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In the following, we provide the implementation details of the simulation and real-world experiments1

presented in the main manuscript.2

1 Simulation Setup3

We train with NVIDIA’s Isaac Gym [1] and employ Proximal Policy Optimization (PPO) [2]. A4

detailed description of the used training pipeline can be found in [3]. A full training run comprises5

2000 policy updates to ensure reward convergence for all investigated tasks. It takes one hour to6

train a policy on a single NVIDIA RTX 2080 Ti graphics card. Subsequently, we give a detailed7

description of the training environment.8

• Reward Formulation: The definitions and weights of the reward terms used for the door and9

the package task are detailed in Table 1. We decided to add two task-related shaping rewards for10

the task of package manipulation to improve the behavior for real-world tests. Namely, the agent11

receives penalties for generating high package velocities and exerting large contact forces onto the12

table. Notice that this choice is not violating the idea of the proposed approach. Firstly, the added13

penalties are unrelated to the main task, which is still defined by a single sparse reward. Secondly,14

our approach first generates unbiased behaviors and can then be augmented for more pleasing15

results. In contrast, other formulations bias the agent as a byproduct of defining the desired task16

in a dense fashion. Penalizing table contacts and the package velocity, which is part of the chosen17

curiosity state, clearly increases the difficulty of discovering the desired skill. To compensate18

for this, we employ a simple reward scaling scheme. The first 1000 training iterations serve as19

a discovery phase, as most runs discover the sparse reward in that time. Shaping and standing20

rewards are active but scaled by a factor of 0.1. The second half of training acts as a shaping phase21

where the scaling factor is gradually increased to 1 over the course of 500 iterations.22

• Observations: The corresponding observation definitions can be found in Table 2. All observa-23

tions are subject to noise to account for uncertainties and sensor noise in reality. For more detail24

in that regard, please refer to [3].25

• Randomization: To improve generalization to different environments, as well as robustness26

against mismatches between simulation and reality, masses and friction coefficients are random-27

ized as detailed in Table 3. Additionally, the robot spawns in a randomized pose, i.e., initial28

position, orientation, and joint configuration vary. All randomized properties are sampled from a29

uniform distribution in the interval of [µ− ϵ
2 , µ+ ϵ

2 ] for every training environment.30
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Table 1: Rewards

Name Formula Weight
Intrinsic Reward

Random Network Distillation (RND) prediction error
∥∥∥f(sc)− f̂(sc)

∥∥∥
2

200

Task Rewards

Door opened
{
1, if qhinge > 1.5

0, otherwise
1.0

Package delivered
{
1, if Irpackage ∈ Sbin

0, otherwise
1.0

Standing Rewards

Height Izbase 0.5

Upright base π/2−arccos(Ie
B
x ·IeI

z )
π/2 0.5

Straight shoulder joints −∥qshoulders∥2 0.5
Straight knee joints exp(−∥qknees∥2) 0.25

Shaping Rewards

Joint torque −∥τ∥2 1.5 · 10−5

Joint acceleration −∥q̈∥2 2.5 · 10−7

Joint velocity −∥q̇∥2 2.5 · 10−4

Table contact force −∥Fc, table∥2 1.0 · 10−5

Package velocity −∥I ṙpackage∥2 1.0 · 10−2

Table 2: Observations

Robot-related Observations

Bṙbase ∈ R3 Linear base velocity
Bωbase ∈ R3 Angular base velocity
Bg ∈ R3 Projected gravity vector
qlegs ∈ R12 Joint configuration without wheels
ohooks ∈ R4 Hook directions (for pull doors)
q̇ ∈ R16 Joint velocity
aprev ∈ R16 Previous actions

Door-related Observations

CrCH ∈ R3 Relative door handle position
CrCHinit ∈ R3 Relative initial door handle position

Package-related Observations

CrCP ∈ R3 Relative package position
CrCT ∈ R3 Relative table position
CrCB ∈ R3 Relative bin position
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Table 3: Randomization Parameters

Uniformly Randomized Property Mean µ Range ϵ Unit

Global friction coefficient 0.75 0.75 -
Robot position (x, y) 0 0.6 m
Initial robot yaw angle 0 1 rad
Initial joint angle deviation 0 1 rad
Added robot mass 0 10 kg
Package mass 1.375 1.0 kg

Door torque offset τconst [10 0]
⊤

[10 0]
⊤

Nm

Door spring coefficient k [0 5]
⊤

[0 5]
⊤ Nm

rad

Door damping coefficient d [25 1]
⊤

[25 1]
⊤ Nms

rad

• Termination Conditions: Episodes terminate after 8 seconds, resetting the environments to their31

initial state. An episode terminates early if either the robot is in collision, or if the robot’s center32

is too low, i.e., if the robot does not manage to stand and falls. The second condition accelerates33

training but is not necessary for successful learning. We also terminate an episode if the package is34

not in contact with either the table or the front wheels to prevent the agent from directly throwing35

the package. This termination condition is disabled in close proximity to the bin to allow the36

dropping of the package into the bin.37

• Door Model: The considered doors feature standard lever door handles that need to be pressed38

to a certain degree to unlock the door. In simulation, the handle needs to be pressed once to keep39

the door unlocked for the rest of the episode. Dynamics of the hinge and handle are modeled as40

spring-damper systems with a constant torque offset τdoor. This is achieved by applying the torque41

τdoor = τconst + diag(k) · qdoor + diag(d) · q̇door, (1)

to the door joints. Constants τdoor, k, and d are randomized by sampling from a uniform distribu-42

tion. Measurements on the lab door provide reference values for realistic door dynamics. Further43

details are provided in Table 3.44

• Field of View Simulation: To mimic the perception system of the real robot we simulate the Field45

of View (FOV) for egocentric vision, as introduced in simulation experiments in [4], resulting in46

behaviors that actively direct the robot’s gaze. A visual marker, further explained in section 2,47

specifies the position of the door handle. Consequently, the observation CrCH is only available if48

the marker is detected by a camera. Always passing the door handle observation in the simulation49

would therefore not capture the real system behavior. Instead, the observation is set to 0 if the50

visual marker leaves the camera’s FOV. This way, the agent learns to approximately partition the51

observation space and reason about when it is necessary to see the visual marker. The agent can52

develop behaviors to mitigate a lost observation and to actively keep the marker in the FOV. An53

illustration of the approach is provided in Fig. 1. Note that the second door-related observation54

CrCHinit is not set to 0 because the initial door handle position is static with respect to the inertial55

frame. The observation can thus be bootstrapped with the onboard localization of the robot even56

if the visual marker leaves the FOV.57
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2 Real-World Setup58

We utilize AprilTags [5] to obtain task-related observations in the real world. The AprilTag system59

features a vision-based algorithm that determines the relative position and orientation of detected60

tags. Two visual markers attached to the door provide the relative door handle position observation61

CrCH . If the robot does not detect the tags, the observation is set to 0 to achieve the same behavior62

as in simulation. The initial door handle position observation CrCHinit is determined by two markers63

attached to the door frame. We make use of the robot’s onboard localization to obtain an observation64

even if the tags leave the FOV of the camera. AprilTags also provide relative positions of the65

package, bin, and table. We do not make use of the proposed FOV simulation for the package66

manipulation task for two reasons. Firstly, it increases the difficulty of learning the desired behavior67

because the robot tries to keep the package in the FOV by leaning over the bin and falling. Secondly,68

the package is kept in the FOV naturally until the package is dropped, rendering the additional FOV69

constraint unnecessary for this task.

Figure 1: Door setup and FOV simulation. Components of the curiosity state sc are marked in
red, while observations are marked in blue. The green cone represents the camera’s FOV. A visual
marker, attached to the door, is used to calculate the door handle observation CrCH . If the vector
from the camera to the visual marker (orange) leaves the FOV cone, the door handle observation is
set to 0.
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