
A Justification for CRT Training Objective
Following from the discussion in Section 3.1, we want to maximize E⌘[z

y
✓ (x + ⌘)]. Given a non-

negative random variable t = E⌘[z
y
�(x+ ⌘)], we have

E⌘[z
y
✓ (x+ ⌘)] � E⌘[z

y
✓ (x+ ⌘)]� t

Here z� is the soft output associated with classifier f� that has been trained independently of f✓.
Therefore, we have

E⌘[z
y
✓ (x+ ⌘)] � E⌘[z

y
✓ (x+ ⌘)]� E⌘[z

y
�(x+ ⌘)]

� E⌘[z
y
✓ (x+ ⌘)� zy�(x+ ⌘)]

� �E⌘[z
y
�(x+ ⌘)� zy✓ (x+ ⌘)]

This implies that maximizing E⌘[z
y
✓ (x+ ⌘)] is equivalent to minimizing E⌘[z

y
�(x+ ⌘)� zy✓ (x+ ⌘)].

B Additional Results
B.1 Higher Noise Level
In the main paper, we conduct experiments on CIFAR-10 using noise level � = 0.25 only. Here, we
report our main set of results on CIFAR-10 (Table 3) using higher � values. In Table 8, we report
results using � = 0.5 and in Table 9, we report results using � = 1.0.

B.2 Using ViT [6]
In the main paper, we used Convolutional Neural Network (CNN) based architectures. However,
there is another recently developed class of architectures that use Transformers for the task of image
classification [6, 24, 4]. In Table 10, we present results measuring the effectiveness of CRT in
transferring robustness from ResNet110 (a CNN-based classifier) to ViT [6] (a Transformer-based
classifier). For comparison, we also report results obtained on training ViT with SmoothMix. CRT
trained ViT classifiers perform comparable or better than their SmoothMix counterparts.

B.3 Training SmoothMix Classifiers with CRT Hyperparameters
For generating results using prior methods, we strictly adhere to the hyperparameters reported by
them. However, the hyperparameters that we use for CRT training is different than the ones used
by prior methods (see Table 16). In Table 11, we report results obtained on using CRT training
hyperparameters with SmoothMix. We note that there is not a significant difference in the robustness
achieved using the two sets of hyperparameters.

B.4 Training Teacher with Consistency Regularization [16]
For our main set of results on CIFAR-10, we focused on SmoothMix. In Section 5.4, we discussed
Consistency Regularization recently proposed by Jeong & Shin [16] as another method to attain
certifiably robust classifiers with at a cost comparable to standard training depending on the setting.
Here, we show results when Consistency Regularization is used to train the teacher classifier in
Tables 12 and 13. For comparison, in Table 12, we also report the results for training the classifiers
using Consistency Regularization. As with other training methods, CRT is effective in transferring
the robustness of the teacher classifier irrespective of the training method.

B.5 ImageNet Results
In Table 14, we present an additional ImageNet result using a different student-teacher pair. We note
that, as in Table 7, CRT remains effective.

B.6 Gaussian Data Augmentation Baseline
Along with the theoretical framework for creating certifiably robust image classifiers using random-
ized smoothing, Cohen et al. [3] also proposed a simple yet effective method for training classifiers
with high certified robustness within this framework. This method involves training the base classi-
fier with Gaussian data augmentation. To date, this method remains the fastest way to train classi-
fiers with non-trivial certified robustness using the randomized smoothing framework. However, this
method is not as sophisticated as the more recently proposed methods, and so yields much poorer cer-
tified robustness than them. Since our work is focused at accelerating certified robustness training, in
Table 15 we include the certified robustness of training time results for Gaussian data augmentation
baseline for a more thorough comparison.

14



Table 8: The certified robustness of classifiers with different architectures trained on CIFAR-10
using SmoothMix [15] and CRT. We use CRT to transfer the robustness of a ResNet110 trained
using SmoothMix. We report certified test accuracy at different values of `2 radius and the Average
Certified Radius (ACR). The noise level � is set to 0.5.

ARCHITECTURE 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 ACR

SMOOTHMIX [15]

RESNET110 [11] 65.01 57.71 49.99 42.74 35.98 29.43 23.52 17.33 0.725

RESNEXT29-2X64D [36] 63.90 56.81 48.80 40.79 33.29 27.24 20.80 14.60 0.687
DLA [38] 65.76 58.47 51.16 43.97 37.16 30.50 23.97 18.02 0.742
REGNETX_200MF [27] 64.75 57.48 49.96 42.57 35.23 28.79 22.78 16.56 0.716

CRT (RESNET110 TEACHER)

RESNEXT29-2X64D [36] 64.89 57.81 50.63 43.39 36.49 30.07 23.92 17.40 0.732
DLA [38] 65.23 58.33 51.23 44.04 37.09 30.47 24.39 18.37 0.743
REGNETX_200MF [27] 65.35 58.18 50.87 43.74 36.83 30.33 24.17 18.04 0.739

Table 9: The certified robustness of classifiers with different architectures trained on CIFAR-10
using SmoothMix [15] and CRT. We use CRT to transfer the robustness of a ResNet110 trained
using SmoothMix. We report certified test accuracy at different values of `2 radius and the Average
Certified Radius (ACR). The noise level � is set to 1.0.

ARCHITECTURE 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 ACR

SMOOTHMIX [15]

RESNET110 [11] 47.93 43.46 38.43 33.24 29.05 25.05 21.55 18.12 15.19 12.40 0.730

RESNEXT29-2X64D [36] 46.81 41.38 36.27 31.46 27.15 22.85 19.36 16.27 13.24 10.49 0.667
DLA [38] 49.40 44.13 38.86 33.94 29.27 25.14 21.63 18.38 15.29 12.49 0.738
REGNETX_200MF [27] 47.32 42.87 38.25 33.33 29.17 25.80 21.99 18.51 15.66 13.05 0.743

CRT (RESNET110 TEACHER)

RESNEXT29-2X64D [36] 48.03 43.41 38.56 33.15 28.92 25.29 21.43 18.40 15.03 12.20 0.728
DLA [38] 48.38 43.67 38.82 33.76 29.4 25.53 21.94 18.71 15.32 12.61 0.741
REGNETX_200MF [27] 48.18 43.53 38.68 33.62 29.30 25.44 21.86 18.45 15.29 12.46 0.735

C Training Details
In this section, we provide all these details required to reproduce the results presented in the paper. We
begin by reporting the hyperparameters in Appendix C.1, followed by code links and other necessary
instructions in Appendix C.2.

C.1 Hyperparamters
First, we provide details regarding training hyperparameters for our experiments in Table 16. For
all training, we perform regularization using a weight decay factor of 1e� 4. Also for all training,
learning rate is decayed by a factor of 0.1 at two pre-determined epochs (see column ‘LR Decay’ in
Table 16). Next, we report method-specific hyperparameters in Table 17. Note that CRT does NOT
introduce any new hyperparameters.

C.2 Reproducing Results From This Paper

For reproducing results using SmoothAdv 8, MACER 9, SmoothMix 10, and Consistency 11, we
follow instructions provided by the authors and use their respective codes. For CRT, all necessary
instructions and code required to reproduce the results are available at https://github.com/
Ethos-lab/crt-neurips22.

8
https://github.com/Hadisalman/smoothing-adversarial

9
https://github.com/RuntianZ/macer

10
https://github.com/jh-jeong/smoothmix

11
https://github.com/jh-jeong/smoothing-consistency

15



Table 10: The certified robustness of a ViT classifier trained on CIFAR-10 using SmoothMix [15] and
CRT for different � values (i.e., noise levels). We use CRT to transfer the robustness of a ResNet110
trained using SmoothMix. We report certified test accuracy at different values of `2 radius and the
Average Certified Radius (ACR).

� 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 ACR

SMOOTHMIX [15]

0.25 69.38 56.65 42.34 28.47 0.00 0.00 0.00 0.00 0.00 0.00 0.415
0.50 50.56 43.87 37.20 30.55 24.55 19.41 14.78 10.43 0.00 0.00 0.515
1.00 35.95 31.55 27.63 23.84 20.36 17.09 14.16 11.87 9.85 8.05 0.509

CRT (RESNET110 TEACHER)

0.25 69.63 56.60 42.29 28.45 0.00 0.00 0.00 0.00 0.00 0.00 0.415
0.50 60.64 53.62 46.07 39.49 32.13 25.59 19.76 14.36 0.00 0.00 0.653
1.00 41.76 37.19 32.55 28.43 24.67 20.89 17.48 14.91 12.29 9.79 0.610

Table 11: The certified robustness of classifiers with different architectures trained on CIFAR-10
using SmoothMix [15]. Here, we use the same training hyperparameters as the ones we used to train
CRT classifiers (see Table 16). We report certified test accuracy at different values of `2 radius and
the Average Certified Radius (ACR). The architectures are sorted chronologically based on published
date. The noise level � is set to 0.25.

ARCHITECTURE 0.00 0.25 0.50 0.75 ACR

RESNET110 [11] 78.22 69.23 58.71 46.61 0.559
RESNEXT29-2X64D [36] 77.22 66.72 55.06 42.43 0.528
DLA [38] 78.07 69.37 58.61 46.70 0.559
REGNETX_200MF [27] 77.39 68.06 57.25 45.44 0.547

Table 12: The certified robustness of classifiers with different architectures trained on CIFAR-10 using
Consistency Regularization [16] and CRT. We use CRT to transfer the robustness of a ResNet110
trained using Consistency Regularization. We report certified test accuracy at different values of `2
radius and the Average Certified Radius (ACR). The noise level � is set to 0.25.

ARCHITECTURE 0.00 0.25 0.50 0.75 ACR

CONSISTENCY REGULARIZATION [16]

RESNET110 [11] 75.89 68.02 58.04 46.84 0.552

RESNEXT29-2X64D [36] 74.99 65.96 55.46 43.01 0.528
DLA [38] 76.76 67.88 57.36 45.86 0.547
REGNETX_200MF [27] 75.48 66.76 55.96 43.76 0.534
VIT [6] 60.52 52.17 42.87 34.08 0.416

CRT (RESNET110 TEACHER)

RESNEXT29-2X64D [36] 75.72 68.46 58.85 47.30 0.557
DLA [38] 76.61 69.18 59.59 48.35 0.565
REGNETX_200MF [27] 76.18 68.42 58.85 47.64 0.558
VIT [6] 73.00 64.50 53.69 42.33 0.515

16



Table 13: The certified robustness of classifiers with different architectures trained on CIFAR-10
using CRT recursively. The initial classifier was trained using Consistency Regularization [16]. We
report certified test accuracy at different values of `2 radius and the Average Certified Radius (ACR).
Here, the previous generation classifier is used to train the current generation one. Chain length
represents the number times CRT was used in training. The noise level � is set to 0.25. CRT remains
effective despite recursive use.

ARCHITECTURE CHAIN LENGTH 0.00 0.25 0.50 0.75 ACR

RESNEXT29-2X64D [36] 1 75.72 68.46 58.85 47.30 0.557
DLA [38] 2 76.36 69.20 59.35 48.46 0.565
REGNETX_200MF [27] 3 76.07 68.54 58.66 47.58 0.559
VIT [6] 4 74.42 66.18 55.94 44.88 0.535

Table 14: ImageNet result using CRT and SmoothMix on an additional student-teacher pair. We
report the ACR of the ResNet50 teacher and its RegNetX-4.0G student. For reference, we also report
robustness of a RegNetX-4.0G network trained independently using SmoothMix. The noise level � is
set to 0.5. CRT remains effective on ImageNet even with a different student-teacher pair.

TEACHER (RESNET50) STUDENT (REGNETX-4.0G)

TRAINING METHOD ACR TRAINING METHOD ACR

SMOOTHMIX [15] 0.799 ! CRT 0.788

STUDENT TRAINED DIRECTLY SMOOTHMIX [15] 0.877

Table 15: Certified robustness and total time of a ResNet110 classifier trained on CIFAR-10 using
Gaussian data augmentation. The noise level � is set to 0.25.

NETWORK 0.00 0.25 0.50 0.75 ACR TOTAL TIME (H)

RESNET110 0.486 81.41 67.75 49.67 32.37 4.80
RESNEXT29-2X64D 79.71 66.06 48.67 31.09 0.474 4.55
DLA 81.30 69.53 54.48 37.81 0.521 3.08
REGNETX_200MF 80.53 67.05 50.32 32.72 0.487 3.05
VIT 0.211 48.77 32.70 18.78 8.98 4.78

Table 16: Training hyperparameters used to train classifiers using different methods. For prior works,
we closely follow the hyperparameters reported by them. For CRT, we tune hyperparameters to train
till convergence.

METHOD EPOCHS BATCH SIZE INITIAL LR LR DECAY

CIFAR-10

SMOOTHADV [29] 150 256 0.1 50, 100
MACER [39] 440 64 0.01 200, 400
SMOOTHMIX [15] 150 256 0.1* 50, 100
GAUSSIAN AUGMENTATION [3] 200 128 0.1 100, 150
CRT 200 128 0.1 100, 150

IMAGENET

SMOOTHADV [29] 90 400 0.1 30,60
MACER [39] 120 256 0.1 30,60,90
SMOOTHMIX [15] 90 400 0.1 30,60
CRT 90 400 0.1 30,60
* For SmoothMix training of ViT, we use initial LR of 0.01 as otherwise training doesn’t converge.

17



Table 17: Method-specific hyperparameters used in our experiments on CIFAR-10 and ImageNet.

� METHOD HYPERPARAMETER DETAILS

CIFAR-10

0.25

SMOOTHADV [29] 8-SAMPLES, 10-STEP PGD ATTACK WITH ✏ = 1.0

MACER [39] k = 16, � = 12.0, � = 16.0, � = 8.0

SMOOTHMIX [15] T = 4, m = 2, ⌘ = 5.0, ↵ = 0.5

CONSISTENCY [16] � = 20, m = 2, ⌘ = 0.5

0.5 SMOOTHMIX [15] T = 4, m = 2, ⌘ = 5.0, ↵ = 1.0

1.0 SMOOTHMIX [15] T = 4, m = 2, ⌘ = 5.0, ↵ = 2.0

IMAGENET

SMOOTHADV [29] 1-SAMPLE, 1-STEP PGD ATTACK WITH ✏ = 1.0

0.5 MACER [39] k = 2, � = 3.0, � = 16.0, � = 8.0

SMOOTHMIX [15] T = 1, m = 1, ⌘ = 1.0, ↵ = 8.0

18


