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Abstract

Despite the impressive numerical performance of quasi-Newton and Ander-1

son/nonlinear acceleration methods, their global convergence rates have remained2

elusive for over 50 years. This paper addresses this long-standing question by3

introducing a framework that derives novel and adaptive quasi-Newton or non-4

linear/Anderson acceleration schemes. Under mild assumptions, the proposed5

iterative methods exhibit explicit, non-asymptotic convergence rates that blend6

those of gradient descent and Cubic Regularized Newton’s method. Notably, these7

rates are achieved adaptively, as the method autonomously determines the optimal8

step size using a simple backtracking strategy. The proposed approach also includes9

an accelerated version that improves the convergence rate on convex functions.10

Numerical experiments demonstrate the efficiency of the proposed framework,11

even compared to a fine-tuned BFGS algorithm with line search.12

1 Introduction13

Consider the problem of finding the minimizer x⋆ of the unconstrained minimization problem14

f(x⋆) = f⋆ = min
x∈Rd

f(x),

where d is the problem’s dimension, and the function f has a Lipschitz continuous Hessian.15

Assumption 1. The function f(x) has a Lipschitz continuous Hessian with a constant L,16

∀ y, z ∈ Rd, ∥∇2f(z)−∇2f(y)∥ ≤ L∥z − y∥. (1)

In this paper, ∥.∥ stands for the maximal singular value of a matrix and for the ℓ2 norm for a vector.17

Many twice-differentiable problems like logistic or least-squares regression satisfy Assumption 1.18

The Lipschitz continuity of the Hessian is crucial when analyzing second-order algorithms, as it19

extends the concept of smoothness to the second order. The groundbreaking work by Nesterov et al.20

[46] has sparked a renewed interest in second-order methods, revealing the remarkable convergence21

rate improvement of Newton’s method on problems satisfying Assumption 1 when augmented with22

cubic regularization. For instance, if the problem is also convex, accelerated gradient descent typically23

achieves O( 1
t2 ), while accelerated second-order methods achieve O( 1

t3 ). Recent advancements have24

further pushed the boundaries, achieving even faster convergence rates of up to O( 1
t7/2

) through the25

utilization of hybrid methods [43, 14] or direct acceleration of second-order methods [44, 27, 40].26

Unfortunately, second-order methods may not always be feasible, particularly in high-dimensional27

problems common in machine learning. The limitation is that exact second-order methods require28

solving a linear system that involves the Hessian of the function f . This main limitation motivated29

alternative approaches that balance the efficiency of second-order methods and the scalability of30

first-order methods, such as inexact/subspace/stochastic techniques, nonlinear/Anderson acceleration,31

and quasi-Newton methods.32
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1.1 Contributions33

Despite the impressive numerical performance of quasi-Newton methods and nonlinear acceleration34

schemes, there is currently no knowledge about their global explicit convergence rates. In fact, global35

convergence cannot be guaranteed without using either exact or Wolfe-line search techniques. This36

raises the following long-standing question that has remained unanswered for over 50 years:37

What are the non-asymptotic global convergence rates of quasi-Newton38

and Anderson/nonlinear acceleration methods?39

This paper provides a partial answer by introducing generic updates (see algorithms 1 to 3) that can40

be viewed as cubic-regularized quasi-Newton methods or regularized nonlinear acceleration schemes.41

Under mild assumptions, the iterative methods constructed within the proposed framework (see42

algorithms 3 and 6) exhibit explicit, global and non-asymptotic convergence rates that interpolate the43

one of first order and second order methods (more details in appendix A):44

• Convergence rate on non-convex problems (Theorem 4): mini ∥∇f(xi)∥ ≤ O(t−
2
3 + t−

1
3 ),45

• Convergence rate on (star-)convex problems (Theorems 5 and 6): f(xt)− f⋆ ≤ O(t−2 + t−1),46

• Accelerated rate on convex problems (Theorem 7): f(xt)− f⋆ ≤ O(t−3 + t−2).47

1.2 Related work48

Inexact, subspace, and stochastic methods. Instead of explicitly computing the Hessian matrix49

and Newton’s step, these methods compute an approximation using sampling [2], inexact Hessian50

computation [29, 19], or random subspaces [20, 31, 35]. By adopting a low-rank approximation for the51

Hessian, these approaches substantially reduce per-iteration costs without significantly compromising52

the convergence rate. The convergence speed in such cases often represents an interpolation between53

the rates observed in gradient descent methods and (cubic) Newton’s method.54

Nonlinear/Anderson acceleration. Nonlinear acceleration techniques, including Anderson accel-55

eration [1], have a long standing history [3, 4, 28]. Driven by their promising empirical performance,56

they recently gained interest in their convergence analysis [64, 26, 63, 38, 69, 67, 72, 71, 56, 65,57

66, 6, 60, 8, 57]. In essence, Anderson acceleration is an optimization technique that enhances58

convergence by extrapolating a sequence of iterates using a combination of previous gradients and59

corresponding iterates. Comprehensive reviews and analyses of these techniques can be found in60

notable sources such as [38, 7, 37, 36, 5, 17]. However, these methods do not generalize well outside61

quadratic minimization and their convergence rate can only be guaranteed asymptotically when using62

a line-search or regularization techniques [62, 68, 56].63

Quasi-Newton methods. Quasi-Newton schemes are renowned for their exceptional efficiency64

in continuous optimization. These methods replace the exact Hessian matrix (or its inverse) in65

Newton’s step with an approximation that is updated iteratively during the method’s execution. The66

most widely used algorithms in this category include DFP [18, 25] and BFGS [61, 30, 24, 10, 9].67

Most of the existing convergence results predominantly focus on the asymptotic super-linear rate of68

convergence [70, 32, 12, 11, 15, 22, 75, 73, 74]. However, recent research on quasi-Newton updates69

has unveiled explicit and non-asymptotic rates of convergence [50, 52, 51, 41, 42]. Nonetheless,70

these analyses suffer from several significant drawbacks, such as assuming an infinite memory71

size and/or requiring access to the Hessian matrix. These limitations fundamentally undermine the72

essence of quasi-Newton methods, which are typically designed to be Hessian-free and maintain low73

per-iteration cost through their low-memory requirement and low-rank structure.74

Recently, Kamzolov et al. [39] introduced an adaptive regularization technique combined with75

cubic regularization, with global, explicit (accelerated) convergence rates for any quasi-Newton76

method. The method incorporates a backtracking line search on the secant inexactness inequality77

that introduces a quadratic regularization. However, this algorithm relies on prior knowledge of the78

Lipschitz constant specified in Assumption 1. Unfortunately, the paper does not provide an adaptive79

method to find jointly the Lipschitz constant as well, as it is a priory too costly to know which80

parameter to update. This aspect makes the method impractical in real-world scenarios.81

2



Paper Organization Section 2 introduces the proposed novel generic updates and some essential82

theoretical results. Section 3 presents the convergence analysis of the iterative algorithm, which83

uses one of the proposed updates. Section 4 is dedicated to the accelerated version of the proposed84

framework. Section 5 presents examples of methods generated by the proposed framework.85

2 Type-I and Type-II Step86

This section first examines a remarkable property shared by quasi-Newton and Anderson acceleration:87

the sequence of iterates of these methods can be expressed as a combination of directions formed by88

previous iterates and the current gradient. Building upon this observation, section 2.1 investigates89

how to obtain second-order information without directly computing the Hessian of the function f by90

approximating the Hessian within the subspace formed by these directions. Subsequently, section 2.291

demonstrates how to utilize this approximation to establish an upper bound for the function f and its92

gradient norm ∥∇f(x)∥. Minimizing these upper bounds, respectively, leads to a type-I and type-II93

method.94

Motivation: what quasi-Newton and nonlinear acceleration schemes actually do? The BFGS95

update is a widely used quasi-Newton method for unconstrained optimization. It approximates the96

inverse Hessian matrix using updates based on previous gradients and iterates. The update reads97

xt+1 = xt − htHt∇f(xt), Ht = Ht−1

(
I − gtd

T
t

gT
t dt

)
+ dt

(
dTt

dT
t gt+gT

t Ht−1dt

(gT
t dt)2

− gT
t Ht−1

gT
t dt

)
where Ht is the approximation of the inverse Hessian at iteration t, ht is the step size, dt = xt−xt−198

is the step direction, gt = ∇f(xt) − ∇f(xt−1) is the gradient difference. After unfolding the99

equation, the BFGS update can be seen as a combination of the di’s and ∇f(xt),100

xt+1 − xt = H0P0 . . . Pt∇f(xt) +
∑t

i=1 αidi, (2)

where Pi are projection matrices in Rd×d and αi are coefficients. Similar reasoning can be applied to101

other quasi-Newton formulas (see appendix B for more details).102

This observation aligns with the principles of Anderson acceleration methods. Considering the same103

vectors dt and gt, Anderson acceleration updates xt+1 as:104

α⋆ = minα ∥∇f(xt) +
∑t−1

i=0 αigi∥, xt+1 − xt =
∑t

i=0 α
⋆
i (di − htgi) ,

where ht is the relaxation parameter, which can be seen as the step size of the method. As all105

xi’s belong to the span of previous gradients, the update is similar to (2), see appendix B for more106

details. This is not surprising, as it has been shown that Anderson acceleration can be viewed as a107

quasi-Newton method [23]. Some studies have explored the relationship between these two classes108

of optimization techniques and established strong connections in terms of their algorithmic behavior109

[23, 76, 59, 13].110

Hence, quasi-Newton algorithms and nonlinear/Anderson acceleration methods utilize previous111

directions di and the current gradient ∇f(xt) in subsequent iterations. However, their convergence112

is guaranteed only if a line search is used, and their convergence speed is heavily dependent on H0113

(quasi-Newton) or ht (Anderson acceleration) [49].114

2.1 Error Bounds on the Hessian-Vector Product Approximation by a Difference of Gradients115

Consider the following d×N matrices that represent the algorithm’s memory,116

Y = [y1, . . . , yN ], Z = [z1, . . . , zN ], D = Y − Z, G = [. . . ,∇f(yi)−∇f(zi), . . .]. (3)

For example, to mimic quasi-Newton techniques, the matrices Y and Z can be defined such that,117

D = [. . . , xt−i+1 − xt−i, . . .], G = [. . . ,∇f(xt−i+1)−∇f(xt−i), . . .], i = 1 . . . N.

Motivated by (2), this paper studies the following update, defined as a linear combination of the118

previous directions di,119

x+ − x = Dα where α ∈ RN . (4)
The objective is to determine the optimal coefficients α based on the information contained in the120

matrices defined in (3). Notably, the absence of the gradient in the update (4) distinguishes this121

3



approach from (2), allowing for the development of an adaptive method that eliminates the need for122

an initial matrix H0 (quasi-Newton methods) or a mixing parameter ht (Anderson acceleration).123

Under assumption (1), the following bounds hold for all x, y, z, x+ ∈ Rd [46],124

∥∇f(y)−∇f(z)−∇2f(z)(y − z)∥ ≤ L
2 ∥y − z∥2, (5)∣∣f(x+)− f(x)−∇f(x)(x+ − x)− 1

2 (x+ − x)T∇2f(x)(x+ − x)
∣∣ ≤ L

6 ∥x+ − x∥3. (6)

The accuracy of the estimation of the matrix∇2f(x), depends on the error vector ε,125

ε
def
= [ε1, . . . , εN ], and εi

def
= ∥di∥ (∥di∥+ 2∥zi − x∥) . (7)

The following Theorem 1 explicitly bounds the error of approximating∇2f(x)D by G.126

Theorem 1. Let the function f satisfy Assumption 1. Let x+ be defined as in (4) and the matrices127

D, G be defined as in (3) and vector ε as in (7). Then, for all w ∈ Rd and α ∈ RN ,128

−L∥w∥
2

∑N
i=1 |αi|εi ≤ wT (∇2f(x)D −G)α ≤ L∥w∥

2

∑N
i=1 |αi|εi, (8)

∥wT (∇2f(x)D −G)∥ ≤ L∥w∥
2 ∥ε∥. (9)

Proof sketch and interpretation. The theorem states that the Hessian-vector product∇2f(x)(y−z)129

can be approximated by the difference of gradients ∇f(y) − ∇f(z), providing a cost-effective130

approach to estimate ∇2f without computing it. This property is the basis of quasi-Newton methods.131

The detailed proof can be found in appendix F. The main idea of the proof is as follows. From (5)132

with y = yi and z = zi, writing di = yi − zi, and Assumption 1,133

∥∇f(yi)−∇f(zi)−∇2f(x)(yi − zi)∥ ≤
L

2
∥di∥2 + ∥∇2f(x)−∇2f(z)∥∥di∥ ≤

L

2
εi.

The first term in εi bounds the error of (5), while the second comes from the distance between (5)134

and the current point x where the Hessian is estimated. Then, it suffices to combine the inequalities135

with coefficients α to obtain Theorem 1.136

2.2 Type I and Type II Inequalities and Methods137

In the literature, Type-I methods often refer to algorithms that aim to minimize the function value138

f(x), while type-II methods minimize the gradient norm ∥∇f(x)∥ [23, 76, 13]. Applying the bounds139

(6) and (5) to the update in (4) yields the following Type-I and Type-II upper bounds, respectively.140

Theorem 2. Let the function f satisfy Assumption 1. Let x+ be defined as in (4), the matrices D, G141

be defined as in (3) and ε be defined as in (7). Then, for all α ∈ RN ,142

f(x+) ≤ f(x) +∇f(x)TDα+ αTHα
2 + L∥Dα∥3

6 , H
def
= GTD+DTG+IL∥D∥∥ε∥

2 (10)

∥∇f(x+)∥ ≤ ∥∇f(x) +Gα∥+ L
2

(∑N
i=1 |αi|εi + ∥Dα∥2

)
, (11)

The proof can be found in appendix F. Minimizing eqs. (10) and (11) leads to algorithms 1 and 2,143

respectively, whose constant L is replaced by a parameter M , found by backtracking line-search. A144

study of the (strong) link between these proposed algorithms and nonlinear/Anderson acceleration145

and quasi-Newton methods can be found in appendix B.146

Solving the sub-problems In algorithms 1 and 2, the coefficients α are computed by solving a147

minimization sub-problem in O(N3 +Nd) (see appendix C for more details). Usually, N is rather148

small (e.g. between 5 and 100); hence solving the subproblem is negligible compared to computing a149

new gradient∇f(x). Here is the summary:150

• In algorithm 1, the subproblem can be solved easily by a convex problem in two variables,151

which involves an eigenvalue decomposition of the matrix H ∈ RN×N [46].152

• In algorithm 2, the subproblem can be cast into a linear-quadratic problem of O(N)153

variables and constraints that can be solved efficiently with SDP solvers (e.g., SDPT3).154
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Algorithm 1 Type-I Subroutine with Backtracking Line-search
Require: First-order oracle for f , matrices G, D, vector ε, iterate x, initial smoothness M0.

1: Initialize M ← M0

2
2: do
3: M ← 2M and H ← GTD+DTG

2 + IN
M∥D∥∥ε∥

2

4: α⋆ ← argminα f(x) +∇f(x)TDα+ 1
2α

THα+ M∥Dα∥3

6
5: x+ ← x+Dα

6: while f(x+) ≥ f(x) +∇f(x)TDα⋆ + 1
2 [α

⋆]THα⋆ + M∥Dα⋆∥3

6
7: return x+, M

Algorithm 2 Type-II Subroutine with Backtracking Line-search
Same as algorithm 1, but minimize and check the upper bound (11) instead of (10) on lines 4 and 6.

3 Iterative Type-I Method: Framework and Rates of Convergences155

The rest of the paper analyzes the convergence rate of methods that use algorithm 1 as a subroutine;156

see algorithm 3. The analysis of methods that uses algorithm 2 is left for future work.157

3.1 Main Assumptions and Design Requirements158

This section lists the important assumptions on the function f . Some subsequent results require an159

upper bound on the radius of the sub-level set of f at f(x0).160

Assumption 2. The radius of the sub-level set {x : f(x) ≤ f(x0)} is bounded by R <∞.161

To ensure the convergence toward f(x⋆), some results require f to be star-convex or convex.162

Assumption 3. The function f is star convex if, for all x ∈ Rd and ∀τ ∈ [0, 1],163

f((1− τ)x+ τx⋆) ≤ (1− τ)f(x) + τf(x⋆).

Assumption 4. The function f is convex if, for all y, z ∈ Rd, f(y) ≥ f(z) +∇f(z)(y − z).164

The matrices Y, Z, D must meet some conditions listed below as "requirements" (see section 5 for165

details). All convergence results rely on one of these conditions on the projector onto span(D),166

Pt
def
= Dt(D

T
t Dt)

−1DT
t . (12)

Requirement 1a. For all t, the projector Pt of the stochastic matrix Dt satisfies E[Pt] =
N
d I.167

Requirement 1b. For all t, the projector Pt satisfies Pt∇f(xt) = ∇f(xt).168

The first condition guarantees that, in expectation, the matrix Dt spans partially the gradient ∇f(xt),169

since E[Pt∇f(xt)] =
N
d ∇f(xt). The second condition simply requires the possibility to move170

towards the current gradient when taking the step x+Dα. This condition resonates with the idea171

presented in (2), where the step x+−x combines previous directions and the current gradient∇f(xt).172

In addition, it is required that the norm of ∥ε∥ does not grow too quickly, hence the next assumption.173

Requirement 2. For all t, the relative error ∥εt∥
∥Dt∥ is bounded by δ.174

The Requirement 2 is also non-restrictive, as it simply prevents taking secant equations at yi − zi and175

zi − xi too far apart. Most of the time, δ satisfies δ ≤ O(R).176

Finally, the condition number of the matrix D also has to be bounded.177

Requirement 3. For all t, the matrix Dt is full-column rank, which implies that DT
t Dt is invertible.178

In addition, its condition number κDt

def
=
√
∥DT

t Dt∥∥(DT
t Dt)−1∥ is bounded by κ.179

The condition on the rank of D is not overly restrictive. In most practical scenarios, this condition is180

typically satisfied without issue. However, the second condition might be hard to meet, but section 5181

studies strategies that prevent κD from exploding by taking orthogonal directions or pruning D.182
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Algorithm 3 Generic Iterative Type-I Methods
Require: First-order oracle f , initial iterate and smoothness x0, M0, number of iterations T .

for t = 0, . . . , T − 1 do
Update Gt, Dt, εt (see section 5).
xt+1,Mt+1 ← [algorithm 1](f,Gt, Dt, εt, xt, (Mt/2))

end for
return xT

3.2 Rates of Convergence183

When f satisfies Assumption 1, algorithm 3 ensures a minimal function decrease at each step.184

Theorem 3. Let f satisfy Assumption 1. Then, at each iteration t ≥ 0, algorithm 3 achieves185

f(xt+1) ≤ f(xt)− Mt+1

12 ∥xt+1 − xt∥3, Mt+1 < max
{
2L ; M0

2t

}
. (13)

Under some mild assumptions, algorithm 3 converges to a critical point for non-convex functions.186

Theorem 4. Let f satisfy Assumption 1, and assume that f is bounded below by f∗. Let Require-187

ments 1b to 3 hold, and Mt ≥Mmin. Then, algorithm 3 starting at x0 with M0 achieves188

min
i=1, ..., t

∥∇f(xi)∥ ≤ max

{
3L

t2/3

(
12

f(x0)− f⋆

Mmin

)2/3

;

(
C1

t1/3

)(
12

f(x0)− f⋆

Mmin

)1/3
}
,

where C1 = δL
(

κ+2κ2

2

)
+maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥.

Going further, algorithm 3 converges to an optimum when the function is star-convex.189

Theorem 5. Assume f satisfy Assumptions 1 to 3. Let Requirements 1b to 3 hold. Then, algorithm 3190

starting at x0 with M0 achieves, for t ≥ 1,191

(f(xt)− f⋆) ≤ 6
f(xt)− f⋆

t(t+ 1)(t+ 2)
+

1

(t+ 1)(t+ 2)

L(3R)3

2
+

1

t+ 2

C2(3R)2

4
,

where C2
def
= δLκ+2κ2

2 +maxi∈[0,t] ∥∇2f(xi)− Pi∇2f(xi)Pi∥.

Finally, the next theorem shows that when algorithm 3 uses a stochastic D that satisfies Require-192

ment 1a, then f(xt) also converges in expectation to f(x⋆) when f is convex.193

Theorem 6. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1a, 2 and 3 hold. Then, in194

expectation over the matrices Di, algorithm 3 starting at x0 with M0 achieves, for t ≥ 1,195

EDt
[f(xt)− f⋆] ≤ 1

1 + 1
4

[
N
d t
]3 (f(x0)− f⋆) +

1[
N
d t
]2 L(3R)3

2
+

1[
N
d t
] C3(3R)2

2
,

where C3
def
= δLκ+2κ2

2 + (d−N)
d maxi∈[0,t] ∥∇2f(xi)∥.

Interpretation The rates presented in Theorems 4 to 6 combine the ones of cubic regularized196

Newton’s method and gradient descent (or coordinate descent, as in Theorem 6) for functions with197

Lipschitz-continuous Hessian. As C1, C2, and C3 decrease, the rates approach those of cubic Newton.198

The constants C1, C2, and C3 quantify the error of approximating D∇2f(x)D by H in (10) into199

two terms. The first represents the error made by approximating ∇2f(x)D by G, while the second200

describes the low-rank approximation of ∇2f(x) in the subspace spanned by the columns of D. The201

approximation is more explicit in C3, where increasing N reduces the constant up to N = d.202

To retrieve the convergence rate of Newton’s method with cubic regularization, the approximation203

needs to satisfy three properties: 1) the points contained in Yt and Zt must be close to each other,204

and to xt to reduce δ and ∥ε∥; 2) the condition number of D should be close to 1 to reduce κ; 3) D205

should span a maximum dimension in Rd to improve the approximation of∇2f(x) by P∇2f(x)P .206

For example, Zt = xt1TN , Dt = hIN with h small, and Yt = Zt +Dt achieve these conditions. This207

(naive) strategy estimates all directional second derivatives with a finite difference for all coordinates208

and is equivalent to performing a Newton’s step in terms of complexity.209

6



Algorithm 4 Type-I subroutine with backtracking for the accelerated method
Require: First-order oracle f , matrices G, D, vector ε, iterate x, smoothness M0, minimal norm ∆

Initialize M ← M0

2 , γ ← 1
4

∥ε∥
∥D∥

(
1 + κ2

D

)
, ExitFlag← False

while ExitFlag is False do
Update M and H ← GTD+DTG

2 + IN
M∥D∥∥ε∥

2

α∗ ← argminα f(x) +∇f(x)TDα+ 1
2α

THα+ M∥Dα∥3

6
x+ ← x+Dα

If −∇f(x+)
TDα ≥ ∥∇f(x+)∥3/2

√
3M
4

and ∥Dα∥ ≥ ∆ then ExitFlag← LargeStep

If −f(x+)
TDα ≥ ∥∇f(x+)∥2

M(γ+ ∥Dα∥
2 )

then ExitFlag← SmallStep

end while
return x+, α, M , γ, ExitFlag

Algorithm 5 Adaptive Accelerated Type-I Algorithm (Sketch, see appendix D for the full version)
Require: First-order oracle f , initial iterate and smoothness x0, M0, number of iterations T .

Initialize G0, D0, ε0, λ(1)
0 , λ(2)

0 , ∆, x1, M1, (M0)1.
for t = 1, . . . , T − 1 do

Update Gt, Dt, εt.
do

Compute vt ← argminΦt, set yt = t
t+3xt +

3
t+3vt, and update (M0)t

{xt+1, ExitFlag} ← [algorithm 4](f,Gt, Dt, εt, yt, (M0)t,∆)

if Φt+1(vt+1) ≤ f(xt+1) then %% Parameters adjustment if needed
ValidBound← False
if ExitFlag is SmallStep then λ

(1)
t ← 2λ

(1)
t , otherwise λ

(2)
t ← 2λ

(2)
t

else
ValidBound← True %% Successful iteration

end if
while ValidBound is False

end for
return xT

4 Accelerated Algorithm for Convex Functions210

This section introduces algorithm 5, an accelerated variant of algorithm 3 for convex functions,211

designed using the estimate sequence technique from [44]. It consists in iteratively building a212

function Φt(x), a regularized lower bound on f , that reads213

Φt(x) =
1∑t

i=0 bi

(∑t
i=0 bi (f(xi) +∇f(xi)(x− xi)) + λ

(1)
t

∥x−x0∥2

2 + λ
(2)
t

∥x−x0∥3

6

)
,

where λ(1,2)
t are non-decreasing. The key aspects of acceleration are as follows (see section 4 for more214

details): 1) The accelerated algorithm makes a step at a linear combination between vt, the optimum215

of Φt, and the previous iterate xt. 2) It uses a modified version of algorithm 1, see algorithm 4.216

3) Under some conditions, the step size can be considered as "large", i.e., similar to a cubic-Newton217

step. The ∆ > 0 ensures the step is sufficiently large to ensure theoretical convergence - but setting218

∆ = 0 does not seem to impact the numerical convergence. The presence of both small and large219

steps is crucial to obtain the theoretical rate of convergence.220

Theorem 7. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1b to 3 hold. Then,221

algorithm 5 starting at x0 with M0 achieves, for all ∆ > 0 and for t ≥ 1,222

f(xt)− f⋆ ≤ (M0)
2
max

L

(
3R

t+ 3

)2

+
4(M0)max

3
√
3

max
{
1 ; 2

∆

}( 3R

t+ 3

)3

+
λ̃(1)R2

2 + λ̃(2)R3

6

(t+ 1)3
.

where λ̃(1) = 0.5 · δ
(
Lκ+M1κ

2
)
+ ∥∇f(x0)− P0∇f(x0)P0∥, λ̃(2) = M1 + L,

(M0)max = L
2 (2∆ + (2κ2 + κ)δ) + (2

√
3− 1)max0≤i≤t ∥(I − Pi)∇2f(xi)Pi∥.
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Interpretation The interpretation is similar to the one from Section 3. Ignoring λ̃(1,2), the rate of223

Theorem 7 combines the one of accelerated gradient and accelerated cubic Newton [45, 44]. The224

constant M0 blends the Lipschitz constant of the Hessian L with its approximation errors (2κ2 + κ)δ225

and ∥(I − P )∇2f(x)∥. The better the Hessian is approximated, the smaller the constant.226

5 Some update strategies for matrices Y, Z, D, G227

The framework presented in this paper is characterized by its generality, requiring only minimal228

assumptions on the matrix D and vector ε. This section explores different strategies for updating the229

matrices from (3), which can be classified into two categories: online and batch techniques.230

Recommended method. Among all the methods presented in this section, the most promising231

technique seems to be the Orthogonal Forward Estimates Only, as it ensures that the condition232

number κD = 1 and the norm of the error vector ∥ε∥ is small.233

5.1 Online Techniques234

The online technique updates the matrix D while algorithms 3 and 5 are running. To achieve235

Requirement 1b, the method employs either a steepest or orthogonal forward estimate, defined as236

xt+ 1
2
= xt − h∇f(xt) (steepest) or xt+ 1

2
= xt − h(I − Pt−1)

∇f(xt)

∥∇f(xt)∥
(orthogonal).

Then, it include xt+ 1
2
− xt in the matrix Dt. The projector Pt−1 is defined in (12), and parameter h237

can be a fixed small value (e.g., h = 10−9). This section investigates three different strategies for238

storing past information: Iterates only, Forward Estimates Only, and Greedy, listed below.239

Yt = [xt+ 1
2
, xt, xt−1, . . . , xt−N+1], Zt = [xt, xt−1, . . . , xt−N ] (Iterates only)

Yt = [xt+ 1
2
, xt− 1

2
, . . . , , xt−N+ 1

2
], Zt = [xt, xt−1, . . . , xt−N ] (Forward Estimates Only)

Yt = [xt+ 1
2
, xt, xt− 1

2
, . . . , xt−N+1

2
], Zt = [xt, xt− 1

2
, . . . , xt−N

2
] (Greedy)

Iterates only: In the case of quasi-Newton updates and Nonlinear/Anderson acceleration, the iterates240

are constructed using the equation xt+1 − xt ∈ ∇f(xt) + span{xt−i+1 − xt−i}i=1...N . The update241

draws inspiration from this observation. However, it does not provide control over the condition242

number of Dt or the norm ∥ε∥. To address this, one can either accept a potentially high condition243

number or remove the oldest points in D and G until the condition number is bounded (e.g., κ = 109).244

Forward Estimates Only: This method provides more control over the iterates added to Y and Z.245

When using the orthogonal technique to compute xi+ 1
2

reduces the constants in Theorems 4, 5 and 7:246

the condition number of D is equal to 1 as DTD = h2I , and the norm of ε is small (∥ε∥ ≤ O(h)).247

Greedy: The greedy approach involves storing both the iterates and the forward approximations. It248

shares the same drawback as the Iterates only strategy but retains at least the most recent information249

about the Hessian-vector product approximation, thereby reducing the ∥zi − xi∥ term in ε (7).250

5.2 Batch Techniques251

Instead of making individual updates, an alternative approach is to compute them collectively, centered252

on xt. This technique generates a matrix Dt consisting of N orthogonal directions d1, · · · , dN of253

norm h. The corresponding Yt, Zt, Gt matrices are then defined as follows:254

Yt = [xt + d1, . . . , xt + dn], Zt = [xt, . . . , xt], Gt = [. . . ,∇f(xt + di)−∇f(xt), . . .].

This section explores two batch techniques that generate orthogonal directions: Orthogonalization255

and Random Subspace. Both lead to δ = 3h and κ = 1 in Requirements 2 and 3. However, they256

require N additional gradient computations at each iteration (instead of one for the online techniques).257

For clarity, in the experiments, only the Greedy version is considered.258

Orthogonalization: This technique involves using any online technique discussed in the previous259

section and storing the directions in a matrix D̃t. Then, it constructs the matrices Dt by performing260

an orthogonalization procedure on D̃t, such as the QR algorithm. This approach provides Hessian261

estimates in relevant directions, which can be more beneficial than random ones.262
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Figure 1: Comparison between the type-1 methods proposed in this paper and the optimized imple-
mentation of ℓ-BFGS from minFunc [53] with default parameters, except for the memory size. All
methods use a memory size of N = 25.

Random Subspace: Inspired by [35], this technique randomly generates Dt at each iteration by263

either taking Dt to be N random (rescaled) canonical vectors or by using the Q matrix from the QR264

decomposition of a random N ×D matrix. This ensures that Dt satisfies Requirement 1a. For clarity,265

in the experiments, only the QR version is considered.266

6 Numerical Experiments267

This section compares the methods generated by this paper’s framework to the fine-tuned ℓ-BFGS268

algorithm from minFunc [53]. More experiments are conducted in appendix E. The tested methods269

are the Type-I iterative algorithms (algorithm 3 with the techniques from section 5). The step size270

of the forward estimation was set to h = 10−9, and the condition number κDt
is maintained below271

κ = 109 with the iterates only and Greedy techniques. The accelerated algorithm 6 is used only with272

the Forward Estimates Only technique. The compared methods are evaluated on a logistic regression273

problem with no regularization on the Madelon UCI dataset [33]. The results are shown in fig. 1.274

Regarding the number of iterations, the greedy orthogonalized version outperforms the others due to275

the orthogonality of directions (resulting in a condition number of one) and the meaningfulness of276

previous gradients/iterates. However, in terms of gradient oracle calls, the recommended method,277

orthogonal forward iterates only, achieves the best performance by striking a balance between the278

cost per iteration (only two gradients per iteration) and efficiency (small and orthogonal directions,279

reducing theoretical constants). Surprisingly, the accelerated method’s performance is suboptimal,280

possibly because it tightens the theoretical analysis, diminishing its inherent adaptivity.281

7 Conclusion, Limitation, and Future work282

This paper introduces a generic framework for developing novel quasi-Newton and Ander-283

son/Nonlinear acceleration schemes, offering a global convergence rate in various scenarios, including284

accelerated convergence on convex functions, with minimal assumptions and design requirements.285

One limitation of the current approach is requiring an additional gradient step for the forward286

estimate, as discussed in Section 5. However, this forward estimate is crucial in enabling the287

algorithm’s adaptivity, eliminating the need to initialize a matrix H0 (quasi-Newton) or employ a288

mixing parameter h0 (Anderson acceleration).289

In future research, although unsuitable for large-scale problems, the method presented in this paper290

can achieve super-linear convergence rates, as with infinite memory, they would be as fast as cubic291

Newton methods. Utilizing the average-case analysis framework from existing literature, such as [48,292

58, 21, 16, 47], could also improve the constants in Theorems 4 and 5 to match those in Theorem 6.293

Furthermore, exploring convergence rates for type-2 methods, which are believed to be effective for294

variational inequalities, is a worthwhile direction.295

Ultimately, the results presented in this paper open new avenues for researchs. It may also provide a296

potential foundation for investigating additional properties of existing quasi-Newton methods and297

may even lead to the discovery of convergence rates for an adaptive, cubic-regularized BFGS variant.298
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Supplementary Materials468

Preconditioner for the Type 1 Step469

This section presents a simple diagonal preconditionner that helps in reducing the theoretical constants470

that involves the error vector ε. This simple preconditionner impacts the efficiency of the methods471

presented in this paper, in particular, the accelerated Type-1 step.472

The type-1 step (10) in Theorem 2 from section 2 is actually a simplified, looser upper bound.473

Looking at the last steps of proof of Theorem 2, the upper bound on f actually reads474

f(x+) ≤ f(x) +∇f(x)Dα+
1

2

(
(Dα)TGα+

L∥Dα∥
2

N∑
i=1

|αi|εi

)
+

L

6
∥Dα∥3.

However, the minimization of the upper may be intractable as it is a non smooth, potentially non475

convex problem. Therefore, it uses the bounds476

N∑
i=1

|αi|εi = αT (sign(α)⊙ ε) ≤ ∥α∥∥ε∥,

∥Dα∥ ≤ ∥D∥∥α∥.

Diagonal preconditioner Introducing a diagonal preconditioner D leads to those alternatives477

bounds,478

N∑
i=1

|αi|εi ≤ ∥Dα∥∥D−1ε∥,

∥Dα∥ ≤ ∥DD−1∥∥Dα∥.

which gives the following type-1 upper bound on the function values,479

f(x+) ≤ f(x) +∇f(x)Dα+
αT H̃α

2
+

L

6
∥Dα∥3,

where480

H̃ =
RTD +DTR+ L∥DD−1∥∥D−1ε∥D2

2
.

The diagonal preconditioner can be set, for instance, to ddiag(DTD), where ddiag is the operator481

that extract the diagonal of a matrix. There are two important benefits to use the diagonal precondi-482

tioner, as it 1) diminishes the condition number of the matrix D, 2) diminishes the constant δ. The483

effect of this preconditioner is more important when there is a big difference between the norm of484

the direction di, in particular for the Greedy strategies and memorize the difference between iterates485

xi − xi−1 (that can be large) and the forward estimates xi+ 1
2
− xi (that can be small).486
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A Known rates of convergence487

This section explores the known rates of convergence for different optimization methods. Specifically,488

it focuses on two scenarios: functions with Lipschitz continuous gradient and functions with Lipschitz-489

continuous Hessian. For smooth functions, the rates of plain gradient descent and its accelerated490

version are examined. On the other hand, for functions with a Lipschitz-continuous Hessian, the rates491

of the cubic regularized Newton method and its accelerated variant are investigated.492

When the function is smooth, i.e., has Lipschitz continuous gradients,493

f(y) ≤ f(x) +∇f(x)(y − x) +
L
2
∥y − x∥2,

the rates of plain gradient descent and its accelerated version read [45]494

min
0≤i≤t

∥∇f(xi)∥ ≤
√
Lf(x0)− f⋆

t+ 1
, (plain, non-convex) (14)

f(xt)− f(x⋆) ≤ L 2

t+ 4
∥x0 − x⋆∥2, (plain, convex) (15)

f(xt)− f(x⋆) ≤ L 4

(t+ 2)2
∥x0 − x⋆∥2. (accelerated) (16)

However, the class of functions considered in this paper is not the class of smooth functions. However,495

if the sequence {xt} is monotone, the constant L can be estimated as496

L ≤ LR.

On the other hand, when the function has a Lipschitz-continuous Hessian, the cubic regularized497

Newton method and its accelerated version converge with the following rates [46, 44, 35]:498

min
0≤i≤t

∥∇f(xi)∥ ≤
16L

9

(
3(f(x0)− f⋆)

2tMmin

)2/3

, (plain, non-convex)

(17)

f(xt)− f(x⋆) ≤ 9L
R3

(t+ 4)2
, (plain, convex)

(18)

E[f(xt)]− f(x⋆) ≤
(
d−N

N

)
L(3R)2

2t
+

(
d

N

)2
L(3R)3

3t2
+O

(
1

t3

)
, (stochastic, convex)

(19)

f(xt)− f(x⋆) ≤ L
14∥x0 − x⋆∥
t(t+ 1)(t+ 2)

. (accelerated)

(20)

Overall, the rates are faster than first order methods.499
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B Linking with Existing Methods500

This section presents the fundamentals of Anderson/nonlinear acceleration (appendix B.1), quasi-501

Newton schemes (appendix B.2), and their relationship with the proposed method in this paper502

(appendix B.3).503

B.1 Anderson Acceleration and Nonlinear Acceleration504

Anderson acceleration, also known as nonlinear acceleration, is a powerful technique that enhances505

the convergence speed of fixed point iterations and optimization algorithms. Initially developed506

for solving linear systems, Anderson acceleration has gained popularity due to its effectiveness in507

accelerating iterative methods. The method leverages previous iterations to construct an improved508

estimate of the objective function’s minimizer.509

The Anderson acceleration algorithm employs the following approximation to compute weights:510

∇f

(
N∑
i=0

βixi

)
≈

N∑
i=0

βi∇f(xi),

N∑
i=0

βi = 1.

When the function f is quadratic, this approximation becomes an equality. The underlying idea is as511

follows: since the optimum satisfies∇f(x⋆) = 0,512

N∑
i=0

βi∇f(xi) ≈ 0 ⇒ ∇f

(
N∑
i=0

βixi

)
≈ 0 ⇒

N∑
i=0

βixi ≈ x⋆.

The Anderson acceleration steps is thus given by513

xt+1 =

N∑
i=0

β⋆
i xt−i+1, β⋆ = argmin

β
∥

N∑
i=0

βi∇f(xt−i+1)∥2

Over the past decades, the ideas behind Anderson acceleration have been refined. For example, the514

constraint can be eliminated by considering the step xt+1 − xt instead:515

xt+1 − xt =

N∑
i=0

βixt−i+1 − xt

=

N∑
i=0

β̃ixt−i+1.

The vector β̃i has the property that its sum equals zero. Hence, it can be rewritten as516

xt+1 − xt =

N∑
i=1

αi(xt−i+1 − xt−i)

α = argmin
α

∥∥∥∥∥∇f(xt) +

N∑
i=1

αi(∇f(xt−i+1)−∇f(xt−i))

∥∥∥∥∥
where α ∈ RN has no constraint. By writing di = xt−i+1 − xt−i, gi = ∇f(xt−i+1)−∇f(xt−i),517

and D = [dt, . . . , dt−N+1], G = [gt, . . . , gt−N+1], the step becomes518

xt+1 − xt = Dtα, α = argmin
α

∥∇f(xt) +Gtα∥.

However, this version of Anderson acceleration is non-convergent because there is no contribution519

from∇f(xt) in the step xt+1−xt. The most popular solution to this problem is introducing a mixing520

parameter that combines gradient steps, resulting in the following expression:521

xt+1 = xt − h∇f(xt) + (D − hG)α, α = argmin
α

∥∇f(xt) +Gα∥. (AA Type II)
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Following a similar idea, recent works have introduced a type I variant of the algorithm [23, 72, 76,522

13] that minimizes the function value instead of the gradient norm:523

xt+1 = xt − h∇f(xt) + (D − hG)α, α = argmin f(xt) +∇f(xt)Dtα+
1

2
αTDT

t Gtα,

(AA Type I)

By incorporating regularization [56, 13], globalization techniques [76], or performing a line search524

on the parameter h, the algorithm converges towards x⋆.525

B.2 Single-secant and Multisecant Quasi-Newton Methods526

Quasi-Newton methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, approxi-527

mate the Hessian matrix in order to efficiently solve unconstrained optimization problems. These528

methods avoid the expensive computation of the exact Hessian by using iterative updates based on529

previous iterates and gradients of the objective function.530

While the BFGS method has been discussed previously (see section 2), this section focuses on other531

updates commonly used in quasi-Newton methods: the Davidon-Fletcher-Powell (DFP) formula, the532

Symmetric Rank-One (SR1) formula, and the Broyden type-1 and type-2 updates.533

B.2.1 The Ideas Behind Single-Secant and Multisecant Hessian Approximation534

In quasi-Newton methods, the Hessian approximation is updated using the secant equation, which535

relates the gradients and Hessian at two different points. For a twice continuously differentiable536

function, the secant equation is given by:537

∇f(y)−∇f(x) = ∇2f(ξ)(y − x),

where ξ is a point on the line segment connecting x and y. This equation serves as the basis for538

updating the Hessian approximation.539

Based on this remarkable identity, quasi-Newton methods update an approximation of the Hessian540

Bt or its inverse Ht such that the approximation satisfies541

∇f(xt)−∇f(xt−1) = Bt(xt − xt−1), Ht (∇f(xt)−∇f(xt−1)) = xt − xt−1.

What distinguishes the different updates is how to fix the remaining degrees of freedom. For instance,542

the simple SR-1 method updates Ht such that543

min
H
∥H −Ht−1∥F : H = HT , H (∇f(xt)−∇f(xt−1)) = xt − xt−1. (21)

Those methods are called single-secant as they update Ht only one secant equation at a time. Hence,544

in general, Ht only satisfies the latest secant equation.545

Multisecant updates, on the other hand, approximate the Hessian using a batch of secant equations.546

By introducing matrices D = [dt−N+1, . . . , dt] and Gt = [gt−N+1, . . . , gt], the multisecant updates547

satisfy548

Gt = BtDt, HtGt = Dt.

Unfortunately, when imposing symmetry, it is impossible satisfy multiple secants at a time [54],549

although there are some works trying to enforce symmetry while approximating the secant equation550

in a least square sense [55, 59].551

When symmetry is not imposed, the solution for Bt and Ht can be obtained as:552

Bt = Gt[Dt]
† +B0(I −DtD

†
t ), Ht = Dt[Gt]

† +H0(I −GtG
†
t), (22)

where B0 and H0 are the initial approximations, and [A]† denotes the pseudo-inverse of matrix A.553

Different choices of pseudo-inverse lead to different methods.554

The inversion of Bt can be computed using the Woodbury matrix identity, which provides an efficient555

way to compute the inverse. The update for B−1
t is given by:556

B−1
t = B−1

0

(
I −Gt

(
D†

tB
−1
0 Gt

)−1

D†
tB

−1
0

)
+Dt

(
D†

tB
−1
0 Gt

)−1

D†
tB

−1
0 .
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This update is equivalent to the update for Ht, given that557

B−1
0 = H0, and G†

t =
(
D†

tB
−1
0 Gt

)−1

D†
tB

−1
0 . (23)

In summary, quasi-Newton methods use the secant equation to update the Hessian approximation.558

Single-secant methods update the approximation one secant equation at a time, while multisecant559

methods use a batch of secant equations. The choice of updating strategy and pseudo-inverse affects560

the behavior of the method.561

B.2.2 Davidon-Fletcher-Powell (DFP) Formula562

The DFP formula is a Quasi-Newton update rule used to iteratively refine an approximation of the563

inverse Hessian matrix. It is defined as follows:564

Ht = Ht−1 +
dtd

T
t

dTt gt
− Ht−1gtg

T
t Ht−1

gTt Ht−1gt
, (24)

In the above equation, gt = ∇f(xt) −∇f(xt−1) represents the difference in gradients, and dt =565

xt − xt−1 denotes the difference in parameter values. The DFP formula updates the matrix Ht using566

a rank-two matrix such that it remains symmetric and positive definite.567

B.2.3 Symmetric Rank-One (SR1) Formula568

The Symmetric Rank-One (SR1) formula is another Quasi-Newton update rule used to estimate the569

inverse Hessian matrix. It is defined as:570

Ht = Ht−1 +
(dt −Ht−1gt)(dt −Ht−1gt)

T

(dt −Ht−1gt)T gt
, (25)

Here, gt = ∇f(xt)−∇f(xt−1) and dt = xt − xt−1. The SR1 formula updates Ht at each iteration571

to approximate the inverse Hessian matrix, ensuring that the resulting matrix Ht remains symmetric.572

B.2.4 Multisecant Broyden Methods573

The multisecant Broyden methods utilize the update equation from (22), where A† is chosen as the574

Moore-Penrose pseudo-inverse of A, given by A† = (ATA)−1A. In this equation, B0 and H0 are575

scaled identity matrices. After simplification, the two types of updates can be expressed as follows:576

B−1
t = Dt

(
D†

tGt

)−1

D†
t +B−1

0

(
I −Gt

(
D†

tGt

)−1

D†
t

)
, (26)

Ht = Dt(G
T
t Gt)

−1GT
t +H0

(
I −Gt

(
GT

t Gt

)−1
GT

t

)
. (27)

Both updates are quite similar, differing mainly in the choice of the pseudo-inverse of the matrix G.577

B.2.5 Link with Anderson Acceleration578

The connection between quasi-Newton methods and Anderson Acceleration is strong, as for instance,579

there exists an equivalence between Broyden methods and Anderson acceleration. To illustrate this,580

let’s closely examine the update of α in (AA Type I):581

xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α = argmin f(xt) +∇f(xt)Dtα+
1

2
αTDT

t Gtα

⇔xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α : DT
t ∇f(xt) +DT

t Gtα = 0

⇔xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α : α = −(DT
t Gt)

−1DT
t ∇f(xt)

⇔xt+1 = xt − h∇f(xt)− (Dt − hGt)(D
T
t Gt)

−1DT
t ∇f(xt).

⇔xt+1 = xt −
(
Dt(D

T
t Gt)

−1DT
t + h

(
I −Gt(D

T
t Gt)

−1DT
t

))
∇f(xt)
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The above step is precisely the quasi-Newton step xt+1 = xt−B−1
t ∇f(xt), where B−1

t corresponds582

to the Broyden update given by Equation 26, with B−1
0 = hI . A similar reasoning can be applied to583

Equation 27.584

When considering the single secant updates, following the same reasoning as in Section 3 leads to the585

same conclusion for the SR-1 and DFP updates.586

This result is expected since the approximations Ht or B−1
t satisfy the single or multisecant equation:587

HtGt = Dt,

indicating that the matrix Ht maps vectors from the span of previous gradients to the span of previous588

directions. This observation justifies the construction in (4).589

B.3 Links with Algorithms 1 and 2590

Both Algorithms 1 and 2 can be viewed as quasi-Newton and Anderson/nonlinear acceleration591

schemes. The update formulas are592

min
α

f(xt) +∇f(xt)
TDtα+

αTHtα

2
+

M∥Dtα∥3

6
, Ht

def
=

GT
t Dt +DT

t Gt + IM∥Dt∥∥εt∥
2

.

(Type I)

min
α
∥∇f(xt) +Gtα∥+

M

2

( N∑
i=1

|αi|[εt]i + ∥Dtα∥2
)
, (Type II)

The resemblance with Anderson/nonlinear acceleration is strong, as the objective function are similar.593

In fact, if the function is quadratic, L = 0 and therefore M can be set to 0 as well. In this case, the594

coefficients α are exactly the type I and type II Anderson steps eqs. (AA Type I) and (AA Type II).595

The same idea holds when comparing to quasi-Newton methods. In both cases, the optimal solution596

α⋆ can be written implicitly:597

α⋆ = −
(
Ht +

MDT
t Dt∥Dtα

⋆∥
6

)−1

DT
t ∇f(xt), (Type I - solution)

α⋆ = −
(
GT

t Gt + M̃DT
t Dt

)−1
(
GT

t ∇f(x) +
M̃∥εt∥

2
∂(|α⋆|)

)
, (Type II - solution)

where M̃
def
= ∥∇f(xt) +Gtα∥M and ∂(|α⋆|) is a subgradient of |α∗|. The step then reads598

xt+1 = xt +Dα⋆ (Generic step)

xt+1 = xt −Dt

(
Ht +

MDT
t Dt∥Dtα

⋆∥
6

)−1

DT
t ∇f(xt), (Type I - step)

xt+1 = xt −Dt

(
GT

t Gt + M̃DT
t Dt

)−1
(
GT

t ∇f(x) +
M̃∥εt∥

2
∂(|α⋆|)

)
, (Type II - step)

The type I is a quasi-Newton step with a symetrization of GTD, along with a regularization, while599

the type II step can be seen as a quasi-Newton method with a regularization on R†, with a correction600

term on the gradient. The Hessian approximation therefore reads601

B−1
t = Dt

(
Ht +

MDT
t Dt∥Dtα

⋆∥
6

)−1

DT , Ht = Dt

(
GT

t Gt + M̃DT
t Dt

)−1

GT
t .

Again, when the objective function is quadratic, L = 0 and therefore M = 0. Moreover, when f602

is quadratic, the matrix multiplication DTG satisfies DTG + GTD = 2DTG as DTG becomes603

symmetric. Hence,604

xt+1 = xt −Dt

(
DT

t Gt

)−1
DT

t ∇f(xt), (Type I - quadratic)

xt+1 = xt −Dt

(
GT

t Gt

)−1
GT

t ∇f(xt), (Type II quadratic)
The steps are exactly the type I and type II multisecant Broyden methods from eqs. (26) and (27), with605

the only difference that there is no initialization H0 or B0. Again, this is expected by construction of606

the method, where the initialization is estimated with a forward estimate (see section 5).607
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C Solving the sub-problems608

Solving the Type 1 Subproblem The Type 1 subproblem is a well-studied problem that involves609

minimizing a specific objective function. A method proposed by[46] has proven to be efficient for610

solving this problem. The method utilizes eigenvalue decomposition on a matrix to find the optimal611

solution. In this paper, the matrix involved in this problem is relatively small, therefore eigenvalue612

decomposition is not a concern even for large-scale problems. The subproblem aims to determine the613

norm of the solution, and this can be achieved through solving a system of nonlinear equations using614

bisection or secant method.615

Solving the Type 2 Subproblem The Type 2 subproblem can be formulated as a Second-Order616

Cone Program (SOCP). The objective function of this subproblem consists of three terms: a norm617

term, a sum of absolute values term, and a quadratic term. The norm term can be transformed618

using singular value decomposition, and the sum of absolute values term can be expressed as linear619

programming. The quadratic term can be simplified using a rotated quadratic cone. By utilizing these620

techniques, the Type 2 subproblem can be effectively solved using existing SOCP solvers.621

C.1 Solving the Type 1 Subproblem622

The Type 1 subproblem can be expressed as follows:623

min
α
∇f(x)Dα+

1

2
αTHα+

M

6
∥Dα∥3,

where H is symmetric but not necessarily positive definite. This problem has been well-studied,624

and [46] proposed an efficient method to solve it using eigenvalue decomposition on the matrix H .625

Although eigenvalue decomposition may be challenging for large-scale problems, it is not a concern626

here since H ∈ RN×N , with a relatively small N (e.g., N = 25 in the experiments).627

In essence, the subproblem involves determining the norm of the solution r = ∥α∥. This can be628

accomplished through a simple bisection on the following system of nonlinear equations:629 (
H +

MDTDr

2
I

)
α = −Dt∇f(x), ∥α∥ = r, r ≥ −λmin(H). (28)

Interestingly, this problem is equivalent to the following formulation, as shown in Proposition 1:630 (
Λ +

Mr

2
I

)
α̃ = −V T (DTD)−1/2Dt∇f(x), ∥α∥ = r, r ≥ −λmin(H), α̃ = V T (DTD)1/2α,

(29)

which involves the eigenvalue decomposition (DTD)−1/2H(DTD)−1/2 = V ΛV T .631

Proposition 1. Problems (28) and (29) are equivalent.632

Proof. The first step is to split DTD = (DTD)1/2(DTD)1/2 and then employ an eigenvalue de-633

composition on (DTD)−1/2H(DTD)−1/2 = V ΛV T (where V is orthonormal due to the symmetry634

of the matrix):635 (
H +

MDTDr

2
I

)
α = −Dt∇f(x)

⇔(DTD)1/2
(
(DTD)−1/2H(DTD)−1/2 +

Mr

2
I

)
(DTD)1/2α = −Dt∇f(x)

⇔(DTD)1/2V

(
Λ +

Mr

2
I

)
V T (DTD)1/2α = −Dt∇f(x)

⇔
(
Λ +

Mr

2
I

)
V T (DTD)1/2α = −V T (DTD)−1/2Dt∇f(x)

⇔
(
Λ +

Mr

2
I

)
α̃ = −V T (DTD)−1/2Dt∇f(x).

636
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Once the eigenvalue decomposition is performed, the subproblem (29) becomes relatively simple637

since it involves solving a diagonal system of equations for a fixed value of r. The main objective638

is to find an interval [rmin, rmax] that encompasses the optimal value r = ∥α∥. Once this interval639

is identified, a straightforward bisection or secant method can be employed to obtain the optimal640

solution.641

Finding initial bounds Starting with rmin = max{0,−λmin(H)} and rmax = max{2rmin, 1},642

do rmax ← 2rmax while ∥α̃∥ ≥ rmax.

where α̃ = −
(
Λ + Mrmax

2 I
)−1

V T (DTD)−1/2Dt∇f(x). Increasing rmax increases the regulariza-643

tion, hence reduces the norm of α̃.644

Finding α After r⋆ has been found such that |r⋆ − ∥α̃∥| is sufficiently small, the best α is simply645

α = (DTD)−1/2V α̃ = −(DTD)−1/2V

(
Λ +

Mr⋆

2
I

)−1

V T (DTD)−1/2Dt∇f(x).

In the case where the diagonal matrix is not invertible, which happens when r⋆ = rmin, it suffices to646

use the pseudo-inverse instead.647

C.2 Solving the Type 2 Subproblem648

The Type 2 subproblem is given by:649

min
α
∥∇f(x) +Gα∥︸ ︷︷ ︸

(a)

+
L

2

( N∑
i=1

|αi|εi︸ ︷︷ ︸
(b)

+ ∥Dα∥2︸ ︷︷ ︸
(c)

)
. (30)

Although it may not be immediately apparent, this subproblem can be formulated as a Second-Order650

Cone Program (SOCP) with O(N) variables and constraints.651

C.2.1 Fundamentals of SOCP652

SOCP solvers handle the following conic problems:653

min
x,ti,ωi

c0x+
∑
i

ci[ti;ωi] subject to

A0x+

k∑
i=1

Ai[ti;ωi] = b (SOCP Standard Matrix Form)

x ≥ 0

(ti, ωi) ∈ Ki ⇔ ti ≥ ∥ωi∥, t ≥ 0.

Here, k represents the number of cones, and the cone K refers to the second-order cone, also known654

as the Lorenz cone.655

A useful transformation is the rotated quadratic cone, defined as follows:656

[a, b, c] ∈ Kq ⇔ 2ab ≥ ∥c∥2.

The rotated quadratic cone can be reformulated as a second-order cone using a linear transformation:657

if

[
a
b
c

]
=

 1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 IK

 t
ω(0)

ω

 then (t, [ω(0); ω]) ∈ K ⇔ [a, b, c] ∈ Kq.

Thanks to this transformation, the rotated quadratic cone can be included in SOCP solvers.658
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C.2.2 SOCP Formulation of the Type 2 Subproblem659

The SOCP of (30) is composed of the three terms a, b, and c.660

Term (a) Let UGΣGV
T
G be the singular value decomposition of G. Write PG = UGU

T
G as the661

projector onto the columns of G. Then,662

∥∇f(x) +Rα∥ = ∥PG∇f(x) + PGGα+ (I − PG)∇f(x)∥

=

√
∥PG∇f(x) +Rα∥2 + ∥(I − PG)∇f(x)∥2

=

√∥∥UG

(
UT
G∇f(x) + ΣGV T

G α
)∥∥2 + ∥(I − PG)∇f(x)∥2

=

√∥∥UT
G∇f(x) + ΣGV T

G α
∥∥2 + ∥(I − PG)∇f(x)∥2

Let the vector ω1 =
[
UT
G∇f(x) + ΣGV α; ∥(I − PG)∇f(x)∥

]
. Hence,663

∥∇f(x) +Gα∥ = min
t1, α, ω1

t1 : (t1, ω1) ∈ KL, ω1 =
[
UT
G∇f(x) + ΣGV α; ∥(I − PG)∇f(x)∥

]
.

Term (b) This term is standard in linear programming. Let α = α+ − α−, with α+, α− ≥ 0,664

N∑
i=1

|αi|εi =
N∑
i=1

(α+ + α−)εi.

Term (c) Let UDΣDV T
D be the singular value decomposition of D. Using the rotated cone, the665

constraint can be written as666

2t3b ≥ ∥UDΣDVDα∥2 = ∥ΣDVDα∥2, b =
1

2
.

Using the transformation into a Lorenz cone, this is equivalent to667

1 0 0
0 1 0
0 0 ΣDV T

D

[t3b
α

]
=

 1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 Ik

 t2
ω
(0)
2
ω2

 , b =
1

2
, (t2, [ω

(0)
2 , ω2]) ∈ K.

Simplification. Note that, since b = 1
2 , the value can be immediately replaced. Same idea with t3:668

the constraint is written as669

t3 =
t2 + ω

(0)
2√

2
, t3 ≥ 0.

Since, by construction, t2 ≥ ω
(0)
2 and t2 ≥ 0, t3 always satisfies the condition, which means both t3670

and its constraint can be removed. The constraints thus simplify into671

[
1
2
0

]
+

[
0

ΣDV T
D

]
[α] =

[
1√
2
− 1√

2
0

0 0 Ik

] t2
ω
(0)
2
ω2

 , (t2, [ω
(0)
2 , ω2]) ∈ K.

Final formulation Gathering all terms, the final SOCP formulation reads672
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minimize t1 +
L

2

(
(α+ + α−)

T ε+ t2
)

subject to ω1 =
[
UT
G∇f(x) + ΣGV

T
G α ; ∥(I − PG)∇f(x)∥

]
,

α+, α− ≥ 0

α = α+ − α−[
01×N − 1√

2
1√
2

0

ΣDV T
D 0N×1 0N×1 −IN

]
α
t2
ω
(0)
2
ω2

 =

 0
− 1

2
0N×1


(t1, ω1) ∈ K, (t2, [ω

(0)
2 ;ω2]) ∈ KL, t2 ≥ 0.

Standard matrix formulation The SOCP can be written under the standard matrix form (SOCP673

Standard Matrix Form). Let the variables674

α+, α− ≥ 0, (t1, ω1) ∈ K1, (t2, [ω
(0)
2 ω2]) ∈ K2,

where t1, t2, and ω
(0)
2 are scalars, ω2, α+, and α− are vectors of size N , and ω1 is a vector of size675

N + 1. The SOCP matrices read676

c0 =
[
LεT

2
LεT

2

]
c1 = [1 01×N+1] c2 =

[
L

2
√
2

L
2
√
2

01×N

]
A0 =

−ΣGV
T
G ΣGV

T
G

02×N 02×N

ΣDV T
D −ΣDV T

D


A1 =

[
0N+1×1 IN+1×N+1

0N+1×1 0N+1×N+1

]

A2 =

0N+1×1 0N+1×1 0N+1×N

− 1√
2

1√
2

01×N

0N×1 0N×1 −IN×N


b =

[
∇f(x)TUG ∥(I − PR)∇f(x)∥ − 1

2 0N×1

]T
.

This completes the SOCP formulation of the type 2 subproblem.677
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D Accelerated Algorithm678

Algorithm 6 Adaptive Accelerated Type-I Iterative Algorithm
Require: First-order oracle f , initial iterate and smoothness x0, M0, number of iterations T .
λ
(1)
0 ← 0, λ(2)

0 ← 0, ∆← −∞, (M0)t ←M0

Initialize G0, D0, ε0 (see section 5)
x1,M1 ← [algorithm 1](f,G0, D0, ε0, x0, (M0)0)

Initialize ℓ
(0)
0 = f(x1), ℓ

(1)
0 = 0, ∆ = ∥x1 − x0∥

for t = 1, . . . , T − 1 do
Update Gt, Dt, εt (see section 5)
Set bt ← (t+1)(t+2)

2 , Bt ← t(t+1)(t+2)
6 , βt ← 3

t+3 .

Update ℓ
(0)
t ← ℓ

(0)
t−1 + bt−1[f(xt)−∇f(xt)

Txt], ℓ
(1)
t ← ℓ

(1)
t−1 + bt−1∇f(xt)

do
ValidBound← True
Set vt ← argminv ϕt(v) (See proposition 2).
Let yt ← 3

t+3vt +
k

t+3xt

{xt+1, αt Mt+1, γt, ExitFlag} ← [algorithm 4](f,Gt, Dt, εt, yt, (M0)t,∆)

%% Check if the next ϕ is still a lower bound for f(xt+1)
Define ϕ+ = ϕt + bt[f(xt+1 +∇f(xt+1)(x− xt+1)].
Set v+ ← argminv ϕ+(v) (See proposition 2).

if Φ+(v+) ≤ f(xt+1) then %% Parameters adjustment if needed
ValidBound← False %% Unsuccessful iteration: ϕt+1(vt+1) ≥ f(xt+1).
if ExitFlag is LargeStep then

If λ
(2)
t = 0 then λ

(2)
t ← 16

9

(bt∥∇f(xt+1)∥)3

(Bt+1∇f(xt+1)TDtαt)2
. Else, λ(2)

t ← 2λ
(2)
t .

else %% Exitflag is SmallStep

If λ(1)
t = 0 then λ

(1)
t ← −b2t∥∇f(xt+1)∥2

2Bt+1∇f(xt+1)TDtαt
. Else, λ

(1)
t ← 2λ

(1)
t .

end if
if (M0)t+1 < Mt+1 then (M0)t+1 ←Mt+1

(
∥εt∥
∥Dt∥ + ∥Dtαt∥

2

)
%% Rescaling

end if
else
{λ(1)

t+1, λ
(2)
t+1} ← {λ

(1)
t , λ

(2)
t }, (M0)t+1 ← Mt+1

2 %% Successful iteration
end if

while ValidBound is False
end for
return xT

Proposition 2. Let vt be the the minimizer of679

ϕt(v) = ℓ
(0)
t +

[
ℓ
(1)
t

]T
v +

λ
(1)
t

2
∥v − x0∥2 +

λ
(2)
t

6
∥v − x0∥3.

where λ
(1,2)
t ≥ 0. Let rt = ∥vt − x0∥. Then,680

rt = ∥vt − x0∥ =


0 if λ

(1)
t = λ

(2)
t = 0

∥ℓ(1)t ∥
λ
(1)
t

if λ
(1)
t > 0 and λ

(2)
t = 0

−λ
(1)
t +

√
[λ

(1)
t ]2+2λ

(2)
t ∥ℓk∥

λ
(2)
2

if λ
(2)
t > 0

vt = argminΦt(x) = x0 − rt
ℓ
(1)
t

∥ℓ(1)t ∥
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E Additional Numerical Experiments681

This section presents additional numerical experiments.682

Methods The methods compared are the type 1 and type 2 steps with the following strategies:683

Iterate only, Forward estimate only, Greedy (refer to section 5), and the accelerated type 1 method684

with the strategy forward estimate only. The batch methods are not included as they perform poorly685

in terms of the number of oracle calls. The baseline is the L-BFGS method from minFunc [53].686

Method parameters In all experiments, the memory of the methods is set to N = 25. The687

parameters of the L-BFGS are left untouched except for the memory. The initial smoothness688

parameter is set to 1 for the type 1 and type 2 methods. The initial point is randomly generated by the689

function randn() in Matlab, with a seed of 0.690

Functions The minimized problems are: square loss with cubic regularization, logistic loss with691

small quadratic regularization, and the generalized Rosenbrock function. The regularization parameter692

of the square loss is set to 1e− 3 times the norm of the Hessian, and the regularization of the logistic693

loss is set to 1e− 10 times the square norm of the feature matrix.694

Dataset The datasets for the square loss and the logistic loss are Madelon [33], Sido0 [34], and695

Marti2 [34] datasets.696

Post-processing The dataset matrix is normalized by its norm, and a feature vector of ones is added697

to the data matrix.698

E.1 Nonconvex optimization699
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Figure 2: Comparison of type 1 methods on the Generalized Rosenbrock function in R100
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Figure 3: Comparison of type 2 methods on the Generalized Rosenbrock function in R100
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E.2 Comparison of Type 1 Methods on Convex Problems700

E.2.1 Square loss and cubic regularization701
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Figure 4: Comparison of type 1 methods: Square loss and cubic regularization on Madelon dataset
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Figure 5: Comparison of type 1 methods: Square loss and cubic regularization on sido0 dataset
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Figure 6: Comparison of type 1 methods: Square loss and cubic regularization on marti2 dataset
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E.2.2 Logistic regression702
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Figure 7: Comparison of type 1 methods: Logistic loss and cubic regularization on Madelon dataset
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Figure 8: Comparison of type 1 methods: Logistic loss and cubic regularization on sido0 dataset

0 2000 4000 6000

10
-10

10
-5

10
0

0 2000 4000 6000

10
-10

10
-5

10
0

Figure 9: Comparison of type 1 methods: Logistic loss and cubic regularization on marti2 dataset
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E.3 Comparison of Type 2 Methods on Convex Problems703

E.3.1 Square loss and cubic regularization704
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Figure 10: Comparison of type 2 methods: Square loss and cubic regularization on Madelon dataset
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Figure 11: Comparison of type 2 methods: Square loss and cubic regularization on sido0 dataset
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Figure 12: Comparison of type 2 methods: Square loss and cubic regularization on marti2 dataset
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E.3.2 Logistic regression705
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Figure 13: Comparison of type 2 methods: Logistic loss and cubic regularization on Madelon dataset
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Figure 14: Comparison of type 2 methods: Logistic loss and cubic regularization on sido0 dataset
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Figure 15: Comparison of type 2 methods: Logistic loss and cubic regularization on marti2 dataset

29



F Missing proofs706

F.1 Technical results707

In this section, the following definitions simplify the notations:708

D† = (DTD)−1DT , (31)

DT
† = D(DTD)−1, (32)

κD = ∥D†∥∥D∥, (33)

H̃ = DT
† HD† where H is defined in (10). (34)

Note that the pseudo inverse D† exists under Requirement 3.709

Proposition 3. The first-order and second-order conditions of the subproblem in algorithm 1 read710

DT∇f(x) +Hα+
M

2
DTDα∥Dα∥ = 0, (35)

H +
M

2
DTD∥Dα∥ ⪰ 0. (36)

Proof. See [44], equation (3.3), and [46], equation (2.7).711

Proposition 4. Let f satisfies Assumption 1 and B ∈ Rd×d be any matrix. Then,712

∥∇f(x) +BDα−∇f(x+)∥ ≤
L

2
∥Dα∥2 + ∥[B −∇2f(x)]Dα∥.

Proof. The result follows directly from (5),713

∥∇f(x) +BDα−∇f(x+)∥ ≤ ∥∇f(x) +∇2f(x)Dα−∇f(x+)∥+ ∥BDα−∇2f(x)Dα∥

≤ L

2
∥Dα∥2 + ∥[B −∇2f(x)]Dα∥.

714

Proposition 5. Assume the matrix D satisfies Requirement 1b, and α satisfies the first-order condi-715

tion (35). Let H̃ be defined in (34). Then,716

∥∇f(x) +BDα−∇f(x+)∥ = ∥(H̃ −B +
M∥Dα∥

2
)Dα+∇f(x+)∥

Proof. The following equation follows from the optimality condition multiplied by D(DTD)−1,717

writing P = DD† = DT
† D

T , assuming P∇f(x) = ∇f(x),718

∇f(x) + (H̃ +
M∥Dα∥

2
)Dα = 0.

It suffices to replace∇f(x).719

Proposition 6. Assume D satisfies Requirement 1b. Let H̃ be defined in (34). Then, if B = H̃ −Mγ720

in proposition 4, the following holds:721

∥[B −∇2f(x)]Dα∥ ≤ ∥Dα∥
(

L
2 ∥D†∥∥ε∥+ ∥(I − P )∇2f(x)P∥+M

∥∥∥DT
† D†

∥D∥∥ε∥
2 − γP

∥∥∥)
Proof. Since722

∇2f(x)Dα = P∇2f(x)PDα+ (I − P )∇2f(x)PDα,

where P = D(DTD)−1DT , and because PD = D and723

H̃ = DT
†

(
DTG+GTD

2
+

M∥D∥∥ε∥
2

)
D† =

PGD† +DT
† G

TP

2
+DT

† D†
M∥D∥∥ε∥

2
,

30



the inequality becomes724

∥[B −∇2f(x)]Dα∥ ≤

∥∥∥∥∥
(
PGD† +DT

† G
TP

2
− P∇2f(x)P

)
Dα

∥∥∥∥∥ (37)

+

∥∥∥∥(DT
† D†

M∥D∥∥ε∥
2

−MγP − (I − P )∇2f(x)P

)
Dα

∥∥∥∥ (38)

The term (38) can be decomposed into725 ∥∥∥∥(DT
† D†

M∥D∥∥ε∥
2

−MγP − (I − P )∇2f(x)P

)
Dα

∥∥∥∥
=

∥∥∥∥P ((DT
† D†

M∥D∥∥ε∥
2

−Mγ

)
Dα− (I − P )∇2f(x)PDα

)∥∥∥∥
Since P satisfies ∥Pv1 + (I − P )v2∥ = ∥Pv1∥+ ∥(I − P )v2∥,726

∥[B −∇2f(x)]Dα∥ ≤

∥∥∥∥∥
[
PGD† +DT

† G
TP

2
− P∇2f(x)P

]
Dα

∥∥∥∥∥
+M∥Dα∥

∥∥∥∥DT
† D†

∥D∥∥ε∥
2

− Pγ

∥∥∥∥ (39)

+ ∥Dα∥∥(I − P )∇2f(x)P∥.

It remains to bound the first from (37). Since DTD† = DT
† D

T = P , D†D = I, PD = D, and727

∥P∥ = 1,728 ∥∥∥∥∥
[
PGD† +DT

† G
TP

2
− P∇2f(x)P

]
Dα

∥∥∥∥∥
≤ 1

2

( ∥∥(PGD† − P∇2f(x)P )Dα
∥∥+ ∥∥(DT

† G
TP − P∇2f(x)P )Dα

∥∥ )
≤ 1

2

(∥∥Gα−∇2f(x)Dα
∥∥+ ∥D†∥

∥∥(GT −DT∇2f(x))Dα
∥∥)

Using inequality (8) for the first term and (9) for second gives729 ∥∥∥∥∥
[
PGD† +DT

† G
TP

2
− P∇2f(x)P

]
Dα

∥∥∥∥∥ ≤ 1

2

(
L

2

N∑
i=1

|αi|εi + ∥D†∥
L∥Dα∥

2
∥ε∥

)
Because

∑N
i=1 |αi|εi ≤ ∥α∥∥ε∥ ≤ ∥D†∥∥Dα∥,730 ∥∥∥∥∥

[
PGD† +DT

† G
TP

2
− P∇2f(x)P

]
Dα

∥∥∥∥∥ ≤ L

2
∥D†∥∥ε∥∥Dα∥.

Injecting this result back in (39) gives the desired result,731

∥[B −∇2f(x)]Dα∥ ≤∥Dα∥
(
L∥D†∥∥ε∥

2
+ ∥(I − P )∇2f(x)P∥

)
+M∥Dα∥

∥∥∥∥DT
† D†

∥D∥∥ε∥
2

− Iγ
∥∥∥∥ .

732

Proposition 7. Under the assumptions of propositions 4 to 6, setting γ = 0 gives733 ∥∥∥∥M∥Dα∥
2

Dα+∇f(x+)

∥∥∥∥
≤L

2
∥Dα∥2 + ∥Dα∥

(
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
. (40)
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Proof. Using propositions 4 and 5, setting B = H̃ −MγP and γ = 0 gives734 ∥∥∥∥M∥Dα∥
2

Dα+∇f(x+)

∥∥∥∥
≤ L∥Dα∥2

2
+ ∥Dα∥

(
L

2
∥D†∥∥ε∥+ ∥(I − P )∇2f(x)P∥+M

∥∥∥∥DT
† D†

∥D∥∥ε∥
2

∥∥∥∥)
Moreover,735 ∥∥∥∥DT

† D†
∥D∥∥ε∥

2

∥∥∥∥ ≤ ∥D†∥2∥D∥∥ε∥
2

All together, and by definition of κD (33),736 ∥∥∥∥M∥Dα∥
2

Dα+∇f(x+)

∥∥∥∥
≤L

2
∥Dα∥2 + ∥Dα∥

(
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
.

737

Proposition 8. Under the assumptions of propositions 4 to 6, setting γ = ∥Dα∥
2 gives738

∥∇f(x+)∥ ≤
L+M

2
∥Dα∥2 + ∥Dα∥

(
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
. (41)

Proof. Using propositions 4 and 5, setting B = H̃ −MγI and γ = ∥Dα∥
2 gives739

∥∇f(x+)∥

≤ L∥Dα∥2

2
+ ∥Dα∥

(
L

2
∥D†∥∥ε∥+ ∥(I − P )∇2f(x)P∥+M

∥∥∥∥DT
† D†

∥D∥∥ε∥
2

− ∥Dα∥
2

P

∥∥∥∥)
Moreover,740 ∥∥∥∥DT

† D†
∥D∥∥ε∥

2
− ∥Dα∥

2
P

∥∥∥∥ ≤ ∥D†∥2∥D∥∥ε∥
2

+
∥Dα∥
2

All together, and by definition of κD (33),741

∥∇f(x+)∥ ≤
L+M

2
∥Dα∥2 + ∥Dα∥

(
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
742

Proposition 9. Let Assumption 1 and Requirements 1b to 3 hold. Then, ∀y ∈ Rd, algorithm 1743

ensures744

f(x+) ≤ f(y) +
M + L

6
∥y − x∥3 + ∥y − x∥2

2

(
∥∇2f(x)− P∇2f(x)P∥+ δ

Lκ+Mκ2

2

)
Proof. The output of algorithm 1 ensures that745

f(x+) ≤

min
α

f(x) +∇f(x)TDα+
1

2
(Dα)T∇2f(x)Dα+

1

2
αT
(
H −DT∇2f(x)D

)
α+

M

6
∥Dα∥3

However, by the definition of H (10),746

1

2
αT
(
H −DT∇2f(x)D

)
α

≤1

2

(
αT

(
GTD +DTG

2
−DT∇2f(x)D

)
α+ ∥α∥2M∥D∥∥ε∥

2

)
≤1

2

(
αT

(
GTD +DTG

2
−DT∇2f(x)D

)
α+ ∥D†∥2∥Dα∥M∥D∥∥ε∥

2

)
=
1

2

(
(Dα)T

(
G−∇2f(x)D

)
α+ ∥D†∥2∥Dα∥M∥D∥∥ε∥

2

)
.
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The last equality comes from the fact that747

αT
(
DTG

)
α = αT

(
DTG+GTD

2
+

DTG−GTD

2

)
α = αT

(
DTG+GTD

2

)
α.

Now, using (8) with w = Dα gives748

1

2
αT
(
H −DT∇2f(x)D

)
α ≤ L∥Dα∥

4

N∑
i=1

|αi|εi + ∥D†∥2∥Dα∥M∥D∥∥ε∥
4

.

Finally, since749
N∑
i=1

|αi|εi ≤ ∥α∥∥ε∥ ≤ ∥D†∥∥Dα∥∥ε∥,

the inequality becomes750

1

2
αT
(
H −DT∇2f(x)D

)
α ≤ ∥Dα∥2

4

(
L∥D†∥∥ε∥+M∥D†∥2∥D∥∥ε∥

)
=
∥Dα∥2

4

∥ε∥
∥D∥

(
LκD +Mκ2

D

)
.

All together,751

f(x+)

≤min
α

f(x) +∇f(x)TDα+
1

2
(Dα)T∇2f(x)Dα+

1

2
αT
(
H −DT∇2f(x)D

)
α+

M

6
∥Dα∥3

≤min
α

f(x) +∇f(x)TDα+
1

2
(Dα)T∇2f(x)Dα+

∥Dα∥2

4

∥ε∥
∥D∥

(
LκD +Mκ2

D

)
+

M

6
∥Dα∥3

Now, by Requirement 3, for all y, one can find α such that752

Dα = P (y − x) = DD†(y − x).

Indeed, multiplying both sides by D† gives753

α = D†(y − x).

Therefore, the minimum can be written as a function of y instead of α,754

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)TP (y − x) +
1

2
(P (y − x))T∇2f(x)P (y − x)

+
∥P (y − x)∥2

4

∥ε∥
∥D∥

(
LκD +Mκ2

D

)
+

M

6
∥P (y − x)∥3. (42)

Since P∇f(x) = ∇f(x) by Requirement 1b, and using the crude bound ∥P (y − x)∥ ≤ ∥y − x∥,755

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x)

+
1

2
(y − x)

[
∇2f(x)− P∇2f(x)P

]
(y − x)

+
∥y − x∥2

4

∥ε∥
∥D∥

(
LκD +Mκ2

D

)
+

M

6
∥y − x∥3.

Using the lower bound (6),756

f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x)− L

6
∥y − x∥3 ≤ f(y),

the crude bound (y−x)
[
∇2f(x)− P∇2f(x)P

]
(y−x) ≤ ∥∇2f(x)−P∇2f(x)P∥∥y−x∥2, and757

Requirements 2 and 3 lead to the desired result,758

f(x+) ≤ f(y) +
M + L

6
∥y − x∥3 + ∥y − x∥2

2

(
∥∇2f(x)− P∇2f(x)P∥+ δ

Lκ+Mκ2

2

)
759
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Proposition 10. Let Assumption 1 and Requirements 1a, 2 and 3 hold. Then, ∀y ∈ Rd, algorithm 1760

ensures761

Ef(x+) ≤
(
1− N

d

)
f(x) +

N

d
f(y) +

N

d

(M + L)

6
∥y − x∥3

+
N

d

∥y − x∥2

2

(
δ
Lκ+Mκ2

2
+

(d−N)

d
∥∇2f(x)∥

)
Proof. The proof is the same as for proposition 9, until equation (42),762

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)TP (y − x) +
1

2
(P (y − x))T∇2f(x)P (y − x)

+
∥P (y − x)∥2

4

∥ε∥
∥D∥

(
LκD +Mκ2

D

)
+

M

6
∥P (y − x)∥3.

With Requirement 1a, the following relations hold (see [35, lemma 5.7])763

E[∥P (y − x)∥2] = (y − x)TE[P ](y − x) =
N

d
∥y − x∥2, (43)

E[∥P (y − x)∥3] ≤ E[∥P (y − x)∥2]∥y − x∥ = N

d
∥y − x∥2, (44)

E[(y − x)TP∇2f(x)P (y − x)] ≤ N2

d2
(y − x)∇2f(x)(y − x) +

N(d−N)

d2
∥∇2f(x)∥∥y − x∥2

(45)

Hence, removing the minimum and taking the expectation of (42) gives764

Ef(x+) ≤f(x) +
N

d
∇f(x)T (y − x)

+
1

2

(
N2

d2
(y − x)∇2f(x)(y − x) +

N(d−N)

d2
∥∇2f(x)∥∥y − x∥2

)
+

N

d

∥y − x∥2

4

∥ε∥
∥D∥

(
LκD +Mκ2

D

)
+

N

d

M

6
∥y − x∥3.

Using the lower bound from (6)765

1

2
(y − x)∇2f(x)(y − x) ≤ f(y) +

L

6
∥y − x∥3 − f(x)−∇f(x)(y − x)

in the inequality over the expectation gives766

Ef(x+) ≤f(x) +
N

d
∇f(x)T (y − x)

+
N2

d2

(
f(y) +

L

6
∥y − x∥3 − f(x)−∇f(x)(y − x)

)
+

1

2

N(d−N)

d2
∥∇2f(x)∥∥y − x∥2

+
N

d

∥y − x∥2

4

∥ε∥
∥D∥

(
LκD +Mκ2

D

)
+

N

d

M

6
∥y − x∥3.

After simplification,767

Ef(x+) ≤
(
1− N2

d2

)
f(x) +

N2

d2
f(y) +

N

d

(
1− N

d

)
∇f(x)T (y − x)

+
1

2

N(d−N)

d2
∥∇2f(x)∥∥y − x∥2

+
N

d

∥y − x∥2

4

∥ε∥
∥D∥

(
LκD +Mκ2

D

)
+

(
N2L

6d2
+

NM

6d

)
∥y − x∥3.
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To simplify the expression, since N ≤ d,768 (
N2L

6d2
+

NM

6d

)
∥y − x∥3 ≤ N(M + L)

6d
∥y − x∥3.

Finally, since the function is convex,769

N

d

(
1− N

d

)
∇f(x)T (y − x) ≤ N

d

(
1− N

d

)
(f(y)− f(x)).

From this last relation, Requirement 2 and Requirement 3 comes the desired result,770

Ef(x+) ≤
(
1− N

d

)
f(x) +

N

d
f(y) +

N(M + L)

6d
∥y − x∥3

+
∥y − x∥2

2

(
N

d
δ
Lκ+Mκ2

2
+

N(d−N)

d2
∥∇2f(x)∥

)
771

Proposition 11. Under the assumptions of propositions 4 to 6, setting772

γ ≥ 1

4

∥ε∥
∥D∥

(
1 + κ2

D

)
gives773

∥M
(
γ +
∥Dα∥
2

)
Dα+∇f(x+)∥ (46)

≤∥Dα∥
(
L

2
∥Dα∥+ L

2

∥ε∥
∥D∥

κD + ∥(I − P )∇2f(x)P∥+M

(
γ − ∥ε∥

2∥D∥

))
(47)

Proof. Using propositions 4 to 6, setting B = H̃ −MγP gives774

∥M
(
γ +
∥Dα∥
2

)
Dα+∇f(x+)∥

≤L

2
∥Dα∥2 + ∥Dα∥

(
L

2
∥D†∥∥ε∥+ ∥(I − P )∇2f(x)P∥+M

∥∥∥∥DT
† D†

∥D∥∥ε∥
2

− Iγ
∥∥∥∥)

It remains to bound the last term,775 ∥∥∥∥DT
† D†

∥D∥∥ε∥
2

− Pγ

∥∥∥∥ =

∥∥∥∥D(DTD)−
1
2

(
(DTD)−1 ∥D∥∥ε∥

2
− γ

)
(DTD)−

1
2DT

∥∥∥∥ .
Since the smallest and largest eigenvalue of (DTD)−1 are 1

σ2
max(D) ,

1
σ2
min(D)

the norm can be explic-776

itly bounded as follow:777 ∥∥∥∥DT
† D†

∥D∥∥ε∥
2

− Pγ

∥∥∥∥ ≤ max

{
∥D∥∥ε∥
2σ2

min(D)
− γ ; γ − ∥D∥∥ε∥

2σ2
max(D)

}
Setting γ such that the maximum is attained at the right-hand-side, i.e.,778

γ ≥ σ−2
min(D) + σ−2

max(D)

4
∥D∥∥ε∥ = κ2

D + 1

4

∥ε∥
∥D∥

,

simplifies the bound into779 ∥∥∥∥DT
† D†

∥D∥∥ε∥
2

− Pγ

∥∥∥∥ ≤ γ − ∥ε∥
2∥D∥

.

The last step consist in replacing ∥D†∥ by κD

∥D∥ .780
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F.2 Missing proofs from Section 2781

Theorem 1. Let the function f satisfy Assumption 1. Let x+ be defined as in (4) and the matrices782

D, G be defined as in (3) and vector ε as in (7). Then, for all w ∈ Rd and α ∈ RN ,783

−L∥w∥
2

∑N
i=1 |αi|εi ≤ wT (∇2f(x)D −G)α ≤ L∥w∥

2

∑N
i=1 |αi|εi, (8)

∥wT (∇2f(x)D −G)∥ ≤ L∥w∥
2 ∥ε∥. (9)

Proof. Using Cauchy-Schwartz with (5) gives that, for all v,784

vT
(
∇f(y)−∇f(z)−∇2f(z)(y − z)

)
≤ L∥v∥

2
∥y − z∥2.

Let v = vi, y = yi, and z = zi. By the definition of Y, Z, D, G in (3),785

vTi
(
ri −∇2f(zi)di

)
≤ L∥vi∥

2
∥di∥2.

Introducing∇2f(x) gives786

vTi
(
ri −∇2f(zi)di

)
= vTi

(
ri −∇2f(x)di

)
+ vTi (∇2f(zi)−∇2f(x))di.

Since the Hessian is L-Lipchitz-continuous Assumption 1, (∇2f(zi)−∇2f(x))di ≤ L∥di∥∥zi−x∥.787

Therefore, by the definition of εi,788

vTi
(
ri −∇2f(x)di

)
≤ L∥vi∥εi

2
. (48)

Let vi = sign(αi)w. Summing all inequalities multiplied by |αi| gives the first desired result:789

wT
(
G−∇2f(x)D

)
α ≤

L∥w∥
∑N

i=1 εi|αi|
2

.

The second result is rather straightforward, since (48) with vi = w gives790

wT
(
ri −∇2f(x)di

)
≤ L∥w∥εi

2
.

Therefore,791 √√√√ N∑
i=1

(wT (ri −∇2f(x)di))
2 ≤ ∥w∥

√√√√ N∑
i=1

(ri −∇2f(x)di)
2 ≤ ∥w∥

√√√√ N∑
i=1

Lε2i ≤
L∥w∥∥ε∥

2
.

792

Theorem 2. Let the function f satisfy Assumption 1. Let x+ be defined as in (4), the matrices D, G793

be defined as in (3) and ε be defined as in (7). Then, for all α ∈ RN ,794

f(x+) ≤ f(x) +∇f(x)TDα+ αTHα
2 + L∥Dα∥3

6 , H
def
= GTD+DTG+IL∥D∥∥ε∥

2 (10)

∥∇f(x+)∥ ≤ ∥∇f(x) +Gα∥+ L
2

(∑N
i=1 |αi|εi + ∥Dα∥2

)
, (11)

Proof. The inequality (11) is a direct consequence of (5) (with y = x+, z = x) combined with (9),795

∥∇f(x+)−∇f(x)−∇2f(x)Dα∥ ≤ L

2
∥Dα∥2

⇔ wT
(
∇f(x+)−∇f(x)−∇2f(x)Dα

)
≤ L∥w∥

2
∥Dα∥2

⇔ wT∇f(x+) ≤
L

2
∥Dα∥2 + wT

(
∇f(x) +∇2f(x)Dα

)
⇔ wT∇f(x+)

(8)

≤ L∥w∥
2

(
∥Dα∥2 +

N∑
i=1

|αi|εi

)
+ wT (∇f(x) +Gα)

⇔ wT∇f(x+) ≤ ∥w∥

(
L

2

(
∥Dα∥2 +

N∑
i=1

|αi|εi

)
+ ∥∇f(x) +Gα∥

)
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Setting w = ∇f(x+) gives (11).796

The inequality (10) instead comes from (6) combined with (9). Indeed,797

f(x+) ≤ f(x) +∇f(x)Dα+
1

2
(Dα)T∇2f(x)(Dα) +

L

6
∥Dα∥3

(9)

≤ f(x) +∇f(x)Dα+
1

2

(
(Dα)TGα+

L∥Dα∥
2

N∑
i=1

|αi|εi

)
+

L

6
∥Dα∥3

It remains to use the followings bounds:798

N∑
i=1

|αi|εi = αT (sign(α)⊙ ε) ≤ ∥α∥∥ε∥,

∥Dα∥ ≤ ∥D∥∥α∥.

All together,799

f(x+) ≤ f(x) +∇f(x)Dα+
1

2
(Dα)TGα+

L

4
∥α∥2∥D∥∥ε∥+ L

6
∥Dα∥3

Finally, since (Dα)TGα is a quadratic form, only the symmetric counterpart of DTG counts. That800

means, writing H = DTG+GTD
2 + IL2 ∥D∥∥ε∥ gives the desired result,801

f(x+) ≤ f(x) +∇f(x)Dα+
αTHα

2
+

L

6
∥Dα∥3.

802

F.3 Missing proofs from Section 3803

Theorem 3. Let f satisfy Assumption 1. Then, at each iteration t ≥ 0, algorithm 3 achieves804

f(xt+1) ≤ f(xt)− Mt+1

12 ∥xt+1 − xt∥3, Mt+1 < max
{
2L ; M0

2t

}
. (13)

Proof. Using (35), at each iteration, after the while loop, the first-order condition of the subroutine805

algorithm 1 reads806

DT
t ∇f(xt) +Htαt+1 +

Mt+1

2
DT

t Dtαt+1∥Dtαt+1∥ = 0. (49)

The subscript t is dropped for clarity. After multiplying by α,807

∇f(xt)
TDα+ αTHα+

M

2
∥Dα∥3 = 0.

In addition, multiplying both times by α the second-order condition (36) gives808

αTHα ≥ −M

2
∥Dα∥3.

which gives, after replacing it in (49),809

∇f(xt)
TDα ≤ −M

2
∥Dα∥3 + M

2
∥Dα∥3 = 0. (50)

Injecting eqs. (49) and (50) into the while condition of algorithm 1 gives the desired result:810

f(x+) ≤ f(x) +∇f(x)TDα+
1

2
αTHα+

M∥Dα∥3

6
, (51)

= f(x)− 1

2
∇f(x)TDα− M∥Dα∥3

12

≤ f(x)− M∥Dα∥3

12
.

Where (51) is guaranteed if M > L. Therefore, in the worst case, M < 2L.811
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Theorem 4. Let f satisfy Assumption 1, and assume that f is bounded below by f∗. Let Require-812

ments 1b to 3 hold, and Mt ≥Mmin. Then, algorithm 3 starting at x0 with M0 achieves813

min
i=1, ..., t

∥∇f(xi)∥ ≤ max

{
3L

t2/3

(
12

f(x0)− f⋆

Mmin

)2/3

;

(
C1

t1/3

)(
12

f(x0)− f⋆

Mmin

)1/3
}
,

where C1 = δL
(

κ+2κ2

2

)
+maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥.

Proof. The starting inequality is (41):814

∥∇f(x+)∥ ≤
L+M

2
∥Dα∥2 + ∥Dα∥

(
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
.

The result is obtained by decomposing the inequality using a maximum,815

∥∇f(x+)∥

≤ max

{
(L+M)∥Dα∥2 ; 2∥Dα∥

(
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)}
.

In the first case,816

∥Dα∥ ≥
√
∥∇f(x+)∥
L+M

, (52)

while in the second case,817

∥Dα∥ ≥ ∥∇f(x+)∥
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

.

Let Ct be defined as818

Ct =
∥εt∥
∥Dt∥

(
L+Mt+1κDt

2

)
κDt + ∥(I − Pt)∇2f(xt)Pt∥.

Then, using Requirements 2 and 3, and since M < 2L by Theorem 3,819

Ct ≤ C = δL

(
1 + 2κ

2

)
κ+max

t
∥(I − Pt)∇2f(xt)Pt∥

Therefore,820

∥Dα∥ ≥ ∥∇f(x+)∥
C

. (53)

At each iteration t, combining eqs. (52) and (53) into Theorem 3 gives821

f(xt)− f(xt+1) ≥
Mt+1

12
∥xt+1 − xt︸ ︷︷ ︸

=Dtαt

∥3 ≥ Mt+1

12
min

{(
∥∇f(x+)∥
L+Mt+1

)3/2

;

(
∥∇f(x+)∥

C

)3
}

Therefore,822

f(x0)− f⋆ ≥ f(x0)− f(xt)

=

t−1∑
i=0

f(xi)− f(xi+1)

≥
t−1∑
i=0

(
Mi+1

12
∥xi+1 − xi∥3

)

≥
t−1∑
i=0

min
t

Mi+1

12

{(
∥∇f(xi+1)∥
L+Mi+1

)3/2

;

(
∥∇f(xi+1)∥

C

)3
}

≥ t min
i∈[0,t−1]

Mi+1

12
min

{(
∥∇f(xi+1)∥
L+Mi+1

)3/2

;

(
∥∇f(xi+1)∥

C

)3
}

≥ t
Mmin

12
min

{
min
i∈[1,t]

(
∥∇f(xi)∥

3L

)3/2

; min
i∈[1,t]

(
∥∇f(xi)∥

C

)3
}
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After analyzing separately each case of the minimum, either823  min
i∈[1,t]

∥∇f(xi)∥

3L

3/2

≤ 12
f(x0)− f⋆

tMmin
or

 min
i∈[1,t]

∥∇f(xt+1)∥

C

3

≤ 12
f(x0)− f⋆

tMmin
.

It remains to simplify to obtain the desired result,824

min
i=1...t

∥∇f(xi)∥ ≤ max

{
3L

t2/3

(
12

f(x0)− f⋆

Mmin

)2/3

;

(
C

t1/3

)(
12

f(x0)− f⋆

Mmin

)1/3
}
.

825

Theorem 5. Assume f satisfy Assumptions 1 to 3. Let Requirements 1b to 3 hold. Then, algorithm 3826

starting at x0 with M0 achieves, for t ≥ 1,827

(f(xt)− f⋆) ≤ 6
f(xt)− f⋆

t(t+ 1)(t+ 2)
+

1

(t+ 1)(t+ 2)

L(3R)3

2
+

1

t+ 2

C2(3R)2

4
,

where C2
def
= δLκ+2κ2

2 +maxi∈[0,t] ∥∇2f(xi)− Pi∇2f(xi)Pi∥.

Proof. Starting from the inequality in proposition 9,828

f(xt+1) ≤ f(y) +
Mt+1 + L

6
∥y − xt∥3 +

∥y − xt∥2

2
C

(t)
2 ,

where829

C
(t)
2 = ∥∇2f(xt)− Pt∇2f(xt)Pt∥+ δ

Lκ+Mt+1κ
2

2
,

and setting y = (1− βt)xt + βtx
⋆ and f(x⋆) = f⋆ gives830

f(xt+1)− f⋆ ≤ f((1− βt)xt + βtx
⋆)− f⋆ +

Mt+1 + L

6
β3
t ∥xt − x⋆∥3 + β2

t ∥xt − x⋆∥2

2
C

(t)
2 .

Because the function is star-convex,831

f(xt+1)− f⋆ ≤ (1− βt)(f(xt)− f⋆) +
Mt+1 + L

6
β3
t ∥xt − x⋆∥3 + β2

t ∥xt − x⋆∥2

2
C

(t)
2 .

Since algorithm 1 ensure a decrease in the function value, the iterate xt satisfies832

xt ∈ {x : f(x ≤ f(x0))},

and therefore, ∥xt − x⋆∥ ≤ R by Assumption 2. In addition, M < 2L by Theorem 3. The inequality833

now becomes834

(f(xt+1)− f⋆) ≤ (1− βt)(f(xt)− f⋆) + β3
t

LR3

2
+ β2

t

R2C
(t)
2

2
. (54)

Finally, since M < 2L, the scalar Ct
2 is bounded over time by C2:835

C
(t)
2 ≤ C2

def
= δL

κ+ 2κ2

2
+ max

t
∥∇2f(xt)− Pt∇2f(xt)Pt∥.

Now, let836

• Bt =
t(t+1)(t+2)

6 ,837

• bt : Bt = Bt−1 + bt, hence bt =
t(t+1)

2 , and838

• βt =
bt+1

Bt+1
.839
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Therefore, for t ≥ 1,840

1 =
Bt

Bt
=

Bt−1

Bt
+

bt
Bt

=
Bt−1

Bt
+ βt−1 ⇒ 1− βt−1 =

Bt−1

Bt
.

Injecting those relations in (54) gives841

(f(xt+1)− f⋆) ≤ Bt

Bt+1
(f(xt)− f⋆) +

(
bt+1

Bt+1

)3
LR3

2
+

(
bt+1

Bt+1

)2
R2C2

2
,

hence the recursion842

Bt+1(f(xt+1)− f⋆) ≤ Bt(f(xt)− f⋆) +
b3t+1

B2
t+1

LR3

2
+

b2t+1

Bt+1

R2C2

2

≤ B0(f(xt)− f⋆) +

t∑
i=0

b3i+1

B2
i+1

LR3

2
+

t∑
i=0

b2i+1

Bi+1

R2C2

2
.

843

(f(xt+1)− f⋆) ≤ B0

Bt+1
(f(xt)− f⋆) +

∑t
i=0

b3i+1

B2
i+1

Bt+1

LR3

2
+

∑t
i=0

b2i+1

Bi+1

Bt+1

R2C2

2
.

Therefore, the rate reads By the definition of bt and Bt,844

b3i+1

B2
i+1

=
36

8

(i+ 1)3(i+ 2)3

(i+ 1)2(i+ 2)2(i+ 3)2
=

9

2

(i+ 1)(i+ 2)

(i+ 3)2
≤ 9

2
,

b2i+1

Bi+1
=

6

4

(i+ 1)2(i+ 2)2

(i+ 1)(i+ 2)(i+ 3)
=

3

2

(i+ 2)

(i+ 3)
(i+ 1) ≤ 3

2
(i+ 1).

Hence,845 ∑t
i=0

b3i+1

B2
i+1

Bt+1
≤

9
2 (t+ 1)

(t+1)(t+2)(t+3)
6

≤ 27

(t+ 2)(t+ 3)
,

∑t
i=0

b2i+1

Bi+1

Bt+1
≤
∑t

i=0
3
2 (i+ 1)

(t+1)(t+2)(t+3)
6

=
3
4 (t+ 2)(t+ 1)
(t+1)(t+2)(t+3)

6

=
9

2(t+ 3)
.

Shifting from t+ 1 tp t gives the desired result,846

(f(xt)− f⋆) ≤ 6
f(xt)− f⋆

t(t+ 1)(t+ 2)
+

1

(t+ 1)(t+ 2)

L(3R)3

2
+

1

t+ 2

C2(3R)2

4
.

847

Theorem 6. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1a, 2 and 3 hold. Then, in848

expectation over the matrices Di, algorithm 3 starting at x0 with M0 achieves, for t ≥ 1,849

EDt [f(xt)− f⋆] ≤ 1

1 + 1
4

[
N
d t
]3 (f(x0)− f⋆) +

1[
N
d t
]2 L(3R)3

2
+

1[
N
d t
] C3(3R)2

2
,

where C3
def
= δLκ+2κ2

2 + (d−N)
d maxi∈[0,t] ∥∇2f(xi)∥.

Proof. The proof technique is similar to [35]. Starting from proposition 10 with x = xt,850

Ef(xt+1) ≤
(
1− N

d

)
f(xt) +

N

d
f(y) +

N

d

(Mt+1 + L)

6
∥y − xt∥3

+
N

d

∥y − xt∥2

2

(
δ
Lκ+Mt+1κ

2

2
+

(d−N)

d
∥∇2f(xt)∥

)
,

where the expectation is taken with D0, . . . , Dt−1 fixed. Using the inequality Mt+1 ≤ 2L gives851

Ef(xt+1) ≤
(
1− N

d

)
f(xt) +

N

d

(
f(y) +

∥y − xt∥2

2
C3 +

L

2
∥y − xt∥3

)
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where852

C3
def
=

(
δL

κ+ 2κ2

2
+

(d−N)

d
max
i∈[0,t]

∥∇2f(xi)∥
)
.

Let y = βtx
⋆ + (1− βt)xt, βt ∈ [0, 1]. After using Assumption 4 and Assumption 2,853

Ef(xt+1) ≤
(
1− N

d

)
f(xt) +

N

d

(
f
(
βtx

⋆ + (1− βt)xt

)
+ β2

t

C3R
2

2
+ β3

t

LR3

2

)
≤
(
1− N

d

)
f(xt) +

N

d

(
βtf(x

⋆) + (1− βt)f(xt) + β2
t

C3R
2

2
+ β3

t

LR3

2

)
=

(
1− N

d

)
f(xt) +

N

d

(
βtf(x

⋆) + (1− βt)f(xt) + β2
t

C3R
2

2
+ β3

t

LR3

2

)
,

=

(
1− βt

N

d

)
f(xt) +

N

d

(
βtf(x

⋆) + β2
t

C3R
2

2
+ β3

t

LR3

2

)
.

Hence, the recursion854

(Ef(xt+1)− f⋆) ≤
(
1− βt

N

d

)
(f(xt)− f⋆) +

N

d

(
β2
t

C3R
2

2
+ β3

t

LR3

2

)
.

Now, define855

bt = t2,

Bt = B0 +

t∑
i=0

bi, B0 =
4

3

(
d

N

)3

βt =
d

N

bt+1

Bt+1
⇒ 1− N

d
βt =

Bt

Bt+1
.

Replacing those relations in the recursion gives856

Bt+1 (Ef(xt+1)− f⋆)

≤Bt(f(xt)− f⋆) +
N

dBt+1

((
d

N

bt+1

Bt+1

)2
C3R

2

2
+

(
d

N

bt+1

Bt+1

)3
LR3

2

)

=Bt(f(xt)− f⋆) +
d

N

b2t+1

Bt+1

C3R
2

2
+

d2

N2

b3t+1

B2
t+1

LR3

2

Expanding the inequality gives857

Bt+1 (Ef(xt+1)− f⋆) ≤ B0(f(x0)− f⋆) +
d

N

t+1∑
t=0

b2i+1

Bi+1

C3R
2

2
+

d2

N2

t+1∑
t=0

b3i+1

B2
i+1

LR3

2

Since858

Bt = B0 +

t∑
i=1

≥ B0 +

∫ t

0

x2 dx = B0 +
t3

3

t∑
i=0

b2t
Bt
≤

t∑
i=0

i4

B0 + i3/3
≤ 3t2,

t∑
i=0

b3t
B2

t

≤
t∑

i=0

i6

(B0 + i3/3)2
≤ 9t,

the bound becomes859

Bt+1 (Ef(xt+1)− f⋆) ≤ B0(f(x0)− f⋆) +
d

N
3t2

C3R
2

2
+

d2

N2
9t
LR3

2
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Dividing both sides by Bt+1 gives860

Ef(xt+1)− f⋆ ≤ B0

B0 +
(t+1)3

3

(f(x0)− f⋆) +
d

N

3(t+ 1)2

B0 +
(t+1)3

3

C3R
2

2
+

d2

N2

9(t+ 1)

B0 +
(t+1)3

3

LR3

2
.

After the following simplifications,861

B0

B0 + (t+ 1)3/3
=

1

1 + (t+1)3

3B0

=
1

1 + 1
4

(
N
d (t+ 1)

)3 ,
3(t+ 1)2

B0 + (t+ 1)3/3
=

3

B0

(t+ 1)3

1 + (t+1)3

3B0

1

t+ 1
≤ 3

B0
3B0

1

t+ 1
=

9

t+ 1
,

9(t+ 1)

B0 +
(t+1)3

3

=
9

B0

(t+ 1)3

(t+1)3

3B0

1

(t+ 1)2
≤ 9

B0
3B0

1

(t+ 1)2
=

27

(t+ 1)2
,

the inequality finally becomes (after shifting from t+ 1 to t),862

Ef(xt)− f⋆ ≤ 1

1 + 1
4

[
N
d t
]3 (f(x0)− f⋆) +

1[
N
d t
]2 L(3R)3

2
+

1[
N
d t
] C3(3R)2

2
.

863

F.4 Missing proofs from Section 4864

Notations The following functions define the estimate sequence,865

ℓt(x) =

t∑
i=2

bi−1 (f(xi) +∇f(xi)(x− xi)) , (55)

ϕt(x) = f(x1) + ℓt(x) +
λ
(1)
t

2
∥x− x0∥2 +

λ
(2)
t

6
∥x− x0∥3 (56)

Φt(x) =
ϕt(x)

Bt
, (57)

where λ
(1,2)
t are non-negative and increasing, and the sequences bt, Bt are866

Bt =
k(t+ 1)(t+ 2)

6
=

t∑
i=1

bi, (58)

bt =
(t+ 1)(t+ 2)

2
= Bt+1 −Bt. (59)

(60)
Moreover, the following quantities will be important later,867

vt = argmin
x

ϕt(x) = argmin
x

Φt(x), (61)

βt =
bt

Bt+1
, (62)

yt = (1− βt)xt + βtvt. (63)

F.4.1 Technical results868

Lemma 1. From [44, Lemma 4]. The Bregman divergence of the function ∥x∥i satisfies, for i ≥ 2,869

∥x∥i − ∥y∥i −∇(∥y∥i)(x− y) ≥ 1

2i−2
∥x− y∥i.

Proposition 12. The function ϕt is lower-bounded by870

ϕt ≥ ϕt(vt)︸ ︷︷ ︸
=ϕ⋆

t

+
λ
(1)
t

2
∥x− vt∥2 +

λ
(2)
t

12
∥x− vt∥3 (64)

where vt = argminx ϕt(x).871
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Proof. The first order condition on ϕt reads,872

ℓ′t +∇

(
λ
(1)
t

2
∥vt − x0∥2 +

λ
(2)
t

6
∥vt − x0∥3

)
= 0.

Multiplying both sides by (x− vt) gives873

ℓ′t(x− vt) +∇

(
λ
(1)
t

2
∥vt − x0∥2 +

λ
(2)
t

6
∥vt − x0∥3

)
(x− vt) = 0.

Note that, since ℓt is an affine function, ℓ′t(x− vt) = ℓt(x)− ℓt(vt). Hence,874

ℓt(x)− ℓt(vt) +∇

(
λ
(1)
t

2
∥vt − x0∥2 +

λ
(2)
t

6
∥vt − x0∥3

)
(x− vt) = 0.

Finally, adding λ
(1)
t

2 ∥x− x0∥2 + λ
(2)
t

6 ∥x− x0∥3 on both sides and after reorganizing the terms,875

ϕt(x) = ℓt(vt)+
λ
(1)
t

2 ∥x−x0∥2+ λ
(2)
t

6 ∥x−x0∥3−∇
(

λ
(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3
)
(x−vt).

(65)
From lemma 1 with x = x− x0, y = vt − x0, and after reorganizing the terms,876

∥x− x0∥i −∇(∥vt − x0∥i)(x− vt) ≥
1

2i−2
∥x− vt∥i + ∥vt − x0∥i.

Therefore, using the previous inequality with i = 2 and i = 3, (65) becomes877

ϕt(x) ≥ ℓt(vt) +
λ
(1)
t

2
∥vt − x0∥2 +

λ
(2)
t

6
∥vt − x0∥3 +

λ
(2)
t

2
∥vt − x∥2 + λ

(3)
t

12
∥vt − x∥3

By definition of ϕ⋆
t = ϕt(vt),878

ϕt(x) ≥ ϕ⋆
t +

λ
(1)
t

2
∥vt − x∥2 + λ

(2)
t

12
∥vt − x∥3.

879

Proposition 13. Under the assumptions of proposition 11 the condition880

∥f(x+)∥2

M
(
γ + ∥Dα∥

2

) ≤ −∇f(x)TDα

is guaranteed as long as γ and M are sufficiently big,881

γ ≥ 1

2

∥ε∥
∥D∥

1 + κ2
D

2
,

M ≥ 1
∥Dα∥

2 + ∥ε∥
2∥D∥

(
L

2

(
∥Dα∥+ ∥ε∥

∥D∥
κD

)
+ ∥(I − P )∇2f(x)P∥

)
.

Proof. Elevating to the square the inequality of proposition 11 gives882 (
M

(
γ +
∥Dα∥
2

))2

∥Dα∥2 + ∥∇f(x+)∥2 +
(
M

(
γ +
∥Dα∥
2

))
∇f(x+)

TDα

≤ ∥Dα∥2
(
L

2
∥Dα∥+ L

2

∥ε∥
∥D∥

κD + ∥(I − P )∇2f(x)P∥+M

(
γ − ∥ε∥

2∥D∥

))2

.

The desired result holds if the following condition is satisfied,883 (
M

(
γ +
∥Dα∥
2

))2

∥Dα∥2

≥∥Dα∥2
(
L

2
∥Dα∥+ L

2

∥ε∥
∥D∥

κD + ∥(I − P )∇2f(x)P∥+M

(
γ − ∥ε∥

2∥D∥

))2

.
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After simplification of the squares and γ,884

M
∥Dα∥
2
≥ L

2
∥Dα∥+ L

2

∥ε∥
∥D∥

κD + ∥(I − P )∇2f(x)P∥ −M
∥ε∥
2∥D∥

.

Hence, the following condition is sufficient,885

M ≥ 1
∥Dα∥

2 + ∥ε∥
2∥D∥

(
L

2

(
∥Dα∥+ ∥ε∥

∥D∥
κD

)
+ ∥(I − P )∇2f(x)P∥

)
.

886

Proposition 14 (Guarantees that algorithm 4 terminates). Let f satisfies Assumption 1. Then, under887

Requirements 1b to 3, if M0 < M , the output of algorithm 4 guarantees that888

M ≤ 2
1

∥Dα∥
2 + ∥ε∥

2∥D∥

(
L

2

(
∥Dα∥+ ∥ε∥

∥D∥
κD

)
+ ∥(I − P )∇2f(x)P∥

)

≤ LκD +
2∥(I − P )∇2f(x)P∥

∥Dα∥
2 + ∥ε∥

2∥D∥

M

(
γ +
∥Dα∥
2

)
≤ (1 + κ2

D)

(
L

2

(
∥Dα∥+ ∥ε∥

∥D∥
κD

)
+ ∥(I − P )∇2f(x)P∥

)
.

Proof. Assume ∆ = ∞, so that the algorithm can only terminates with ExitFlag equals to889

SmallStep. Either the algorithm terminates at M = M0, or M0 < M . In the second case,890

algorithm 4 multiplies M by a factor 2 while891

∥f(x+)∥2

M
(
γ + ∥Dα∥

2

) ≥ −∇f(x)TDα,

then, by proposition 13, once892

M ≥ 1
∥Dα∥

2 + ∥ε∥
2∥D∥

(
L

2

(
∥Dα∥+ ∥ε∥

∥D∥
κD

)
+ ∥(I − P )∇2f(x)P∥

)
holds, the condition is met and the algorithm terminates. In the worst case, M is at most two times893

larger than the bound:894

M ≤ 2
1

∥Dα∥
2 + ∥ε∥

2∥D∥

(
L

2

(
∥Dα∥+ ∥ε∥

∥D∥
κD

)
+ ∥(I − P )∇2f(x)P∥

)
(66)

Since, for all c1 > 0, c2 > 0, c3 > 1,895

c1 + c2c3
c1 + c2

= 1 +
c2(c3 − 1)

c1 + c2
= 1 +

c3 − 1
c1
c2

+ 1
≤ c3, (67)

the bound becomes896

M ≤

LκD +
2∥(I − P )∇2f(x)P∥

∥Dα∥
2 + ∥ε∥

2∥D∥

 .

Going back to (66), and after multiplying both sides by γ + ∥Dα∥
2 with γ = 1

2
∥ε∥
∥D∥

1+κ2
D

2 gives897

M

(
γ +
∥Dα∥
2

)
≤ 2

∥Dα∥
2 + 1

2
∥ε∥
∥D∥

1+κ2
D

2

∥Dα∥
2 + ∥ε∥

2∥D∥

(
L

2

(
∥Dα∥+ ∥ε∥

∥D∥
κD

)
+ ∥(I − P )∇2f(x)P∥

)
.

Once again, using (67) gives898

M

(
γ +
∥Dα∥
2

)
≤ (1 + κ2

D)

(
L

2

(
∥Dα∥+ ∥ε∥

∥D∥
κD

)
+ ∥(I − P )∇2f(x)P∥

)
.

899
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Proposition 15. Assume f satisfies Assumption 1. Then, under Requirements 1b to 3, if900

∥Dα∥ ≥ 2

(
δκ2

D + 2
∥(I − P )∇2f(x)P∥

1√
3−1

L

)
.

then the condition901

2

33/4
∥∇f(x+)∥3/2√

M
≤ −∇f(x+)

TDα

is guaranteed as long as M is sufficiently big,902

2√
3− 1

L ≤M.

Proof. Starting from proposition 7,903 ∥∥∥∥M∥Dα∥
2

Dα+∇f(x+)

∥∥∥∥
≤L

2
∥Dα∥2 + ∥Dα∥

(
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
.

Assuming904
L
κD

+M

4
∥Dα∥ ≥ ∥ε∥

∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥,

or equivalently,905

∥Dα∥ ≥ 4

(
∥ε∥
2∥D∥

κ2
D +

∥(I − P )∇2f(x)P∥
L
κD

+M

)
, (68)

gives the simpler bound906 ∥∥∥∥M∥Dα∥
2

Dα+∇f(x+)

∥∥∥∥ ≤ L+ L
κD

+M

4
∥Dα∥2.

Elevating both sides to the square give907

M2

4
∥Dα∥4 +M∥Dα∥DαT∇f(x+) + ∥∇f(x+)∥2 ≤

(L(1 + 1
κD

) +M)2

16
∥Dα∥4,

hence, and using the fact that κD ≥ 1,908

M∥Dα∥DαT∇f(x+) + ∥∇f(x+)∥2 ≤
(2L+M)2 − 4M2

16
∥Dα∥4.

Assuming 2√
3−1

L ≤M ,909

M∥Dα∥DαT∇f(x+) + ∥∇f(x+)∥2 ≤
−M2

16
∥Dα∥4.

After reorganization, and writing r = ∥Dα∥,910

M

16
r3 +

∥∇f(x+)∥2

Mr
≤ −DαT∇f(x+).

Using911

c1
r

+ c2r
3 ≥ 4c

1/4
2

(c1
3

)3/4
,

the inequality becomes912

−DαT∇f(x+) ≥
M1/4

2

∥∇f(x+)∥3/2

M3/4

4

33/4

=
2

33/4
∥∇f(x+)∥3/2√

M
.

Finally, the condition on ∥Dα∥ in (68) is made stronger by replacing M with its lower bound, by913

using Requirements 1b to 3 and because κD ≥ 1, i.e.,914

∥Dα∥ ≥ 4

(
δκ2

D

2
+
∥(I − P )∇2f(x)P∥

2√
3−1

L

)
.

915
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Proposition 16. If λ(1)
t and λ

(2)
t satisfy916

λ
(1)
t ≥

b2t+1

Bt
Mt+1

(
γt +

∥Dtαt∥
2

)
, λ

(2)
t ≥ 4√

3

b3t+1

B2
t

Mt+1

Then, the function ϕ satisfies917

Btf(xt) ≤ ϕt(x), ϕt(x) ≤ Btf(x) +
λ
(1)
t + λ̃(1)

2
∥x− x0∥2 +

λ
(2)
t + λ̃(2)

6
∥x− x0∥3,

where918

λ̃(1) = ∥∇f(x0)− P0∇f(x0)P0∥+ δ

(
Lκ+M1κ

2

2

)
, λ̃(2) = M1 + L.

Proof. The result is proven by recursion. At t = 1, the condition Btf(xt) ≤ ϕt(x) is obviously919

satisfied since920

f(x1) ≤ min
v

ϕ1(v) = f(x1).

On the other hand, by proposition 9,921

f(x1) ≤ min
x

f(x) +
λ̃(2)

6
∥x− x0∥3 +

λ̃(1)

2
∥x− x0∥2

≤ f(x) +
λ̃(2)

6
∥x− x0∥3 +

λ̃(1)

2
∥x− x0∥2.

Therefore, the second condition holds by definition of ϕ,922

ϕt = f(x1) +
λ
(1)
t

2
∥x− x0∥2 +

λ
(2)
t

6
∥x− x0∥3

≤ λ
(1)
1 + λ̃(1)

2
∥x− x0∥2 +

λ
(2)
1 + λ̃(2)

6
∥x− x0∥3.

Now, assume t > 1, and Btf(xt) ≤ ϕt(x). Hence,923

min
x

ϕt+1(x)

=min
x

ℓt(x) + bt [f(xt+1) +∇f(xt)(x− xt+1)] +
λ
(1)
t+1

2
∥x− x0∥2 +

λ
(2)
t+1

6
∥x− x0∥3

=min
x

ϕt(x) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

+
λ
(1)
t+1 − λ

(1)
t

2
∥x− x0∥2 +

λ
(2)
t+1 − λ

(2)
t

6
∥x− x0∥3

≥min
x

ϕt(x) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

(64)
≥ min

x
ϕ⋆
t +

λ
(1)
t

2
∥x− vt∥2 +

λ
(2)
t

12
∥x− vt∥3 + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

≥min
x

Btf(xt) +
λ
(1)
t

2
∥x− vt∥2 +

λ
(2)
t

12
∥x− vt∥3 + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

A.4
≥ min

x
Btf(xt+1) +∇f(xt+1)(xt − xt+1) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

+
λ
(1)
t

2
∥x− vt∥2 +

λ
(2)
t

12
∥x− vt∥3

=min
x

Bt+1f(xt+1) +∇f(xt+1)(Btxt + btx−Bt+1xt+1) +
λ
(1)
t

2
∥x− vt∥2 +

λ
(2)
t

12
∥x− vt∥3

(63)
= min

x
Bt+1f(xt+1) +Bt+1∇f(xt+1)(yt − xt+1)

+ bt∇f(xt+1)(x− vt) +
λ
(1)
t

2
∥x− vt∥2 +

λ
(2)
t

12
∥x− vt∥3
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The inequality is satisfied if either924

(a) 0 ≤ Bt+1∇f(xt+1)(yt − xt+1) + bt∇f(xt+1)(x− vt) +
λ
(2)
t

12
∥x− vt∥3, or

(b) 0 ≤ Bt+1∇f(xt+1)(yt − xt+1) + bt∇f(xt+1)(x− vt) +
λ
(1)
t

2
∥x− vt∥2.

It remains now to find sufficient condition such that one of the previous inequalities hold.925

Define xt+1 to be the output of algorithm 4 starting from yt, hence yt − xt+1 = −Dtαt. The926

algorithm guarantees that927

(b) −∇f(xt+1)
TDtαt ≥

∥f(xt+1)∥2

Mt+1

(
γt +

∥Dtαt∥
2

) , or (69)

(a) −∇f(xt+1)
TDtαt ≥

2

33/4
∥∇f(xt+1)∥3/2√

Mt+1

and ∥Dα∥ ≥ ∆. (70)

Combining the expressions (a) and (b) leads to the following sufficient conditions:928

0 ≤ Bt+1
2

33/4
∥∇f(xt+1)∥3/2√

Mt+1

+ bt∇f(xt+1)(x− vt) +
λ
(2)
t

12
∥x− vt∥3, (71)

0 ≤ Bt+1
∥f(xt+1)∥2

Mt+1

(
γt +

∥Dtαt∥
2

) + bt∇f(xt+1)(x− vt) +
λ
(1)
t

2
∥x− vt∥2. (72)

Case 1: equation (71). Starting from the first order condition of the minimum of (71) over x,929

bt∇f(xt+1) +
λ
(2)
t

4
∥x− vt∥(x− vt) = 0. (73)

Multiplying (73) by (x− vt) gives930

bt∇f(xt+1)(x− vt) = −
λ
(2)
t

4
∥x− vt∥3

Hence, when x satisfies (73),931

bt∇f(xt+1)(x− vt) +
λ
(2)
t

12
∥x− vt∥3 = −λ

(2)
t

6
∥x− vt∥3. (74)

Going back to (73), after isolating x− vt,932

(x− vt) = −
4bt

λ
(2)
t

∇f(xt+1)
1

∥x− vt∥
Therefore, after taking the norm and changing the power,933

∥x− vt∥3 =

(
4bt

λ
(2)
t

∥∇f(xt+1)∥

)3/2

,

⇔ λ
(2)
t

6
∥x− vt∥3 =

λ
(2)
t

6

(
4bt

λ
(2)
t

∥∇f(xt+1)∥

)3/2

=
4

3

√
λ
(2)
t

(bt∥∇f(xt+1)∥)3/2 .

After using (74) and injecting the minimal value makes the condition (71) stronger:934

0 ≤ Bt+1
2

33/4
∥∇f(xt+1)∥3/2√

Mt+1

− 4

3

√
λ
(2)
t

(bt∥∇f(xt+1)∥)3/2 .

Hence, if λ(2)
t satisfies935

Bt+1
2

33/4
√
Mt+1

≥ 4

3

√
λ
(2)
t

b
(3/2)
t ⇔ λ

(2)
t ≥ 4√

3

b3t
B2

t+1

Mt+1, (75)

then (71) is satisfied.936
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Case 2: equation (72). Starting from the first order condition of the minimum of (72) over x,937

bt+1∇f(xt+1) + λ
(1)
t (x− vt). (76)

Hence,938

(x− vt) = −
bt∇f(xt+1)

λ
(1)
t

.

Injecting the value back in (72) gives939

Bt+1
∥f(xt+1)∥2

M
(
γt +

∥Dtαt∥
2

) − b2t
∥∇f(xt+1)∥2

λ
(1)
t

+
1

2
b2t
∥∇f(xt+1)∥2

λ
(1)
t

.

Therefore, if the following condition holds,940

Bt+1

2Mt+1

(
γt +

∥Dtαt∥
2

) ≥ b2t

λ
(1)
t

⇔ λ
(1)
t ≥ b2t

2Bt+1
Mt+1

(
γt +

∥Dtαt∥
2

)
,

then (72) is satisfied.941

942

Proposition 17. Let f satisfies Assumption 1. Then, under Requirements 1b to 3, using the re-scaling943

technique from algorithm 6944

(M0)t+1 ←Mt+1

(
∥εt∥
2∥Dt∥

+
∥Dtαt∥

2

)
,

makes (M0)t+1 bounded as follow:945

(M0)t+1 ≤
L

2
(2∆ + (2κ2 + κ)δ) + (2

√
3− 1) max

0≤i≤t
∥(I − Pi)∇2f(xi)Pi∥. (77)

Proof. By proposition 14, for all ∆, if M0 ≤Mt+1,946

Mt+1 ≤ LκDt +
2∥(I − Pt)∇2f(x)Pt∥

∥Dtαt∥
2 + ∥εt∥

2∥Dt∥

,

where (M0)t is the initial smoothness parameter in algorithm 4. The desired result comes immediately947

after multiplying by
(

∥εt∥
2∥Dt∥ + ∥Dtαt∥

2

)
, using Requirements 2 and 3 and because the re-scaling948

technique requires M0 < Mt+1.949

In addition, if ∥Dtαt∥ is sufficiently large, i.e., if950

∥Dtαt∥ ≥ max

{
∆ ; 2κ2

Dδ + 2 max
0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥
1√
3−1

L

}
,

then by proposition 15 the algorithm terminates when Mt+1 ≥ 2√
3−1

L. For simplicity, consider the951

stronger condition952

∥Dtαt∥ ≥ ∆+ 2κ2
Dδ + 2 max

0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥
1√
3−1

L
. (78)

Hence, (M0)t+1 cannot be larger than953

(M0)t+1

≤ L

2

(
∆+ 2κ2δ + 2 max

0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥
1√
3−1

L
+ δκ

)
+max

i
∥(I − Pi)∇2f(xi)Pi∥,

=
L

2
(2∆ + (2κ2 + κ)δ) + (2

√
3− 1) max

0≤i≤t
∥(I − Pi)∇2f(xi)Pi∥.

954
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Proposition 18. Let f satisfies Assumption 1. Then, under Requirements 1b to 3, λ(1)
t and λ

(2)
t in955

algorithm 6 are bounded by956

λ
(1)
t ≤ 2 ·

b2t+1

Bt

(M0)
2
max

L
, (79)

λ
(2)
t ≤ 2 · 4√

3

b3t+1

B2
t

max

{
1 ;

2

∆

}
(M0)max. (80)

where957

(M0)max
def
=

L

2
(2∆ + (2κ2 + κ)δ) + (2

√
3− 1) max

0≤i≤t
∥(I − Pi)∇2f(xi)Pi∥. (81)

Proof. Since algorithm 6 doubles λ(1)
t , λ(2)

t until ϕ⋆
t ≥ f(xt+1), then by proposition 16, both λ

(1)
t ,958

λ
(2)
t achieves at most959

λ
(1)
t ≤ 2 ·

b2t+1

Bt
Mt+1

(
γt +

∥Dtαt∥
2

)
, λ

(2)
t ≤ 2 · 4√

3

b3t+1

B2
t

Mt+1.

There are three cases to distinguish.960

First case. When (M0)t = Mt+1, whatever the value of ExitFlag, by proposition 17, and by961

construction of algorithm 6, (M0)t is bounded as follow:962

(M0)t ≤ max

{
(M0)t−1

2
;
L

2
(2∆ + (2κ2 + κ)δ) + (2

√
3− 1) max

0≤i≤t
∥(I − Pi)∇2f(xi)Pi∥.

}
.

In the worst case, the maximum is attained in the right hand side. For simplicity, let (M0)max be963

defined as964

(M0)max
def
=

L

2
(2∆ + (2κ2 + κ)δ) + (2

√
3− 1) max

0≤i≤t
∥(I − Pi)∇2f(xi)Pi∥.

In this case, λ(t)
1 and λ

(2)
t are bounded by965

λ
(1)
t ≤ 2 ·

b2t+1

Bt
(M0)max

(
γt +

∥Dtαt∥
2

)
λ
(2)
t ≤ 2 · 4√

3

b3t+1

B2
t

(M0)max. (82)

By Requirements 2 and 3, γt is bounded by966

γt =
1

2

∥εt∥
∥Dt∥

1 + κ2
Dt

2
≤ 1 + κ2

4
δ.

Moreover, under the condition (78),967

∥Dtαt∥ ≥ ∆+ 2κ2
Dδ + 2 max

0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥
1√
3−1

L
,

the algorithm algorithm 4 terminates with ExitFlag equals to LargeStep. Hence, to update λ
(1)
t ,968

∥Dtαt∥ ≤ ∆+ 2κ2
Dδ + 2 max

0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥
1√
3−1

L
(83)

Therefore,969

γt +
∥Dtαt∥

2
≤ 1 + κ2

4
δ +

1

2

(
∆+ 2κ2δ + 2 max

0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥
1√
3−1

L

)

≤ 1

L

(
L

2

(
1 + 5κ2

2
δ +∆

)
+ (
√
3− 1) max

0≤i≤t
∥(I − Pi)∇2f(xi)Pi∥

)
≤ (M0)max

L
.
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By consequence,970

λ
(1)
t ≤2 ·

b2t+1

Bt
(M0)max

(
γt +

∥Dtαt∥
2

)
≤ 2 ·

b2t+1

Bt

(M0)
2
max

L
.

Second case. When M0 ≤Mt and ExitFlag equals SmallStep, only λ1 is updated. Therefore,971

λ
(1)
t ≤ 2 ·

b2t+1

Bt
Mt+1

(
γt +

∥Dtαt∥
2

)
.

Since M0 ≤Mt+1, by proposition 14, then by Requirements 2 and 3,972

Mt+1

(
γt +

∥Dtαt∥
2

)
≤ (1 + κ2

Dt
)

(
L

2

(
∥Dtαt∥+

∥εt∥
∥Dt∥

κDt

)
+ ∥(I − Pt)∇2f(xt)Pt∥

)
,

≤ (1 + κ2)

(
L

2
(∥Dtαt∥+ δκ) + max

0≤i≤t
∥(I − Pi)∇2f(xi)Pi∥

)
Because ExitFlag is SmallStep, ∥Dα∥ is bounded by (83). Hence,973

Mt+1

(
γt +

∥Dtαt∥
2

)
≤(1 + κ2)

[
L

2

(
∆+ 2κ2

Dδ + 2 max
0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥
1√
3−1

L
+ δκ

)

+ max
0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥

]

=(1 + κ2)

[
L

2

(
∆+ (2κ2

D + κ)δ
)
+
√
3 max
0≤i≤t

∥(I − Pi)∇2f(xi)Pi∥

]
≤(1 + κ2)(M0)max.

Since (1 + κ2) ≤ (M0)max

L ,974

Mt+1

(
γt +

∥Dtαt∥
2

)
≤ (M0)

2
max

L
.

Hence,975

λ
(1)
t ≤ 2 ·

b2t+1

Bt

(M0)
2
max

L
.

Third case. It remains to bound λ
(2)
t , when (M0)t ≤Mt+1 and ExitFlag equals LargeStep. In976

such a case, by proposition 14,977

Mt+1 ≤ 4
1

∥Dtαt∥+ ∥εt∥
∥Dt∥

(
L

2

(
∥Dtαt∥+

∥εt∥
∥Dt∥

κDt

)
+ ∥(I − Pt)∇2f(xt)Pt∥

)
Note that, for all a, b, the function x+a

x+b is decreasing as long as b < a. Hence, since ExitFlag equals978

LargeStep, ∥Dtαt∥ ≥ ∆ and979

∥Dtαt∥+ ∥εt∥
∥Dt∥κDt

∥Dtαt∥+ ∥εt∥
∥Dt∥

≤
∆+ ∥εt∥

∥Dt∥κDt

∆+ ∥εt∥
∥Dt∥

,

and therefore, using Requirements 2 and 3 leads to980

Mt+1 ≤ 4
1

∆ + ∥εt∥
∥Dt∥

(
L

2

(
∆+

∥εt∥
∥Dt∥

κDt

)
+ ∥(I − Pt)∇2f(xt)Pt∥

)

≤ 4
1

∆

(
L

2

(
∆+

∥εt∥
∥Dt∥

κDt

)
+ ∥(I − Pt)∇2f(xt)Pt∥

)
≤ 4

1

∆

(
L

2
(∆ + δκ) + max

0≤i≤t
∥(I − Pi)∇2f(xi)Pi∥

)
≤ 2

(M0)t
∆

.
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Therefore, after combining this inequality with (82),981

λ
(2)
t ≤ 2 · 4√

3

b3t+1

B2
t

max

{
1 ;

2

∆

}
(M0)max.

982

Theorem 7. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1b to 3 hold. Then,983

algorithm 5 starting at x0 with M0 achieves, for all ∆ > 0 and for t ≥ 1,984

f(xt)− f⋆ ≤ (M0)
2
max

L

(
3R

t+ 3

)2

+
4(M0)max

3
√
3

max
{
1 ; 2

∆

}( 3R

t+ 3

)3

+
λ̃(1)R2

2 + λ̃(2)R3

6

(t+ 1)3
.

where λ̃(1) = 0.5 · δ
(
Lκ+M1κ

2
)
+ ∥∇f(x0)− P0∇f(x0)P0∥, λ̃(2) = M1 + L,

(M0)max = L
2 (2∆ + (2κ2 + κ)δ) + (2

√
3− 1)max0≤i≤t ∥(I − Pi)∇2f(xi)Pi∥.

Proof. By construction of ϕt(x), from proposition 16 and Assumption 2,985

Btf(xt) ≤ min
x

ϕt(x) (84)

≤ ϕt(x
⋆) (85)

≤ Btf(x
⋆) +

λ
(1)
t + λ̃(1)

2
∥x⋆ − x0∥2 +

λ
(2)
t + λ̃(2)

6
∥x⋆ − x0∥3 (86)

≤ Btf(x
⋆) +

λ
(1)
t + λ̃(1)

2
R2 +

λ
(2)
t + λ̃(2)

6
R3 (87)

⇒ f(xt)− f⋆ ≤ λ
(1)
t + λ̃(1)

2Bt
R2 +

λ
(2)
t + λ̃(2)

6Bt
R3. (88)

By proposition 18, the following bounds holds:986

λ
(1)
t ≤ 2 ·

b2t+1

Bt

(M0)
2
max

L
,

λ
(2)
t ≤ 2 · 4√

3

b3t+1

B2
t

max

{
1 ;

2

∆

}
(M0)max.

Hence,987

f(xt)− f⋆ ≤
2 · b

2
t+1

Bt

(M0)
2
max

L + λ̃(1)

2Bt
R2 +

2 · 4√
3

b3t+1

B2
t
max

{
1 ; 2

∆

}
(M0)max + λ̃(2)

6Bt
R3.

Since bt+1

Bt
= 3

(t+3) ,988

b3t+1

B3
t

=
33

(t+ 3)3
, (89)

b2t+1

B2
t

=
32

(t+ 3)2
. (90)

(91)

Therefore,989

f(xt)− f⋆ ≤ (M0)
2
max

L

(
3R

t+ 3

)2

+
4(M0)max

3
√
3

max

{
1 ;

2

∆

}(
3R

t+ 3

)3

+
λ̃(1)R2

2 + λ̃(2)R3

6

(t+ 1)3
.
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