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A ADDITIONAL EXPERIMENTAL DETAILS

In this section, we discuss additional experimental details for interested readers.

A.1 CODE

We make all code/data publicly available for use at https://s3.us-west-1.wasabisys.
com/anon-neurips2022/neurips.tar.gz (Github link in camera ready). We hope that
releasing our code, along with the JSON files containing test-set predictions for the models in question
will help inspire further research and examination into the evaluation of models for visual description.

A.2 DATASETS

MSR-VTT Dataset: The MSR-VTT dataset (Xu et al., 2016) is a dataset for video description
consisting of 10,000 videos, with 20 reference ground truth descriptions for each video. It was
collected by downloading 118 videos for each of 257 queries from a popular video sharing website.
MSR-VTT contains 41.2 hours of video, with an average clip length lying between 10 to 30 seconds.
It has a vocabulary size of 21,913. For more details about the diversity of the language present in the
dataset, we refer readers to Chan et al. (2022).

MS-COCO Dataset: The MS-COCO dataset (Lin et al., 2014) is a large-scale dataset for image
description, object detection and segmentation. MS-COCO contains 328K images, each with 5
ground truth descriptions generated by human AMT workers. For more details about the diversity of
the language present in the dataset, we refer readers to Chan et al. (2022). MS-COCO is licensed
under a Creative Commons Attribution 4.0 license.

A.3 MODELS

This paper explores the performance of our metrics over several models: two video captioning models,
and two image captioning models.

TVT The Two-View Transformer (Chen et al., 2018) is a baseline method for video description,
which consists of a transformer encoder/decoder structure. While we did not have access to the
original code, we trained our own version of the model on the MSR-VTT dataset (standard splits),
leveraging features from Perez-Martin et al. (2021). The model was trained for 300 epochs, with a
batch size of 64, model hidden dimension of 512, 4 transformer encoder and decoder layers with 8
heads each, and dropout of 0.5. For optimization, we leveraged the Adam optimizer with a learning
rate of 3e�4 and weight decay of 1e�5 with exponential learning rate decay with gamma 0.99. This
model achieves a CIDEr score of 56.39 on the test dataset. The model was trained using a Titan
RTX-8000 GPU over the course of several hours.

O2NA O2NA (Liu et al., 2021) is a recent approach for non-auto-regressive generation of video
captions. While the method had available code and checkpoints which we used for this experiment,
the method is not designed to sample more than one candidate caption at any given time. To adjust
the model to sample multiple candidate captions, we made several adjustments. First, the model was
modified to sample a length according to a softmax distribution over the length likelihoods (instead of
using a greedy choice of length, or beam search over lengths, as proposed in the paper). Second, the
model was modified to sample tokens at each non-autoregressive step from a temperature-adjusted
softmax distribution instead of greedily sampling tokens. We make our modified code available
as a patch to the original repository, in the hopes that other users will continue to build on these
alterations.

CLIPCap CLIPCap (Mokady et al., 2021) is a recent model for image description based on using
the CLIP (Radford et al., 2021a) model for large vision and language pre-training as a feature encoder,
and GPT (Brown et al., 2020) as a natural language decoder. CLIPCap code and MS-COCO trained
model checkpoints are publicly available from the authors, however we made some alterations to
support temperature-based and nucleus sampling. We make our modified code available as a patch
to the original repository, in the hopes that other users will continue to build on these alterations.
CLIPCap is licensed under the MIT license.
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VLP VLP (Zhou et al., 2020) is a unified vision and language pre-training model, designed to
perform both image captioning and visual question answering. The model is pre-trained on the
Conceptual Captions (Sharma et al., 2018) dataset, and fine-tuned on the MS-COCO captions dataset
for image description. The authors make code and pre-trained models publicly available, however we
modified the code somewhat to support additional sampling methods. We make our modified code
available as a patch to the original repository, in the hopes that other users will continue to build on
these alterations. VLP is licensed under the Apache License 2.0.

A.4 DISTANCE METRICS

In this paper, we explore three base semantic metrics as distance underlying our TRM methods,
CIDEr-D (Vedantam et al., 2015), METEOR (Agarwal & Lavie, 2008), and BERT Distance (Zhang*
et al., 2020).

CIDEr-D CIDEr-D (Vedantam et al., 2015) is a n-gram-based metric designed for visual description,
and based on the idea that common words are less useful in practice than uncommon words. In
practice, this takes the form of a cosine similarity between TF-IDF weighted vectors representing
the sentences. Because CIDEr-D is a score, and not a distance, we create a distance function:
d(c, r) = 10� C(c, r), which works as CIDEr-D is bounded by 10. Note that because CIDEr-D is
10 if and only if and only if the two sentences are equal, this fulfills the TRM requirements.

METEOR METEOR (Agarwal & Lavie, 2008) is a score which evaluates the semantic distance
between two text utterances based on one-to-one matches between tokens in the candidate and
reference text. The score first computes an alignment between the reference and candidate, and
computes a score based on the quality of the alignment. Because METEOR is a score, and not a
distance function, we use the distance d(c, r) = 1 �M(c, r), where M is the METEOR score of
the reference. Because METEOR is bounded at 1 if and only if the two utterances are identical, this
simple transformation satisfies the requirements of the TRM adjustment. While we could explore
other ways of deriving a distance from METEOR, we found that this simple approach was sufficient
to demonstrate the performance of our methods.

BERT Distance A recent method for determining the semantic distance between two samples is to
leverage a pre-trained BERT embedding model to create a semantic embedding of the text, and com-
puting the cosine distance between the test samples. In our work, we leverage the MiniLM-L6-v2
model from the sentence-transformers package by Reimers & Gurevych (2019) to embed our de-
scriptions. Because cosine distance is already a distance function, no additional transformation is
necessary.

A.5 P-VALUE COMPUTATIONS

For our experiments, our null hypothesis is that the candidate samples and the ground truth samples
are drawn from the same distribution. Because most of the methods do not have an analytical
way to compute the p-values (in fact, the TRMs are the only method which has an analytic p-
value computation given in Liu & Modarres (2011)), we instead must compute the p-values though
sampling. We thus enumerate the value of the statistic across all of the possible candidate/reference
partitions given the joint set of candidates and references, and determine the probability of observing
the sampled value, or some value more extreme.
The values in Table 1 represent the p-value obtained with a single candidate sentence, and 4 ground
truth candidates for MS-COCO, or 19 ground truth candidates for MSR-VTT. We reserve one gorund
truth description in both datasets to serve as the “Human” performance description. For TVT,
CLIPCap and VLP, we sample the descriptions using beam search with 16 beams. For O2NA, which
is a non-autoregressive model, we sample according to the method suggested in the original work
(see Liu et al. (2021)). Because there are several thousand videos per dataset, computing all possible
combinations across the dataset would be far from tractable. Thus, the p-values were computed on
a per-visual-input basis, and then aggregated across videos using the harmonic mean, as suggested
by Wilson (2019). Such an aggregation method is valid when the experiments are not independent
(which they are not), unlike Fischer’s method (Fisher, 1992).
Figure 3 demonstrates the log p-values for the proposed methods across several candidate samples.
For MS-COCO, we use all five reference captions, and between one and ten candidate captions
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sampled from CLIPCap using Nucleus Sampling (Holtzman et al., 2019) with a temperature of 1.0,
top-p of 0.9 and top-k of 20. The caption set is generated once, meaning that the two-candidate
set consists of the one-candidate set and one more additional caption. For MSR-VTT, we use 10
reference captions, and between one and seven candidate captions sampled from O2NA as described
in appendix A.3 with a temperature of 1.0 for both the length and token samples. We do not go to
the full 10 candidate captions for MSR-VTT due to tractability concerns, since adding an additional
caption forces twice the number of partitions to be evaluated when computing p-values.
The above experiments were performed on several n2d-standard-32 cloud GCP instances, containing
32vCPUs and 128GB of RAM.

A.6 FRECHET BERT DISTANCE

The Frechet Inception Distance, originally proposed in Salimans et al. (2016), has often been used
for the evaluation of the distance between samples of images generated by GANs. Images are first
embedded in a latent space using a pre-trained inception network, and then the Frechet distance
between the generated samples and the reference samples is computed. In our work, we replace
the images with text, and the inception network with a pre-trained BERT embedding network
(Devlin et al., 2018). For a set of candidate samples (c1, . . . , cn) = C, a set of reference samples
(r1, . . . , rm) 2 R, and a BERT embedding function �BERT : C [R ! Rk, we compute the Frechet
BERT Distance as:
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where CC andCR are the covariance matrices of the C and R sets embedded with �BERT respectively.
To get the BERT embedding, we leverage the CLS token of a large pre-trained model, in this case, the
MiniLM-L6-v2 model from the sentence-transformers package by Reimers & Gurevych (2019).
The computation of p-values for the Frechet-BERT distance is largely bottle-necked by the slow
performance of the sqrtm function, which, because the matrices are not symmetric, has no efficient
algorithm for computation. Additionally, unlike the feature computation, this operation must occur for
every partition, leading to significantly reduced efficiency compared to the other measures presented
in this paper.

A.7 MMD-BERT

Another common metric in the GAN literature is the computation of a maximum-mean discrepancy
between kernel-estimates of the samples introduced by Li et al. (2017). For a set of candidate samples
(c1, . . . , cn) = C, a set of reference samples (r1, . . . , rm) 2 R, and a BERT embedding function
�BERT : C [R ! Rk, we compute the MMD-BERT distance as:
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where K is a kernel function. In our experiments, we use an RBF kernel function with � equal to the
median distance pairwise distance divided by two.

A.8 SEARCH TECHNIQUES

In section 3, Figure 6, we explore the performance of several different search techniques for our
two-view transformer model on the MSR-VTT dataset. In this figure, we explore four decoding search
techniques: Greedy Search, Beam Search, Temperature-Based Sampling, and Nucleus Sampling. For
each method, and for each video in the test set, we sample 10 descriptions. For Greedy Search, we
sample 10 repeated sentences. For beam search we sample the top beam search candidate, and repeat
this ten times. While we did explore using the top 10 results from a larger beam search, we found that
a smaller beam search and repeated values produced better METEOR scores, so we chose to compare
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Sensitivity and performance on Human-Generated Captions

Method Log-P Samples/Sec
TRM-CIDEr -1.596 88.93
MMD-BERT -1.786 56.68
MMD-CLIP -1.887 14.41
MMD-GLoVe -1.952 54.8
MMD-FastText -1.954 57.45
MMD-BOW -2.022 49.41

Figure 7: Performance of several different embedding functions for the MMD-* family of metrics.
Left: Sensitivity when evaluated on the MSR-VTT dataset with ten reference captions and between
one and seven candidate captions generated by O2NA. Right: Sensitivity and speed when evaluated
on human reference samples with 5 references and 5 candidates.

against this. Wider beam searches did produce higher TRMMETEOR scores, but because optimizing
for METEOR would be the current paradigm, we decided to include that in the referenced figure.
For standard temperature based sampling, we sampled 10 results at each temperature. For Nucleus
sampling, we sample 10 results at each temperature, however we freeze they hyper-paramters of
top-p at 0.9 and top-k at 20, as we found these values to generate the best scores under the standard
pairwise metrics. It remains relevant future work to perform a deep-dive into the different generative
methods with respect to TRMs, as there are likely many interesting lessons that can be learned.

B ADDITIONAL RESULTS

In this section we present several additional interesting results to augment those in the main discussion.

B.1 EMBEDDING METHODS FOR KBMS

In the main work, we primarily explore a BERT-based embedding method for the kernel-based
methods. Such an exploration does not preclude the use of other embedding methods, each of which
has different trade-offs, when looking at the quality of the resulting metric, what the resulting metric
measures, the time required to compute the embedding, and the performance when the reference
distribution is limited to small numbers of human samples (such as happens in practice). Figure
Figure 7 shows a quick look at several possible choices for embedding methods in the MMD-* family,
including Bag of words (with a 5K vocab), GLoVe (Pennington et al., 2014), FastText (Bojanowski
et al., 2017), and CLIP (Radford et al., 2021b).
While we can see that some of the methods are more sensitive to deviations in the image distributions,
such methods come with additional trade-offs. CLIP-style embeddings are the most sensitive to
human versus generated captions with fewer captions created, but are significantly slower to evaluate
at test time (almost 4x slower) than MMD-BERT, and also produce a higher p-value when computing
the leave-one scores on the human captions (which is less desirable, as the human captions are drawn
from the same distribution).

B.2 UNIQUE VS. CORRECT DESCRIPTIONS

In Figure 8, we explicitly demonstrate how TRMs enable evaluation of both caption diversity and
quality. We artificially generate candidates for the MSR-VTT dataset by mixing human-generated
exact descriptions with human-generated descriptions from other videos. On one axis we have the
number of unique descriptions and on the other axis we have the number of correct (exactly-matching)
descriptions. Clearly, unlike METEOR alone, TRMMETEOR scores are affected by both correctness
and diversity.
Each experiment consisted of 10 candidate captions from the MSR-VTT dataset, and 10 reference
captions from the MSR-VTT dataset. We first split the 20 MSR-VTT reference captions into two
sets of 10. One set of 10 captions formed the references. To select the candidate captions, we first
sampled k unique captions from the remaining reference set (which formed the “correct pool”), and
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Figure 8: Plots showing how TRMs evaluate both diversity and quality. Left: TRMMETEOR, Right:
METEOR. Lighter colors represent better scores. While TRMMETEOR trades off between diversity
and quality, METEOR focuses only on quality not diversity.

Figure 9: Plots showing diversity vs. quality tradeoffs. Left: TRMCIDEr, Right: CIDEr. Lighter colors
represent better scores. While TRMCIDEr trades off between diversity and quality, CIDEr focuses
only on quality not diversity.

k unique captions from other videos in the dataset at random (forming the “incorrect pool”). We
then selected m correct captions, from the correct pool (at random) and 10�m captions from the
incorrect pool (at random). This was then plotted with m on the x-axis, and k on the y-axis, as a
heat-map, where lighter colors represent better scores (higher METEOR, or lower TRM-METEOR),
and darker colors represent poor scores.
We also explored the performance of the CIDEr metric across the same axes, the results of which
are shown in Figure 9. We can see that they are largely similar to those from the METEOR metric,
suggesting that regardless of the underlying metric, we are still making similar trade-offs between
diversity and correctness.

B.3 VISUALIZING CENTRAL DESCRIPTIONS

We have found that descriptions which minimize the expected distance to the ground truth distribution
are relatively sparse in detail compared to other descriptions. Figures 10, 11, 12 and 13 show
qualitative examples of such descriptions for the MS-COCO dataset. Each plot shows qualitative
examples of “central” captions. The caption marked with arrows is the ground truth caption which
minimizes the expected METEOR distance to the other reference captions, and the other captions
are the additional references in the MS-COCO dataset. Images are selected at random, and do not
represent cherry-picked samples from MS-COCO.

B.4 HUMAN P-VALUES

Strong metrics for distributional comparison will have high sensitivity to samples coming from distinct
distributions, and will produce high p-values for samples which come from the same distribution.
To check that such a relationship holds, we also perform leave-one-out experiments using human-
generated captions from the reference set for both MSR-VTT and MS-COCO. For MSR-VTT, we
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Figure 10: Qualitative example of “central” captions. The caption marked with arrows is the ground
truth caption which minimizes the expected METEOR distance to the other reference captions.

Figure 11: Qualitative example of “central” captions. The caption marked with arrows is the ground
truth caption which minimizes the expected METEOR distance to the other reference captions.
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Figure 12: Qualitative example of “central” captions. The caption marked with arrows is the ground
truth caption which minimizes the expected METEOR distance to the other reference captions.

Figure 13: Qualitative example of “central” captions. The caption marked with arrows is the ground
truth caption which minimizes the expected METEOR distance to the other reference captions.
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Table 3: Log P-Values on human leave-one our samples. We can see that, surprisingly, none of the
methods (even the standard aggregations) produce statistically signficant differences. That being said,
TRMs often produce higher p-values, indicating that they may be more robust to noise in human
caption sets. We do not compute the Frechet-BERT values for humans here, as it was prohibitively
expensive.

METEOR TRMMETEOR CIDEr TRMCIDEr BERT TRMBERT MMD-BERT
MSCOCO -0.6303 -0.5941 -0.5957 -0.4742 -0.6230 -0.5633 -0.6550
MSR-VTT -1.0046 -0.9613 -1.0224 -0.9777 -1.0172 -1.040 -1.0374

split the reference data into sets of 10 candidate samples and 10 reference samples, and compute the
deviations using this partitioning. For MS-COCO, we leverage the c40 split which has 40 reference
descriptions for 5000 samples of the ground truth. We partition the references for each video into
groups of ten descriptions, and compute the p-values from pairs of these partitions. Table 3 gives the
performance of the metrics on this human data.

B.5 MAUVE PERFORMANCE

In the main work, we found that MAUVE was prohibitively slow to use to compute p-values for
the training data. Because our p-values were computed with 10 reference sentences, and up to 10
candidate sentences, at the existing rate, it could take several years to compute the MAUVE p-values
for the 50,000 sample MS-COCO dataset. In Table 4, we present several high-variance estimates of
the MAUVE p-values (computed using only 100 samples).

Table 4: Log p-value estimates for MAUVE using five candidates, five references, and 100 samples
(at nucleus sampling temperature 1.0 for O2NA, CLIPCap and VLP models). We can see that Log
p-values for MSR-VTT and MS-COCO are signficantly worse than METEOR even with aggregation,
likely due to the method using k-means to approximate the text distributions with only 5 samples.

Dataset MAUVE Log p-value METEOR Log p-value
MSR-VTT (O2NA) -0.4414 -1.7881
MSR-VTT (Human Captions) -0.1441 -0.6037
MS-COCO (CLIPCap) -0.3980 -2.5585
MS-COCO (VLP) -0.3234 -2.8609
MS-COCO (Human Captions) -0.2189 -0.7233

B.6 ADDITIONAL QUALITATIVE SAMPLES

Figure 14: A qualitative sample from CLIPcap. Candidate set one uses beam search (8 beams), while
candidate set two uses nucleus sampling (with temperature one, top-k of 20 and top-p of 0.9).
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