (M)

+ anm (12Tg(p2m3) + anm (2pm~/m + 247,)

+ 4aR (I pee (67)) (mR*(Vﬁ(G*)) + i R* ( (zm: wij— 1 /m) vcj(e*)) ) .

i=1 j=1

€

Observe that
136 — 0*[13 = [IWO — 0%[13, < [W6 — 07|3:.

Under V2L — v, 1%’ = £1,, and using || WO' — 6*[|> < [|0" — 6*||> and W? = J along with the
ﬁ—strong convex of £, we obtain

H *
R < (1-af) B2 —al WO — 0|3 = 0" |f_w-

+ (aL + avg o1 (X) — 1) |[W(0" — 01|12

L@y | S (S 1m)VE(8)

9 €

+ 2a(e + €) R}, + 209%(M)

o (1204 @) (P 4 g+ g + T2 ) ro ) ) (4 )
¢
o (6my/mpo1 (Z)ve + 3p*m>o1 (X')7e) (R}, 1 + R}Y) + anm (247, + 1274(p*m® + 2pmy/m)

+ 4R (I pge (0%)) (MR*(VL(O))) + 4R (I (6 ZR* ((i wij — 1/m) vq(e*)) .

Jj=1

Under o < 4, which implies o' < 1, and using [WO'™" — 0*||2 < [0""" — 0*|12, yields

—aBIWO 01| — |0 — 0"} e < —al 07" 07 = b RE,.
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Choosing

3w =5
16’ 32’
1
s (S (2 ) < 0 36
Yeo1(E)m p(2 + p )< 36 T L+ryy201(%) GO

we have
R}, < (1 - a% + abmy/mpa1 (X)ve + 3ozp2m301(2')'yg> R} + a24 (1,%(M)) (R + R7 )
+ a (24 (p*m® + 2pm/m) Tg‘l’2(/\;l)) (R} + R}, ,) + anm (247, + 2470 pmr/m)

(R (vLE)? | i (RS oy — 1/m)VLs (6))

3 mi

+ 4O!R(HMJ_ (3*)) (mR*(Vﬁ(G*)) + iR* ( (zm: Ws,5 — 1/m> VQ(&*)))

+ 32am¥?(M)

i=1

+ an(127p*m?).

If 1 — ¢ > 0, which is implied by

_ 1
¢ £ 247,03 (M) (p2m3 + 2pmy/m + :—Z) < -, (37)

(e

and one divides both sides by 1 — a(, yields

) (1 —ak + a301 (X)) (2my/mp + p*m?) + ()
R <

< T Ty
| 210mR? (s (6)) (27, + 1elp*m® + 2pmy/i))
1—af
32amU%(M) | (R*(VLO*)))? st (R (Z}”zl(wi,j - 1/m)Vﬁj(9*)))
* 1—a¢ 3u + mu ’

AamR(Mpge (0%) [ ., " AN 1/m e
+ T (R VL") ZR ((;wj 1/ )VEJ(H )))

Contraction (up to some tolerance) is guaranteed under

1— ag + a3a1 (X)) v (2my/mp + p*m?) + a¢ < 1 — ac,

enforced via
2
¢ < gh (38)

Observe that

=1 .
1—af +1—ozC

Let

1 —af +af +3a0i(3)7e( 2m\/_p+,0m)
1—af

A2
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Then, it holds

m m

320mP¥2(M) (R*(VE(Q* iz R
m

1 P st

R}, < AR} +

(wi; —1/m)VL;(0%)

‘ (1 1 fiC) - (1 * %) (24amR* (L (67)) (275 + me(p*m” + 2omy/m)))

+ (1 n 1?2() AR (T e (%)) | mR*(VL(0%)) + ;R Zwa —1/m | VL;(6)

Telescoping, we obtain

1
R2 < )\t+lR2 il
1 S ot 3 + m

Z R* Zw”—l/m VLD (9%)

i=1 =1

320mI2(M) [ (R*(VL(6*)))
n(l=X)

m m

X (1 + 1 fi<> + (1 — )\)_1 (1 + 1 ivCaC) (24(1"LR2(HML(€*))(2TQ + Tz(p2m3 + 2[)771,\/%)))

+<1+ o )in(nw(m) mn*(vz(9*>)+§:7z* wij —1/m | VL;(6%)

l—al/ 1-2A ~

We further require

0

e
1-»=F,
implied by
¢+ 301 (X )y (2my/mp + p*m?) <
A sufficient condition for the above is
301 (8 )m*Pp(2 + pm*P) <

a_l“;

&=

Ofh
¢s 36°
which is compatible with requirements (36),(37) and (38), and fulfilled whenever

p= — £
10801 (X )yem!-5

Dividing by m and observing that R? = mr? yields the desired result.

E Technical Lemmata

In this section we provide the proofs of some technical intermediate results, used in the proof of
Theorem 2.

E.1 Proof of Lemma 2

We are interested in establishing an upper bound on the estimation error ||§** — 6*||2 based on that
at time ¢. Observe that

167+ — 67| = (|6 — 0" ||* +2(6""" — 6,6" — 6”) + (|0 — 07| (39)
We proceed to upper bound the latter two terms.
From (20) it follows that

1 Y .
§”W0t 0|32 T Sam ||0t||1 we < LY(0%) — LH(0") — (VL (0"),0'T — ")
—(VE£%(6"),6" — 9t+1>.
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Furthermore, still from (20),
1 1 = = 1
SIWO' = 0°12 2 + 0" _= < £7(67) = £(0") + S [W(O' — 02
1 _
+ %Het — 0" T _we — (VLY (0"),0" — 0.
Observe that
1

et-‘rl
2am ”

LY0%)=L(O%) and L0 = LW+ 12 _wwe-

Furthermore, since

_ _ _ 1
L(WO'™) > L£(0%) + (VL(0*), W(0'™ —0%)) + 5|\W¢9f+1 03,z

and (VL(6%), WO — 0*) > 0, it holds

1 . 1 1 . 1

§||W‘9t — 0",z + M—mHBtH%_w2 < —QHWaHl —0"%.7 — 20[—m||9t+1||§—w2 (40)
1 1 .

+ SIWO T = 09)15az + 510" = 0" ] w2 + (VL(07),0°7 — 0%). (A1)

By the optimality of "™,
1
o't = argmin {<vza(9t),o—9t>+—|0—0f||2},
0,€0Q: R(6;)< R,Vi€[m] 2am

it follows

(VLY(0") — W (VL(WO') — VL(WE")) + %(9”1 —0"),0—-0"") >0, (42

for any feasible 0. Setting, in particular, # = 8* and combining (42) with (40), yield

1 t+1 t t * 1 t+1 t12 1 t * (12 t+1 * (12
%W —0°,0"—0") + %HH — 03 < 3 (W' — 0”32z + IWO™ — 07|32 2)
1 1 1
~ Sam (167117 _w> + 1077117 ) + §||VV(9Hrl — 0%,z + %Het — 0" _we
1 _
— %Het“ —0')3+ (W (VL(WE') — VL(WEY)), 0" — 6%).

Multiplying the above by 2am and combining with (39) yield
16" — 65 < 6" —6%[13 —am (W (8" — 6")[I3.z + [WO'™ —67[3.z)
—110"17 = — 10" 17wy
+am||W(0 ! =03z — 116" — 6
+2am(W (VL(WO') — L(W")),0"" —0%).
E.2 Bounds on inner product elements (24) - (27)
Lemma 3. Under Assumption 1 and 3 it holds
(V2L = V2L)(30 — 07),30' = 6%) < 150 (|30 — 0% % + 36 — 0° %) + 322136 — 363,
(43)

3
+ 579 (RQ(eav —0*) + RQ(GZ;V - 9*)) )

where X' £ Y @ Iy, Oy = # 221 0; and analogousloy for 0.,.,.
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Proof. Observe that the RHS of (43) can be expanded as

(V2L —V2L)(I0 —6%),3(0' —6%)) = %<J0 — 0%, (V2L —V2L)(J6 — 0))

<J9’ 0", (V2L —V2L)(JO0 —0%)) - %(JG ~JO', (V2L —V2L)(JO — J0'))

(V2L = V2L)(Oay — 07), 00y — %) + %((v%‘: — V2L)(0y, — 07), 6, — 07)

)—lw|)—ll\9|

<(v2£ V2L)(Bay — 0, —0).

av7

From Assumption 3 it follows that

~ * * 1 * *
(V2L —=V2L)(30 = 07),3(6" = 0")) < 5901 ([0av — O[3 + 10 — 07I13)

1 1 1
+ 57'9 (R2(9av —0%) + R2(9;v - 9*)) + 57&2”9% - 9;\;”22/ + §TgR2(9av — )
Then, using triangle and Young’s inequality on R? (6.,

(V2L —V2L)(I0 - 6%),3(6' — 6%))

—0!,) we obtain

< g1 (HJO . 0*”2 , 4+ ||J0/ _ 0*”2 /) + MHJB — J0/||2 ’
~ 2m = = 2m >
1

+ 579 (R2(9av —0") + RQ(G;V - 9*)) .

Lemma 4. Under Assumptions 1, 3 4, and 6, and given v, = max{vye,1,Ve,2}, there holds

(V2L - VL) (IO —0*),(W —J)(0' — %)) < 3Tp

e (10 = 0[5 + 110" = 07[1%) (44)
3vimp - . .
+%Zn (R2(Bay — 0%) + R2(0; — 6%))
j=1

r * * 3p2m2’\/ * *
(V2L = V2L)(W = 3)(0 — 0%). (W = 3)(0' = ")) < 22 (0 = 0°1% + 10— 0*[1%)

3

(45)

(0; — 0%) + R*(0; — 6%))

where ¥’ £ Y @ I, and 0,, = % Y-oit, 0; and analogously for 0.,

Proof. We write the first bound as

(VL —V2L) (IO —07), (W —J)(6' —6"))
:_Z V2E VQ dV_e*am wz]_l/m _9*)>'
Then,
(V2L — V2£)(J0 —0%),(W —J)(0' —6%))
% Z Z wij —1/ml[((V2L = VL) (ay — 67), 05 — 67)].
Using

o Au)| < S0, A0} + 51, A+ 51w — 0, Al — ),
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we have

(V2L —V?L)(JO - 0"),(W —J)(0' —0%))
%ZZ |’LU1,J 1/m| |<(v2£ V2 )(eav . 9*),9av _ 9*>|
i=1 j=1

izz |’le] - 1/m| (|<(v2£__ V2£i)(€§ —9*),93 _9*>|)

3

L1 ZZ fig 1/l 1/ P ((F22 = 92L0) (O — 8)). 000 — 01)).

3

3

Further [|[W — J||| < p\/ﬁ [28] and therefore

(V2L — V2L) (30 — 0%), (W — 3)(0' — 6%))

s\a

ZZ (V2L = V2L3) (B = 07), b = 67)]

+ % ; ; (V2L — V2L) (0 — 6),0; — )] + [((V2L — VL) (0 — Oay), 0 — Oa)]) -

From Assumption 4 it follows that

(V22 - V2L)30 - 0°), (W~ 3)(0 -~ 6%) < 270 (S5 5, (6 — 03+ 165 0°)2)

i=1 j=1
p m m m " .
—Vm Zzwnew—e;HQE,JF ZZU (R*(Oay — 0%) + R2(0), — 0%) + R2(0); — 0ay)) -
i=1 j=1 =1 j=1

Using the triangle and Young’s inequalities on both |6,y — 6} ||3, and R? (6., — 6}), j € [m], yields

(V- VL) 0, (W - 30 0%) < 275, (130 0%+ 0 0°13)

zm: (R?(Oay — 0%) + R*(6; — 67)) .

The next bound can be written as
(V2L —-V2L)(W —J)(6—0%),(W —J)(0' —6"))

m

= Z < (V2L =V2Li) | D (wiy —1/m)(8; —6%) ], (Z(wi,z —1/m)(6; — 9*)>> :

j=1 =1

where following the same procedure as for the previous bound we obtain the desired result with the
main difference that an additional network term and additional summation is required. O

F Empirical-Population Hessian Deviation Bounds

We provide here some technical lemmata that are necessary to establish that Assumptions 3 and 4
hold with high probability, for the considered data generation models. Specifically, Lemma 1 is used
to establish Corollaries 1 and 1 while Lemma 5 and Lemma 6 permit to establish Corollaries 3 and
2,respectively. Since these lemmata are minor modifications of existing results, we omit their proofs.

Proof of Lemma 1

The global parameters 741 ¥4,2 74 and X follow from Proposition 1 in [1]. Establishing the local
quantities vy, 1, Y¢,2 and 7, follows the same steps as the proof of Proposition 5 in [28]. Observe
that while the proof in [28] is done for the particular case in which R(-) = || - ||; it can be extended
without significant differences to more general decomposable regularizers R.
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Sub-Gaussian data generation model (c.f. Assumption 5(ii))

For Corollary 3 to hold under the sub-Gaussian data generation model we require that Assumptions 3
and 4 hold. We establish that this is the case with overwhelming probability in the following Lemma.
Lemma 5 (Sub-Gaussian data model and R(-) = || - ||1). Consider the problem (1) and assume that
Assumptions 1 and 5(ii) hold. Denote by X = [z{;...;2};] and X5, = [I;rl, e ;Jron], g1 €S,
1 € [n], i € [m]. Then, there exists universal constants cq, c1, co > 0 such that given that

4
N > cologdmax{LE}

there exist universal constants cy and cq such that with probability at least
2

1—2exp <c1Nmin {M—4, 1} + log(m + 1))
T

it holds
XTX I logd T4
‘<v, <E -~ ) v>‘ < S|l + 2 o max ;7M [v]?, Vo € RY (46)
X X, logd 4
‘<Uz‘, (Z _ STS> Uz‘> < l;ﬂvlﬂg + co o8 max{:—t,,u} vill3, Vi € R?, i e [m].

(47)

Proof. The inequality (46) is a restatement of Corollary 1 in [15]. To obtain (47) similar steps as in
[28] are taken on Lemma 12 in [15] followed by a union bound argument. Od

Uniform data generation model (c.f. Assumption 5(iii))

For Corollary 2 to hold under the uniform data generation model we require that a variation of
Assumptions 3 and 4 hold-see Lemma 8 and 9 in [1] for a discussion on this matter. We provide next
a technical result required to establish a variant of Assumptions 3 and 4 tailored to this statistical
model. We refer the reader to the proof of Corollary 2 (c.f. Sec. G) to see how this result is used.

Lemma 6. Let
X0 =dsWeyq e, € RPP, i€ [N],

where p* = d, s € {—1,1} uniformly, and are i.i.d. Further; a(i),b(i) ~ U{1,p} are i.i.d. and
independent of s\V). For convenience, denote by

vec(X )T vec(X @))T
X 24 : , Xg, & : ,
vec(X (M) T vec(XIm) T
where j; € S;, 1 € [n], and i € [m]. Then, there exist universal constants ¢; > 0, i € {0,...,5},
such that, given
N > coplogp,

with probability at least

1 — exp (—plog(p)) — crmexp(—plog(p)),
it holds for all V€ RP*P and V; € RP*P 4 € [m),
2

bo ¢l lo lo
(vectn). (55 = 1) vecl0))| < canl VI V1 2582 4o <p|vnoo png) ,
(48)
2
X5, X3, plogp plogp
vee(Ve), | 2255 1 ) vee(Wi) )| < espmllVillso VIl 2222 e (pmlV ooy /2252 )
(49)
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Proof. The statement in (48) restates Proposition 2 in [1] and (49) corresponds to following a very
similar process as that in the proof of Proposition 5 in [28] but applied to Theorem 1 in [20] which is
a restatement of (48). O

G Proofs of Corollaries 1-4

G.1 Proof of Corollary 1

We establish that for the given statistical model, the parameters are

Vg1 = %, Yg,2 = 1
Yeq1 =4m—1 Yeq =1,
o Inzcy logd =9 logd
g N ’ ¢ e n '
S =% = V2Z, VM) = V5,

R*(VL(0")) < \/ 3nxo? logd, max R* (VL;(0%)) = \/3’rm]20'2—10g<md),
N j€ln] N

and IT 1 (6*) = 0, for ¢ = 0, where the suitable choice of sub-spaces is given in [2]. In the case
q € (0,1]if ||6*||q < Ry, for appropriate choice of M [2]

_ logd\ ~?
\IJQ(M)S(%) R,

1—g
logd\ 2
a0l < (57) © .

All statements except the bounds on the dual norms of the gradient(s) follow with high probability
from Lemma 1. The bounds of the dual norms of the gradient(s) can be established by combining
results in [30, Ch. 7] and the bound on the largest of the dual norms can be established via a minor
alteration of the proof of [13, Th. 4]. Taking the union bound over all events guarantees that they all
hold simultaneously with high probability. The result then follows by applying Theorem 2.

G.2 Proof of Corollary 2
Consider the problem of recovering ©* € RP*P from

- N o .
Ui = O%p(i),e(i) T = Wi

where d = p?, and r (i) and c(4) are such that (vec(©%)), iy = ©% (i) e(i), and where v(i) ~ U{1, d},

and are i.i.d. Further ; is zero mean, symmetric, i.i.d. and independent of v (). The problem above

is statistically equivalent to recovering ©* € R? from [20]
yi = (Xi,0%) + ow;,
where
Xi= psier(i)ej(i),

where w; follows the same distribution as w;, and s; € {—1,1} uniformly and i.i.d. Thus, the
problem formulation corresponds to

: 1 = * 2 1 = T * 2
o022 0l <p 2N ; (X307 —4i) = 5 ; (vee(Xi) T vee(07) — i)

2r(0) £.2(0)
The population risk is given by
13512 (vec(©) — vec(©))]13.
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Observe that by setting R(-) = || - |1 we have that R*(-) = |[||-|||,. Under the Assumption that @; is
sub-exponential with parameter one we establish bounds

* H‘ 1 Xiow;
ey, - 1=l
[IVL:(©)|ly = H‘Zjesi ij‘wj

Using Lemma 7 in [20] and using the union bound it follows that for some c1, ¢, c3 > 0

with probability at least
1 —cz(m + 1) exp (—c3log(p)) ,
it holds that

R* (VL(0Y) < cm/%,

D (wiy = 1/m)VL;(©%)
j=1

- . - /plogp plogp
< Zl lw; ; —1/m|R* (VL;(6%)) Z W — J|| . mcio N <m?ympeio N
= j=1

As highlighted in the discussion prior to Lemma 6 and by observing the statement in Lemma 6 itself,
Assumptions 3 and 4 are not fulfilled exactly. This is consistent with the results in [1] (observe that
in this work the authors also follow a slightly modified procedure tailored to this statistical model).
Consequently, we derive variants of Lemmas 3 and 4 under the bounds established via Lemma 6.
Observe the clear resemblance in procedure when compared to the proof of Lemmas 3 and 4. After
this, the statement can be established by following the steps to establish Theorem 2 with very minor
modifications.

In order to obtain a usable bound that is similar in structure to those in Assumption 3 and 4 we
employ Lemma 6 as follows. Let X £ (vec(X1),...,vec(Xy)) " . Then, using Lemma 6 we have
that for any pair ©1) € RP*? and ©(2) € RP*P such that |9, ||, < # i € [2] itholds that for some
cy4, c5 >0

X'X

<Vec(9(1) — @(2)), (T -1 2) vec(@(l) — 9(2))) (50)

lo lo
< 2we|0 — 0@, pTgp + 40 J\fp. (51)

As discussed previously, we now use the result above to obtain a parallel to Lemma 3. For convenience,

denote by @ € R™P” such that 6; = vec(©;) and @ = [6] ..., 6 ]T, and analogously for 8. Assume
all ©; and ©) are feasible. In this way, we have following the same steps as in the proof of Lemma 3

VL) (30— 0°)) = <eav s <X;[X - 1,,2> (B — 9*)>

2) O =00} =3 (00—t (55 - 1) 00— 020)

lo
o = O+ [Our — €711 + 1104, — Ou ) + 127, EL

(J(6 - 07, (VL ~
e (5
< /22 ucy (0

where we have used (50) to obtain the last inequality, 0ay = - 3" 0;, O,y = L 31" ©; and

analogously for ¢/, and ©/,. Because © and ©' are feasible, so are ©,, and ©/,. By using the
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triangle inequality on [|©,, — ©’_ |1, and invoking Lemma 1 in [2] we obtain

(36— 6%), (V2L — VL) (30" — 6%)) < wa/%uHHML(e*)Hl

- 1 1
+ 40 (M) TSP wes (184 — 62 + 8y — 6 l2) + 126%esP—2E,

whereby using Young’s inequality we finally obtain

(J(6—07),(VPL—VL) (J0' — 6))

1 . pl gp .
< 5 ([10ay — 6*113 + (|05, — 07113) + 12wey [TIaee (©%)1
pl ogp
12w%¢
+ 12w N

-\Plogp . *
+ 24w (M) = o (||J0—0 15+ 1196" — 67[3)

+w

1 . 1
2P ;’\fp (125 + 242 U2(M)) + 12wesy | 2 ngnnw(o*)nl

The above can be applied in place of Lemma 3 in Theorem 2 to establish this corollary. Observe that
for DGD? not only is the inequality above important, but, due to the presence of the network, we are
to obtain similar inequalities as those in Lemma 4. This follows an almost identical procedure as that

in the proof of Lemma 4 with a few minor modifications that we now highlight. Following the same
steps as in the proof of Lemma 4 we have

(W =J2)(0" —6%), (V2L - V?L)(JO — 0%)) <

&m% 22 (V2L = V2L) By — 67). by — 67)]
+ gﬂzm: Ui ([{((V*L — V*L) (0 —6%),8, — 07| + (V2L — V2L)) (0, — 0.0, —0.)))

K2

1y

IN

+
R
L
NE

NE
Mz

Il
-

L
NE

s
Il
-
<.
Il
-

N lo lo
<c6pm||eav -0 llBn = 07y ZEL ¢ (crpt? o, — 0722 f”))

plO p lo
(CGP”LH@; — @*HooH@; — @*le ng + <C7p2m2||@;- @*||2 p n%p))
plO p plO p
(CGPm”@av @;HOOH@av @;Hl \/ —ng + <C7p m ||@av — @/ ||2 ng >> ,

where the last inequality follows from Lemma 6. Observe that because O,,, ©* and @’ are all
feasible it holds that the || - || - can all be upper bounded by
on [[©a — O%]]1 to yield

s
Il
-
<.
Il
-

_|_

%

1y

. Further, we use the triangle mequahty

(W —J)(6"—6"), (V2L - VL) (IO - 0%)) <
T 1 3 1
copVm >3 (200, — 0|1 + 2wm|0] — 0%[1) 1/ 2 ‘;gp+ "\2/% <w24c7m31$).
i=1 j=1

Due to feasibility of O, and @’ - we invoke Lemma 1 in [2] to obtain

(W —=J)(0' —6%),(V2L —V>L)(I0 — 6%))
< Cﬁp\/_4\17 mA/ plogp Z ||0dV - 9* |2 + ”6/ - G*H )

1 3 1
+ erpy/mdwm?y /2 ngnn L(OM)] + 2 *2/%” dc, 2 ng.
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Using Young’s inequality yields

* r * mm - * *
(W —J)(0' - 6"),(V2L - V>L)(JO - 0%)) < c5p*/2_ D (16ay — %15 + 165 — 6*]3)
j=1
2
o P 6w )PP o oy P2 [Ty (6] + 1267?22
n n n

mm lo
= oI (136 — 0° 3 + 110/ — 0°3) + dequom® Vg L EL 11 (0

v 1
+ (68T (M) + 12meg) pwy/mm?E22E.
n

We have left to find bounds on W2(M) and || ILy¢1 (©*)]|1. Under the conditions of the Corollary we
have from [2] (subspace suitably defined by combining elements of the proof of Corollaries 4 and 5
in [2]) that

q
_ logp\ 2

2 < q (PO8P
(M) < Ryw ( N ) ’

1—g

N _ lo 2
MLy (0°)1 < Ry~ (p g”)

N

Observe that in [2] ¥2 (M) is computed with respect to the Frobenius norm || - ||r however, observe
that for any © € RP*? it holds that |®||p = ||[vec(O)]|2.

By deriving similar bounds for the remaining quantities in Lemma 4 and following the same steps as
in the proof of Theorem 2 and treating the extra tolerance in the same way as the misspecification
error in the proof of Theorem 2 the desired result follows yielding

logp ' 2
i <A+ O ((ILA?Z)) Ry (cPw i+ w? ™+ ow' ™) (14 pm5)> .

where the latter term stems from the tolerances discussed throughout this proof. Observe that in this
particular case (M, W) (c.f. Theorem 2) is equal to zero and that the dominating term is the latter
since w > 1.

G.3 Proof of Corollary 3

Under the column normalized assumption, following the same steps as in the proof of Corollary 1 it
follows that

| X4 ws, 2mlog(md) || X Tw|| 2logd
P I 2 7l < X <O =g
(gﬁiﬁ n = N N NN

> 1 —2dexp(—2log(d) — 2md exp(—21log(dm))).

From Lemma 5 it follows that Assumptions 3 and 4 hold with high probability. Finally bounds for
U2 (M) and R(ITL o1 (6%)) as in the proof of Corollary 1 apply. Thus, taking the overall union bound
and invoking Theorem 1 yields the desired result.

G.4 Proof of Corollary 4

Observe that the empirical risk minimization problem can be written as

N N
. 1 2 1 T 2
— 3 (X5,0%) — )P = X;) Tvec(0%) - y;)°.
(-);ﬁgﬁfgﬁm;« )~ i) 2N;(VGC( ) Tvec(€%) — ;)

2L(9) 2L(0)
The population risk is given by
L(#) = [%1%(6 - )13,
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where 6* = vec(©*). Then, from Lemma 1 it follows that Assumptions 3 and 4 hold with the
probability given in Lemma 1. Observe that E[R* (vec(x;))] < cns 2, which establishes the terms
accompanying R(-) = || - ||1-

In this case, the statement in Lemma 1 in [2] can be written as
1© —©*[li <2¥(M)[|© — ©*|[p + 2|y (€)1

Asin [2] for ¢ = 0 and ¢ € (0, 1] we have (see [2] for the appropriate choices of M, /\;l)

q

2

T2(M) = r = Ry, (M) SRq% 7

1—g
2

* * p

Ipee (©%) |1 =0, I (09 < Ry (5) 7

where r denotes the rank of ©*, the left column corresponds to ¢ = 0 and the right column to
€ (0,1].
Thus, we have left to establish upper bounds on
>0 Xow; |2 I Z;nes Xjwill2
N ’ n '

Following the proof of [30, Cor. 10.10] it can be established that for some universal constants
co, C1, cg > 0if

N > cop
it holds that

HZ X’LUH2 Xiw;
(o5 o ) B0 )

>1— (m+1) (exp (—cap)) -

Invoking Lemma 1 and using the union bound yields the desired result.

H DGD Algorithm (4) for Gaussian /;-sparse regression

Recall that the DGD-CTA iterates can be written as
o' = J[ (We'—amve(e")). (52)
QNR(O)<R

We establish convergence of DGD-CTA for the particular case of ¢; constrained Gaussian linear
regression. We begin by introducing some notation. Denote by

12802(M) 2 16

Ada = (RY(VL(07)))" + ZR(HML(H*))R(V»C(W)),

112
A 16ma 0"
Al 2 ﬁIIVE( )13,
and the tolerance
2 a(( _) 144 2 * v QC(M)
2% & 8+ %) (1472500 ) + ey e 00600 (14 72050 )

where
(M) £ 9T2(M)7,.

Theorem 3. Consider the ERM problem (1) and the associated population minimization (2). Given
that Assumptions 1-3 hold with v, 1 = % and v4 2 = 1, that Assumption 6 holds with W - 0, and
that

V2L — V2Li|l2 <, i € [m], (53)
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Y < V2L,
. [om(W) 1-—p _
< <
a—mm{ 2L ’18n+16L}’ (M) <
then, the iterates of DGD-CTA (52) fulfil
2 < (1 —af +OzC_(./\7l)
1—a¢(M)

®
16’

t
) r§+A2.

Contrasting Theorem 2 and Theorem 3, the following comments are in order. First, in Theorem 2
A2 can be made of the same order of A2, leveraging the network to mix local information.
On the other hand, in the case of Theorem 3, even if the network is fully connected, i.e. p = 0

A2, = 16% | VL(6%)|]3, where for linear Gaussian regression, with overwhelming probability

[VL(0%)||3 = O(d/n). This implies, that the step-size « is to be chosen as a = O(d~1) for A2,
to be of the same order as AZ ;.

H.1 Proof of Theorem 3 and auxiliary results

We begin establishing a variant of Lemma 2 for the proxy
1
£(0)+—10]3
(6) + 5613w

which can be done following the same procedure as in the proof of Lemma 2 and yields

10" — 0% < [j0" — 0*|* —am (0" — 0”3z + 110" — 07[32z)

— (10"17_w + 107 _w) + am[|0"" — "3z — 16" — 0" |y

+ 2am(VL(0") — VL(0"), 6" — 9").
We split the inner product similarly to (24) -(27). Under Assumption 3 and (53) we have from
Lemmas 3 and 7 that

2am(VL(0") — VL(0"), (0" — 07)) < (ayg,1 + aevgn) (130" — 07[|3 + IO — 67|3)
+mae (|[J0" — 0"||3. 7 + [JOT" — 0%(|2.7) + avyy 2| JO" — TOH |3,

1 am
(1) an (10 301+ 01 - 307 E) + I (16 - J0IR+ 0" 30" )

+amry(1+¢€) (R2(0L, — 0%) + RO — 6%)) — 2am(VL(0*),0"" — 0%).
Using [2, Lemma 1], we have

SR (6L, — 6%) < 4(1 + Q)W (M)[6, — 6°[3 + 4 (1 + 1) R (I (6),

and analogously for %!, implying that
am7y (1+¢€) (R*(6L, — 6*) + R*(655" — 6*)) <
amty (1+€) 4(1 +a)P* (M) ([|6;, — 013 + 105" — 07[13)
+ 8amTy(1 + €)0,
where for convenience we set § £ (1 + <) R?(II 4. (6*)). Further, using Holder’s inequality and
Young’s inequaity, for any by, by > 0 it holds that
—2am(VL(0%), 0 — 0%) = —2am(VLO), 0 — 0%) — 2am(VLOY), (I — T)O")

< 20mR* (VLO*) RO — 0%) + 2am||(I — T)0" 2| VL(0Y)] 2
< dam¥(M)R*(VL(O) (|05 — 6%[|2

2.2
+ 2amR* (VL(G"))R (Mg (6*)) + bo||(1 — 3)0"(|3 + mba VL@ <
2
2 _
+ 2abym|| 05 — 6%|)3 + %@2(/\/1) (R* (VL)) + 2maR* (VL(0*)) R(ILy,. (6%))
1
m2a2 .
+Ball(1 = 30" + == IVE©O") .
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Combining yields

20m(VL(0") — VL"), (0" —0%)) < (ayy1 + aevg) (|JO" — 0% |3 + [|JOT — 0*|%)
+mae (30" — 0%||2.z + |ITOT" — 0%]|2.7) + oy 2| JO" — JOTH(|3,

1 am
(1) an (10 - 3013+ 01T - 307 E) + I (16" - J0lR 4 0" - 30" )
Fary(1+ AL+ U136 — 0°[3 + 36" — 0°[3) + Samr,(1 + 0

20307 — 0%(% 4+ boll (1 — DO 1 T 1w 2 (0M)2
+ 2ab || 5 + b2 ( )0z + 5 IVL(67)[3

2am

M) (R (VL(6)? + 2maR* (VL(G*)) R (6%)).

For convenience, denote by R? £ ||6" — 6*||3 and C? 2 ||0||2_5. Then, using the above to upper
bound R, , yields

Ri,y < R} —am ([|0" — 0" |3z + 110" —607[32z) — (1 —p) (CPy + CF)
(a7g.1 + aeyg) (| T0" — 0% |3 + [JO — 0%[3) + mae (|T0" — 07|32z + 36" — 0732 z)

_ 1
+aty(1+€)4(1+ a)\IJ2(M)(Rt2 + RfH) + 2(yb1Rf+1 + (1 + €> oz'r)(Ct2 + Ct2+1)

L 2.2 _
+ SO+ CFy) 402Gy + T VE(O")]} + 8amy (1 + €)3
2

2am

+ b—lqﬂ(/\?l) (R* (VL(0*)))? + 2maR* (VL(0*)) R(ILpw (6)) + ay, 2|30 — IO %,

+ om0 — 0"2. ; — o (W)]0F — 07|

Ile j v2£_ Settlng bl — %7 €= % b2 — 1_52’ fora S Um2(LW). we haVe

o 36 - (1-p)
R}, < R} - TR? + ga(l + a)7y V(M) (R + R7 ) — 5 (C}1+CP)
m2a?

+ (9am + 8aL) (C7 + C},) + 7 IVL(0%)|5 + 9amT,d + 160¢m\1]2(T'M) (R* (VL(6)))?
+2maR* (VLO )R (Mg (61)).

For the terms in C} and C7,; to vanish from the RHS of the above inequality we require that

a < min Im (W) L—p
- 2L "2(9n+8L) [

Then, for convenience, define

A 36
C_s

Given that ¢ is such that 1 — o > 0 we have by rearranging and dividing both sides by 1 — a¢ we
obtain

Rf_H < (1 — CZ—'U —|—044) (1- aC)_l Rf—|—

(1+a)T,U*(M).

£)
IVE@OIE + 9amrq6)

(M)

2

—1 ma2
(1-ac) (b2

+(1- ozC)_l (16am (R* (VC(G*)))2 + 2maR*(VL(O*))R (I pqe (9*))) .
Observe that if
7

¢ < 6
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Aisatmost1 — &

= and therefore by telescoping

16m2a . 128m
R <N+ (1= a0 (2926015 +

W )(R (VE(0) )
+(1—al)" 1 =X "ta(9mT,d + 2mozR* (VLO®)) R(TTp L (69))) -

Setting @ = 1, using that (1 — a()™! =1+ 1f—i< substituting the definition of § and dividing by m
yields the desired result.

The following Lemma contains results analogous to those in Lemma 4 required for the proof of
DGD-CTA.

Lemma 7. Under Assumptions 1, 3 and (53) for any € > 0 it holds

(V2L = V2L)(I0 - 0°). (1 = 1)0) < TEL|J0 = 0% | + FER? (O — 0°) + 51130 — 0%2.2
N 2

B (R [

and

(V2L = V2L)(0 —36).0' = 30') < S (|0 — 3|3 + 10" — 30'|13) .

Proof. We start with
(V2L = V2L)(30 — 0°), (1 - 3)(6' ~ 6)) = —(V2L(IO — 6), (1 ~ 1)(0 ~ 6"))
. 1
< §H(V2 )'/2(30 — 07|35 + ill(Vzﬁ)”Q(ﬂ’ —J0")|I3
for any € > 0. Then,

(V2L — V2L)(J0 — e*) (I—3)(0 —0%)) < S(V2L —V2L)(J0 — 0%),(J0 — 6%))

<

2
—||J9 9*||vz,;+ <V2E(I—J)9'( 1)0') + —||6’ — 303 -
Under Assumption 3 and (53) it follows that

(V2L = V2L)(30 - 0°), (1 - 3)(0' = 0")) < 2130 — 0°[|3,

€T, €
+ 79722(9% —07) + 51196 — 0% (|32 + %Hel —J0'|3 + 2—6H9/ 30|13 -

Finally, from (53)
275 2 . A VAN Ui . 2 N " _ 30|12
(V2L ~V2L)(0 — 30),(6' ~ 30)) < S0 — 363 + S 16’ — 36/|3
O

In order to establish the convergence of DGD-CTA when used to solve the Gaussian ¢; constrained
regression problem (c.f. Corollary 1) we require that with high probability (53) holds. The following
Lemma states that the condition holds with high probability for all agents i € [m)].

Lemma 8. Under the data model described above, for all i € [m)] it holds that
d d
<2L <3\/j + 4—)
) n n

1 —2exp(—d/2 + log(m)).

- -3

Xg X,
n

with probability at least

Proof. See Example 6.3 in [30] for the single agent statement. Then apply the union bound. O
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The above lemma implies that by taking the union bound with the statements in Lemma 1 the
requirements for convergence of DGD CTA are met. However, observe that 7 in (53) corresponds to

n=2L (3\/§+4§>
n n

* Q - *
ma|[ VL@ = — > VL0713,
i=1

Further, the ball A2, scales as

which corresponds to the rate of standard linear regression with random designs which with high
probability scales as O (a%) [10].
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