
Bandits with Knapsacks beyond the Worst Case

(Supplementary Materials)

Contents

A Motivating examples with d = 2 and small number of arms 16

B Confidence bounds in UcbBwK 16

C LP Sensitivity: proof of Lemma 3.3 17

D Various technicalities from Sections 3 19

D.1 Standard tools . 19

D.2 Proof of Eq. (3.6) . 19

D.3 Proof of Eq. (3.9) . 19

D.4 Lower bound on Lagrange gap: Proof of Eq. (3.10) 20

D.5 Martingale arguments: Proof of Eq. (3.8) . 20

E Proof of Theorem 3.10: generic

p
T lower bound 21

F Proof of Theorem 3.9(b):

p
T lower bound for d > 2 24

G Simple regret: proof of Theorem 4.1 25

G.1 Confidence sums . 25

G.2 Connecting LP-gap and the confidence radius . 26

G.3 Finishing the proof of Theorem 4.1 . 27

G.4 The standard confidence-sum bound: proof of Eq. (G.1) 27

H Reduction from BwK to bandits 27

H.1 Linear Contextual Bandits with Knapsacks (LinCBwK) 28

H.2 Combinatorial Semi-bandits with Knapsacks (SemiBwK) 28

H.3 Multinomial-logit Bandits with Knapsacks (MnlBwK) 29

H.4 Computational issues . 30

15

A Motivating examples with d = 2 and small number of arms

We provide direct motivation for Theorem 3.2, our positive result for O(log T) regret. Recall that
Theorem 3.2 only holds with d = 2 resources, and is only meaningful with a reasonably small number
of arms K (because the regret bounds are linear in K). Such problems arise in many motivating
applications of BwK, e.g., as listed in [14, 16]. Below we spell out several stylized examples.

In dynamic assortment [50, 7, 26], an algorithm is a seller which chooses among possible assortments
of products. In each round, a customer arrives, the algorithm chooses an assortment, and offers this
assortment for sale at an exogenously fixed price. If a sale happens, the algorithm receives revenue
and consumes some amount of inventory. The following version features d = 2 and non-huge K:
there are K possible offerings for sale, and a limited amount of “raw material" used to manufacture
them. Each offering, if sold, consumes some pre-fixed amount of this raw material.8

The “inverted" dynamic assortment problem takes the procurement perspective. An algorithm is a
budget-limited contractor which chooses among K possible types of offers, e.g., different items to
procure from vendors, or different tasks to complete in an online labor market. In each round, a
new agent arrives, the algorithm chooses an offer and presents it to the customer at an exogenously
fixed price. If the offer is accepted, the contractor receives some utility (i.e., reward) and spends the
corresponding amount of money.

In dynamic pricing [19, 12, 20, 59] an algorithm is a seller with limited supply of some product,
and chooses a price in each round. If this price is accepted, a sale happens, and algorithm receives
revenue and spends inventory. Of our interest is the case when the set of possible prices is small and
exogenously fixed, e.g., there are a few possible discount levels. Likewise, in dynamic procurement
[13, 52, 14], an algorithm is a budget-limited contractor who continuously procures some product or
service. The algorithm chooses a price in each round. If this price is accepted, a transaction happens,
so that the algorithm receives an “item" (i.e., reward of 1) and spends the corresponding amount of
money. We focus on the case when there are only a few possible prices, e.g., exogenously fixed levels
of premium or surcharge.

Our last example concerns fault-tolerance in systems. Consider a system, either physical or computa-
tional, which experiments with different possible policies to process incoming requests. In each time
step, it chooses one of the possible policies, and observes the outcome (and there are no lingering
effects, e.g., no persistent “system state" that changes over time). The outcome consists of utility
for performance-as-usual (i.e., reward), and penalty for various mistakes or faults. Fault-tolerance
requirement is expressed as a a “budget" on the total penalty accrued by the algorithm.

B Confidence bounds in UcbBwK

Let us fill in the exact specification of the confidence bounds in the UcbBwK algorithm. (This is for the
sake of completeness only; as pointed out in Preliminaries, these details do not affect our analysis.)

Confidence radius. Given an unknown quantity µ and its estimator bµ, a confidence radius is an
observable high-confidence upper bound on |µ� bµ|. More formally, it is some quantity Rad 2 R�0

such that it is computable from the algorithm’s observations, and |µ � bµ|  Rad with probability
(say) at least 1� 1/T 3. Throughout, the estimator bµ is a sample average over all available observations
pertaining to µ, unless specified otherwise.

Following the prior work on BwK [12, 16, 3], we use the confidence radius from [38]:

frad(bµ,N) := min

✓
1,

q
Crad bµ

max(1,N) +
Crad

max(1,N)

◆
, where Crad = 3 · log(KdT), (B.1)

and N is the number of samples. If bµ is a sample average of N independent random variables with
support in [0, 1], and µ = E[µ], then with probability at least 1� (Kdt)�2 we have

|bµ� µ|  frad(bµ,N)  3 frad(µ,N). (B.2)
For each arm, we use this confidence radius separately for expected reward of this arm, and expected
consumption of each resource.x

8This framing with raw material(s) — BwK formulations of revenue management problems in which products
being sold are separate from raw material(s) being consumed — traces back to Besbes and Zeevi [20].

16

Confidence bounds. Fix arm a 6= null, round t, and resource j 6= time.

Let St(a) = {s < t : as = a} be the set of all previous rounds in which this arm has been chosen,
and let Nt(a) = |St(a)|. Let

r̂t(a) :=
1
t

P
s2St(a)

rs(a) and ĉj,t(a) :=
1
t

P
s2St(a)

cj,s(a) (B.3)

denote, resp., the sample average of reward and resource-j consumption of this arm so far.

Define the confidence radii Rad0,t(a) and Radj,t(a) for, resp., expected reward r(a) and resource
consumption cj(a), and the associated upper/lower confidence bounds:

r±t (a) = proj (r̂t(a)± Rad0,t(a)) , Rad0,t(a) := frad(r̂t(a), Nt(a)),

c±j,t(a) = proj(ĉj,t(a)± Radj,t(a)), Radj,t(a) := frad(ĉj,t(a), Nt(a)), (B.4)

where proj(x) := argminy2[0,1] |y � x| denotes the projection into [0, 1]. Then, the event

r(a) 2 [r�t (a), r
+
t (a)] and cj(a) 2 [c�j,t(a), c

+
j,t(a)], 8a 2 [K], j 2 [d� 1]. (B.5)

holds for each round t with probability (say) at least 1� log(KdT)
T 4 [12].

Note that all confidence radii in (B.4) are upper-bounded by

Radt(a) := frad(1, Nt(a)), (B.6)

which is a version of a more standard confidence radius eO(1/
p
Nt(a)).

There is no uncertainty on the time resource and the null arm. So, we set Radtime, t(·) = 0 and
c±
time, t(·) = B/T , and Rad0,t(null) = Radj,t(null) = r±(null) = c±j,t(null) = 0.

C LP Sensitivity: proof of Lemma 3.3

We focus on the sensitivity of the support of the optimal solution. We build on some well-known
results, which we state below in a convenient form (and provide a proof for completeness). We use
the textbook material from Bertsimas and Tsitsiklis [18].

Throughout this appendix, we consider a best-arm-optimal problem instance with best arm a⇤. Let
X⇤ denote the optimal solution for the linear program (2.2). Recall that the support of X⇤ is either
{a⇤} or {a⇤, null}. We consider perturbations in the rescaled LP:

maximize X · r such that
X 2 [0, 1]K

X · 1 = 1
8j 2 [d� 1] X · cj  (B/T)(1� ⌘LP)

X · cd  B/T .

(C.1)

Recall that r, cj 2 [0, 1]K are vectors of expected rewards and expected consumption of resource j.
The d-th resource is time. The rescaling parameter ⌘LP is given in Eq. (2.5).

Let OPTsc
LP

denote the value of this LP; it is easy to see that OPTsc
LP

= (1� ⌘LP) OPTLP.

We observe that a⇤ is the best arm for the rescaled LP, too, because GLAG is large enough. Call a
distribution over arms null-degenerate if its support includes exactly one non-null arm.
Claim C.1. The rescaled LP (C.1) has a null-degenerate optimal solution with non-null arm a⇤.

Proof. From the theory in [18, Ch.5], if the optimal basis to LP (2.2) remains feasible to the rescaled
LP (C.1) then the basis is also optimal to this LP. This is because LP (C.1) is obtained by a small
perturbation to the right-hand side values in LP (2.2). Let X⇤ denote the optimal solution to LP (2.2).
From assumption this is a null-degenerate optimal solution. Using the same analysis in [18, Ch.
4.4] we only have to show that the perturbation is smaller than X⇤(a⇤). Since the perturbation is
B⌘LP

T  3
p
B log(KTd)

T while X⇤(a⇤) > 3
p
B log(KTd)

T , this perturbation does not change the basis.
Thus, the rescaled LP has a null-degenerate optimal solution.

17

Claim C.2. Let �⇤ denote the vector of the optimal dual solution to the LP (2.2). Then

GLAG(a) =
T
B

P
j2[d] �

⇤
jcj(a)� r(a). (C.2)

Proof. From Eq. (3.1) we have the following.

GLAG(a) := L(X⇤,�⇤)� L(Xa,�
⇤)

= r(X⇤)� T
B

P
j2[d] �

⇤
j cj(X

⇤) + T
B

P
j2[d] �

⇤
jcj(a)� r(a).

Consider the dual of the LP (2.2). It can be seen that the objective of this dual is
P

j2[d] �j . It follows
that OPTLP =

P
j2[d] �

⇤
j by strong duality [22, Section 5.2.3]. As proved in [35], L(X⇤,�⇤) = OPTLP.

Thus,
P

j2[d] �
⇤
j = OPTLP = L(X⇤,�⇤) = r(X⇤)� T

B

P
j2[d] �

⇤
j cj(X

⇤) +
P

j2[d] �
⇤
j .

Therefore, r(X⇤) = T
B

P
j2[d] �

⇤
j cj(X

⇤), which implies (C.2).

Claim 3.3 easily follows from the following standard result by letting �(a) = Radt(a).
Theorem C.3 (perturbation). Posit only one resource other than time (i.e., d = 2). Consider
a perturbation of the rescaled LP (C.1), where the reward vector r is replaced with r̃, and the
consumption vector c1 for the non-time resource is replaced with c̃1. Let X̃

⇤
be its optimal solution.

Assume 0  r̃ � r  � and 0  c1 � c̃1  �, for some vector � 2 [0, 1]K . Then for each arm
a 6= a⇤,

�(a) > GLAG(a) if a 2 supp(X̃
⇤
).

Proof. Let �⇤
1 � 0 denote the dual variable corresponding to the single resource. Note that since

OPTLP  1 and the dual vector �⇤ � 0 coordinate wise, we have �⇤
1  1. From [18, Ch. 5.1] on local

sensitivity when non-basic column of A is changed, we have that the maximum allowable change to
any single column �(a)  c̃(a)

�⇤
1

where c̃(a) is the reduced-cost for the simplex algorithm, as defined

in [18]. We will show that c̃(a) = GLAG(a). Thus, if �(a)  c̃(a)
�⇤
1

= GLAG(a)
�⇤
1

we have that the basis
remains unchanged. Likewise from Bertsimas and Tsitsiklis [18, Ch. 5], the maximum allowed
perturbation �(a) on the reward r(a) for the basis to remain unchanged is �(a)  c̃(a). Combining
these two we get the “if ” part of the theorem.

It remains to prove that the reduced cost c̃(a) = GLAG(a). After converting the linear pro-
gram to the standard form as required in [18], the reduced-cost c̃(a) is given by the expression

T
B(1�⌘LP)

P
j2[d] cj(a)�̃

⇤
j � r(a) where �̃

⇤
is the optimal dual solution to LP (C.1). Note that

�⇤ :=
⇣

1
1�⌘LP

⌘
�̃⇤ is an optimal solution to the dual of the LP (2.2). Thus, plugging it into the

definition of reduced cost and combining it with Claim C.2 we have that

c̃(a) =
T

B

X

j2[d]

�⇤
jcj(a)� r(a) = GLAG(a).

18

D Various technicalities from Sections 3

D.1 Standard tools

We rely on some standard tools, which we state below for the sake of convenience.
Theorem D.1 (Wald’s identity). Let Xi : i 2 N be i.i.d. real-valued random variables, adapted to
filtration Fi : i 2 N. Let N be a stopping time relative to the same filtration. Then

E[X1 +X2 + . . .+XN] = E[Xi] · E[N].

Theorem D.2 (Optimal Stopping Theorem). Let Xi : i 2 N be a martingale sequence with
E[X0] = 0 adapted to filtration Fi : i 2 N. Let N be a stopping time relative to the same filtration.
Then we have that E[XN] = 0.
Theorem D.3 ([37, 12]). Let Z1, Z2, , . . . , ZT be a martingale w.r.t. filtration (Ft)t2[T], such that
|Zt|  c for all t 2 [T]. Let µ := 1

T

P
t2[T] E[Zt | Ft�1]. Then,

Pr
h���
P

t2[T] Zt � µT
��� >

q
2µTc2 ln T

�

i
 �.

D.2 Proof of Eq. (3.6)

Let ⌧ denote the stopping time of the algorithm that chooses arm a⇤ in every time-step, given that
the total budget is B0, T0 on the two resources. From definition we have REW(a⇤ | B0, T0) =P

t2[⌧] rt(a
⇤). Using Wald’s identity (Theorem D.1), we have that E[REW(a⇤ | B0, T0)] =

E[⌧] r(a⇤).
Let B0, T0 denote the budget remaining for the two resources. By definition, we have that ⌧ � T0

and
P

t2[⌧] ct(a
⇤) � B0. Using the Wald’s identity (Theorem D.1) we have that E[

P
t2[⌧] ct(a

⇤)] =

E[⌧]c(a⇤). Thus, we have E[⌧] � min
n
T0,

B0
c(a⇤)

o
� min {T0, B0}. Therefore, we obtain the

following.

E[REW(a⇤ | B0, T0)] = E[⌧]r(a⇤) >

min {T0, B0}
max{B

T , c(a⇤)}

!
r(a⇤), and (D.1)

E[REW(a⇤ | B)] = E[⌧B]r(a⇤) 

B

max{B
T , c(a⇤)}

!
r(a⇤). (D.2)

Combining Equations (D.1) and (D.2), we get Eq. (3.6).

D.3 Proof of Eq. (3.9)

We now modify the above proof to get the tighter lower-bound in Eq. (3.9). Let T0, B0 denote the
expected remaining time and budget (respectively) and let ⌧ denote the (random) stopping time of the
algorithm that chooses arm a⇤ in every time-step given T0 time-steps and B0 budget. This implies
that we have, E[

P
t2[⌧] ct(a

⇤)] � B0 and E[⌧] � T0. From Theorem D.1, this implies that we have
E[⌧]c(a⇤) � B0 and E[⌧] � T0. This implies that E[⌧] � min{T0,

B0
c(a⇤)}.

Similar to Eq. (D.1) and Eq. (D.2) we obtain the following.

E[REW(a⇤ | B0, T0)] = E[⌧]r(a⇤) > min{T0,
B0

c(a⇤)}r(a
⇤), and (D.3)

E[REW(a⇤ | B0 = B, T0 = T)] = OPTFD 

B

max{B
T , c(a⇤)}

!
r(a⇤). (D.4)

Combining Equations (D.3) and (D.4), we get Eq. (3.9).

19

D.4 Lower bound on Lagrange gap: Proof of Eq. (3.10)

We will use Eq. (3.4) and some standard properties of linear programming.

Assume c(a⇤) < B
T . Using complementary slackness theorem on LP (2.2), this implies that �⇤

1 = 0.
Moreover, note that the objective in the dual of LP (2.2) is �⇤

0 + �⇤
1 = �⇤

0. The optimal value of
the primal LP (2.2) is r(a⇤) since, X(a⇤) = 1 is the optimal solution to the LP. This implies that
�⇤
0 = r(a⇤) � OPTFD

T . Substituting this into Eq. (3.4) gives the first inequality in Eq. (3.10).

Now assume c(a⇤) > B
T . Again, as above complementary slackness theorem on LP (2.2), this implies

that �⇤
0 = 0. Thus, GLAG(a) =

T
B · �⇤

1 · c(a)� r(a). Using the dual objective function �⇤
0 + �⇤

1 = �⇤
1

combined with strong duality, this implies that �⇤
1 = OPTLP

T � OPTFD

T . Plugging this back into Eq. (3.4)
gives the second inequality in Eq. (3.10).

D.5 Martingale arguments: Proof of Eq. (3.8)

For the proof of Eq. (3.8), we use the well-known theorem on optimal stopping time of martingales
(Theorem D.2). Fix an arm a 2 [K]. For any subset S ✓ [T] of rounds let NS(a), rS(a) and cS(a)
denote the number of times arm a is chosen, the total realized rewards for arm a and the total realized
consumption of arm a, respectively. Let ⌧ denote the (random) stopping time of a BwK algorithm with
(random) budget B and time T . Then we have the following claim.
Claim D.4. For a random stopping time ⌧ , for every arm a 2 [K] we have the following.

E
⇥
r[⌧](a)

⇤
= r(a) · E[N[⌧](a)]. (D.5)

E
⇥
c[⌧](a)

⇤
= c(a) · E[N[⌧](a)]. (D.6)

Proof. We will prove the equality in Eq. (D.5); the one in Eq. (D.6) follows. Consider r[⌧](a). By
definition this is equal to

P
t2[⌧] rt(a) · I[at = a]. Let At := I[at = a] denote the random variable

corresponding to the event that arm a is chosen at time t. Define the random variable

Yt :=
X

t0t

At0rt0(a)� E
t0
[At0rt0(a)] ,

where Et[.] denotes the conditional expectation given the random variables A1, A2, . . . , At�1. It is
easy to see that the sequences {Xt}t2[⌧], {Yt}t2[⌧] and {Zt}t2[⌧] forms a martingale sequence. Thus,
we will apply the optimal stopping theorem (Theorem D.2) at time ⌧ , we have the following.

E [Y⌧] = E

2

4
X

t0⌧

At0rt0(a)

3

5� E

2

4
X

t0⌧

E
t0
[At0rt0(a)]

3

5 = 0. (D.7)

Consider the term E
hP

t0⌧ Et0 [At0rt0(a)]
i

in Eq. (D.7). This can be simplified to

E
hP

t0⌧ r(a) · Pr[at0 = a]
i
. Consider the following random variable

Zt :=
X

t0t

Pr[at0 = a]� E
t0
[Pr[at0 = a]].

Note that
P

t0t Et0 [Pr[at0 = a]] = N[t](a). Thus, using Theorem D.2 on the sequence Zt at the

stopping time ⌧ , we obtain E
hP

t0⌧ Pr[at0 = a]
i
= E[N[⌧](a)].

Thus, the term E
hP

t0⌧ Et0 [At0rt0(a)]
i

in Eq. (D.7) simplifies to r(a) · N[⌧](a) which gives the
required equality in Eq. (D.5).

We will now use Claim D.4 to prove Eq. (3.8). Recall that REW(a | B(a), T (a)) denotes the
total contribution to the reward by the BwK algorithm by playing arm a with a (random) resource
consumption of B(a) and time steps of T (a). Let ⌧ be the (random) stopping time of this algorithm.

20

By definition we have that N[⌧](a) = T (a). Thus, E[N[⌧](a)] = E[T (a). From Eq. (D.6), we also

have that E[N[⌧](a)] =
E[c[⌧](a)]

c(a) . From the definition of B(a) we have, B(a) = c[⌧](a) and thus,

E[B(a)] = E[c[⌧](a)]. Thus, this implies that E[N[⌧](a)] = min{T (a), E[B(a)]
c(a) }.

Consider E[REW(a)] = E[REW(a | B(a), T (a))].

E[REW(a | B(a), T (a))] = E
⇥
r[⌧](a)

⇤

= r(a) · E[N[⌧](a)] (From Eq. (D.5))

= r(a) ·min{T (a), E[B(a)]
c(a) } (D.8)

Now, consider LP(a | E[B(a)],E[T (a)]). This value is equal to,

E[REW(a | E[B(a)],E[T (a)])] = r(a)

max{E[B(a)]/E[T (a)], c(a)} · E[B(a)]
E[T (a)]

= r(a) ·min
n
E[T (a)], E[B(a)]

c(a)

o
.

Note that the last equality is same as the RHS in Eq. (D.8).

E Proof of Theorem 3.10: generic

p
T lower bound

Preliminaries. We rely on a well-known information-theoretic result for multi-armed bandits:
essentially, no algorithm can reliably tell apart two bandit instances at time T if they differ by at most
O(1/

p
T).9 We formulate this result in a way that is most convenient for our applications.

Lemma E.1. Consider multi-armed bandits with Bernoulli rewards. Fix ✏ > 0 and two problem
instances I, I 0 such that the mean reward of each arm differs by at most ✏ between I and I 0. Suppose
some bandit algorithm outputs distribution Y t over arms at time t  c/✏2, for a sufficiently small
absolute constant c. Let H be an arbitrary Lebesgue-measurable set of distributions over arms. Then
either Pr[Y t 2 H | Jt = I] > 1/4 or Pr[Y t /2 H | Jt = I 0] > 1/4 holds.

Applying Lemma E.1 to bandits with knapsacks necessitates some subtlety. First, the rewards in the
lemma will henceforth be called quasi-rewards, as they may actually correspond to consumption of
a particular resource. Second, while a BwK algorithm receives multi-dimensional feedback in each
round, the feedback other than the quasi-rewards will be the same (in distribution) for both problem
instances, and hence can be considered a part of the algorithm. Third, distribution Y t will be the
conditional distribution over arms chosen by the BwK algorithm in round t given the algorithm’s
observations so far; we will assume this without further mention. Fourth, we will need to specify the
set H of distributions (which will depend on a particular application).

Consider the rescaled LP (C.1) with ⌘LP := 6 ⇤ OPTLP
q

log dT
B ; we use this ⌘LP throughout this proof.

Let OPTsc
LP

be the value of this LP. We prove the lower bound using OPT
sc

LP
as a benchmark. This

suffices by the following claim from prior work: 10

Claim E.2 (Immorlica et al. [35]). OPT
sc

LP
 OPTFD for ⌘LP := 6 · OPTLP

q
log dT

B .

Problem instances. Let r(a) and c(a) 2 [0, 1]d be, resp., the mean reward and the mean resource
consumption vector for each arm a for instance I0. Let ✏ = cLB/

p
T .

Problem instances I, I 0 are constructed as specified in the proof sketch; we repeat it here for the
sake of convenience. For both instances, the rewards of each non-null arm a 2 {A1, A2} are
deterministic and equal to r(a). Resource consumption vector for arm A1 is deterministic and equals
c(A1). Resource consumption vector of arm A2 in each round t, denoted c(t)(A2), is a carefully

9This strategy for proving lower bounds in multi-armed bandits goes back to Auer et al. [11]. Lemma E.1 is
implicit in Auer et al. [11], see Slivkins [54, Lemma 2.9] for exposition.

10Claim E.2 is a special case of Lemma 8.6 in Immorlica et al. [35] for ⌧⇤ = T and the reward/consumption
for each arm, each resource and each time-step replaced with the mean reward/consumption.

21

constructed random vector whose expectation is c(A2) for instance I, and slightly less for instance
I 0. Specifically, c(t)(A2) = c(A2) ·Wt/(1� cLB), where Wt is an independent Bernoulli random
variable which correlates the consumption of all resources. We posit E[Wt] = 1� cLB for instance I ,
and E[Wt] = 1� cLB � ✏ for instance I 0.

Main derivation. From the premise of the theorem (Eq. (3.15)), problem instance I admits an
optimal solution X⇤ that is substantially supported on both non-null arms. Let X⇤

I , X⇤
I0 denote the

optimal solutions to the scaled LP, instantiated for instances I, I 0 respectively.

The proof proceeds as follows. We first prove certain properties of distributions X⇤
I and X⇤

I0 . We
then use these properties and apply Lemma E.1 with suitable quasi-rewards to complete the proof of
the lower-bounds.

Since we modify the mean consumption of all resources for one arm in I 0 this implies that X⇤
I 6= X⇤

I0 .
From assumption 3.8-(3.8) we have that GLAG � cLB/

p
T . From the premise of the theorem, we have

that the mean vector of consumptions for the resources j 2 [d] are all linearly independent. Thus, we
can apply sensitivity theorem C.3 to conclude that the support of the solution X⇤

I0 is same as X⇤
I .

Moreover, from the linear independence of the consumption vectors and Eq. (3.15). combined with
standard LP theory (see chapter 4 on duality in [18]) we have that there exists a resource j⇤ 2 [d]
such that the optimal solution X⇤

I satisfies the resource constraint with equality.

In what follows, we denote the vector c as a shorthand for cj⇤ (i.e., we drop the index j⇤). Note
that from the perturbation we have that c(A1) < c(A2). Thus, for some � > 0 we have X⇤

I0(A1) =
X⇤

I(A1)� � and X⇤
I0(A2) = X⇤

I(A2) + �. Let kXk denote the `1-norm of a given distribution X .
Thus, we have

kX⇤
I �X⇤

I0k = 2�. (E.1)

Given any distribution Y over the arms, let

Vsc(Y) := (1� ⌘LP) · B/T · r(Y)/
�
maxj2[d] cj(Y)

�
. (E.2)

This is the value of Y in the rescaled LP (C.1), where Y itself is rescaled to make it LP-feasible (and
as large as possible). Note that Vsc(Y) = (1� ⌘LP)V (Y), where V (Y) is the value of the original
LP, as defined in (E.2). Also, OPTsc

LP
= supY Vsc(Y).

By a slight abuse of notation, let Vsc(Y), V 0
sc
(Y) be the value of Vsc(Y) corresponding to instances

I and I 0 respectively.

We use the following two claims in the proof of our lower-bound. Claim E.3 states that if a distribution
is close to the optimal distribution for instance I then it is also far from the optimal distribution for
I 0. Claim E.4 states that if a distribution is far from the optimal distribution, then playing from that
distribution also incurs large instantaneous regret. Both claims have nothing to do with particular
algorithms.

Claim E.3. Fix distribution Y 2 �3 and ✏ < 1. If kX⇤
I � Y k < ✏ · c2LB then kX⇤

I0 � Y k � ✏ · c2LB.

Claim E.4. Fix distribution Y 2 �3 and ✏ < 1. If kX⇤
I �Y k � ✏ · c2LB then Vsc(X

⇤
I)� Vsc(Y) �

✏ · c3LB
2 . Likewise, if kX⇤

I0 � Y k � ✏ · c2LB then V 0
sc
(X⇤

I0)� V 0
sc
(Y) � ✏ · c3LB

2 .

We now invoke Lemma E.1 with the quasi-rewards at each time-step determined by the consumption
of the resource j⇤.

Define the set,

H :=
�
Y : kX⇤

I � Y k � ✏ · c2LB

, (E.3)

to complete the proof Theorem 3.10. Consider an arbitrary algorithm ALG. We consider two cases:
J = I and J = I 0, which denote the instance that satisfies the conclusion of this lemma for at least
T
2 rounds for T := cLB

✏2 .

22

Let J = I. Let T denote the set of time-steps t 2 [T] such that Jt = I and Y t 2 H. Then, the
expected regret of ALG can be lower-bounded by,

E
"
X

t2T
Vsc(X

⇤
I)� Vsc(Y t)

#
= E

2

4
X

t2T : kX⇤
I�Y tk�✏·c2LB

Vsc(X
⇤
I)� Vsc(Y t)

3

5 (by Eq. (E.3))

� E
hP

t2T ✏ · c3LB
2

i
(by Eq. (E.4))

� T/4 · ✏ · c3LB
2 (by Lemma E.1)

� O
⇣
c4LB ·

p
T
⌘
. (Since ✏ = cLBp

T
)

We use a similar argument when J = I 0. Let T 0 denote the set of time-steps t 2 [T] such that
Jt = I 0 and kX⇤

I0 � Y tk � ✏ · c2LB. The expected regret of ALG can be lower-bounded by,

E
"
X

t2T 0

V 0
sc
(X⇤

I0)� V 0
sc
(Y t)

#
= E

2

4
X

t2T 0: kX⇤
I0�Y tk�✏·c2LB

V 0
sc
(X⇤

I0)� V 0
sc
(Y t)

3

5

� E

2

4
X

t2T 0: kX⇤
I�Y tk<✏·c2LB

V 0
sc
(X⇤

I0)� V 0
sc
(Y t)

3

5 (by Claim E.3)

= E

2

4
X

t2T 0: Y t /2H

V 0
sc
(X⇤

I0)� V 0
sc
(Y t)

3

5 (by Eq. (E.3))

� E

2

4
X

t2[T]: Y t /2H

✏ · c3LB
2

3

5 (by Eq. (E.4))

� T/4 · ✏ · c3LB
2 (by Lemma E.1)

� O
⇣
c4LB ·

p
T
⌘
. (Since ✏ = cLBp

T
).

Proof of Claim E.3. Let c(A1), c(A2) denote the expected consumption of arms A1 and A2 re-
spectively in instance I. Define ⇣ := ✏c(A1)

1�cLB
. By definition, this implies that the expected con-

sumption of arm A2 in instance I 0 is c(A2) � ⇣. Additionally, since the support contains two
arms, we have that the following holds: c(A1)X⇤

I(A1) + c(A2)X⇤
I(A2) = B/T ⇤ (1 � ⌘LP) and

c(A1)X⇤
I0(A1) + c(A2)X⇤

I0(A2)� ⇣X⇤
I0(A2) = B/T ⇤ (1� ⌘LP). Thus, we have

c(A1)X
⇤
I(A1)+c(A2)X

⇤
I(A2) = c(A1)X

⇤
I(A1)+c(A2)X

⇤
I(A2)+�(C(A2)�c(A1)�⇣)�⇣X⇤

I(A2).

Rearranging and using the assumptions in 3.8, we get that

� =
⇣X⇤

I(A2)

c(A2)� c(A1)� ⇣
� ✏cLB

1� cLB
· cLB
1� 2cLB � ✏·cLB

1�cLB

� ✏ · c2LB. (E.4)

Consider kX⇤
I0 � Y k. This can be rewritten as

= kX⇤
I0 � Y �X⇤

I +X⇤
Ik

� |kX⇤
I0 �X⇤

Ik � kX⇤
I � Y k| (Triangle inequality)

� 2� � ✏ · c2LB (Premise of the claim and Eq. (E.1))

� ✏ · c2LB. (From Eq. (E.4))

Proof of Claim E.4. We will prove the statement kX⇤
I �Y k � ✏ · c2LB =) Vsc(X

⇤
I)� Vsc(Y) �

✏ · c3LB
2 . The exact same argument holds by replacing X⇤

I with X⇤
I0 and Vsc(.) with V 0

sc
(.).

23

Consider Vsc(X⇤
I)� Vsc(Y). By definition, this equals,

r(X⇤
I)�

r(Y)

max{B0

T , c(Y)}
· B

0

T
, (E.5)

where B0 is the scaled budget.

We have two cases. In case 1, let max{B0

T , c(Y)} = B0

T . Thus, Eq. (E.5) simplifies to,

= r(X⇤
I)� r(Y)

= r(A1)[X
⇤
I(A1)� Y (A1)] + r(A2)[X

⇤
I(A2)� Y (A2)]

Note that since max{B0

T , c(Y)} = B0

T , this implies that Y (null) = 0. Since X⇤
I is an optimal

solution and r(A2) > r(A1), this implies that we have Y (A1) = X⇤
I(A1) + ⇣ and Y (A2) =

X⇤
I(A2)� ⇣. Thus, we have,

r(A1)[X
⇤
I(A1)� Y (A1)] + r(A2)[X

⇤
I(A2)� Y (A2)] � [r(A2)� r(A1)]⇣

� cLB · kX⇤
I � Y k/2

� ✏ · c3LB
2 .

Consider case 2 where max{B0

T , c(Y)} = c(Y). Then, Eq. (E.5) simplifies to,

= r(X⇤
I)� B0

T · r(Y)
c(Y)

� r(X⇤
I)� max

Y 2�3:kX⇤
I�Y k�✏·c2LB

B(1�⌘LP)
T · r(Y)

c(Y)

The maximization happens when the distribution Y is such that Y (A1) = X⇤
I � ✏ · c2LB/2 and

Y (A2) = X⇤
I � ✏ · c2LB/2. Plugging this into the expression we get the RHS is at least,

� r(X⇤
I)�

B(1�⌘LP)
T · r(X

⇤
I) + ✏ · c2LB/2 · (r(A2)� r(A1))

c(X⇤
I) + ✏ · c2LB/2 · (c(A2)� c(A1))

� r(X⇤
I)� cLB(1� ⌘LP) ·

r(X⇤
I) + ✏ · c2LB/2 · (r(A2)� r(A1))

c(X⇤
I) + ✏ · c2LB/2 · (c(A2)� c(A1))

� r(X⇤
I)� (1� ⌘LP) ·

r(X⇤
I) + ✏ · c2LB/2 · (r(A2)� r(A1))

1 + ✏ · c2LB/2

� ⌘LP

2 · r(X⇤
I) � ✏ · c3LB

2 .

The last two inequality follows from Assumption 3.8-(3.8), the value of ⌘LP and the fact that ✏ = cLBp
T

,
respectively. Combining the two cases we get the claim.

F Proof of Theorem 3.9(b):

p
T lower bound for d > 2

We first show that for any given instance I0, for a given 0 < �1  O
⇣

1p
T

⌘
we can obtain a �1-

perturbation of this instance, denoted by I 0
0, that satisfies Eq. (3.15). Given instance I0 we construct

the �1-perturbation as follows. We construct instance I 0
0 by decreasing the mean consumption on arm

Ai and resource j by ⇣j1 . We keep the mean rewards the same. Let X denote the optimal solution to
instance I. As a notation we denote the matrix C 2 [0, 1]d⇥3 as the matrix of mean consumption.
Let B denote the sub-matrix of C such that, X satisfies the constraints in the scaled LP (C.1) with
equality. Thus, we have C ·X = b, where every co-ordinate of b is B(1�⌘LP)

T . Thus, the perturbation
is equivalent to perturbing the vector b, such that the jth entry has an additive perturbation of ⇣j .
From Proposition 3.1 in [46], this linear program has a non-degenerate primal optimal solution, in
the sense that it satisfies Eq. (3.15).

Next, we show that given an instance I 0
0 we can obtain a �2 perturbation of I 0

0 for a given 0 <

�2  O
⇣

1p
T

⌘
, such that the consumption vectors are linearly independent. Define a random matrix

24

D 2 [�⇣2, ⇣2]d⇥3 such that every entry in D is generated uniformly at random from the set [�⇣2, ⇣2].
We claim that the vectors cj � dj are all linearly independent, where dj is the jth row of D with
probability at least 0.6. In other words, decreasing each of the mean consumption by a uniformly
random value chosen from the set [�⇣2, ⇣2] implies that there exists a realization of D such that the
vectors cj � dj are all linearly independent.

The proof of this claim proceeds as follows. As before define C 2 [0, 1]d⇥3 to be the matrix of mean
consumption. From definition of linear independence we need to show that the smallest singular
value of the matrix C � D is non-zero. Note that every entry in the matrix C � D is chosen
independently. Thus, using the bound on the probability of singularity in Theorem 2.2 of [21] we
have that the probability that the smallest singular value is 0 is at most 1

2
p
2

. Thus, with probability at
least 1� 1

2
p
2
> 0.6 we have that the matrix C �D is singular.

Thus, for � := �1 + �2, we have that there exists a �-perturbed instance eI0, that satisfies all the
assumptions in 3.8 and linear independence condition required in the premise of Theorem 3.10.

G Simple regret: proof of Theorem 4.1

For convenience, let us restate the theorem:
Theorem. Assume B � ⌦(T) and ⌘LP  1

2 . With probability at least 1�O(T�3), for each ✏ > 0,
there are at most N✏ = O

�
K
✏2 logKTd

�
rounds t such that OPTDP/T � r(Xt) � ✏.

The proof consists of two major steps: we argue about confidence sums, and we upper-bound simple
regret in terms of the confidence radius.

G.1 Confidence sums

The following arguments depend only on the definition of the confidence radius, and work for any
algorithm ALG. Suppose in each round t, this algorithm chooses a distribution Y t over arms and
samples arm at independently Y t. We upper-bound the number of rounds t with large Radt(Y t):
Lemma G.1. Fix the threshold ✓0 > 0, and let S be the set of all rounds t 2 [T] such that
Radt(Y t) � ✓0. Then |S|  O

�
✓�2
0 ·K log(KdT)

�
with probability at least 1�O(T�3).

To prove the lemma, we study confidence sums: for a subset S ⇢ [T] of rounds, define
Wact(S) :=

P
t2S Radt(at) (action-confidence sum of ALG),

Wdis(S) :=
P

t2S Radt(Y t) (distribution-confidence sum of ALG).

First, a standard argument (e.g., implicit in [10], see Section G.4) implies that

Wact(S)  O
⇣p

K |S|Crad +K · ln |S| · Crad

⌘
for any fixed subset S ⇢ [T]. (G.1)

Second, note that Wdis(S) is close to Wact(S): for any fixed subset S ⇢ [T],

|Wdis(S)�Wact(S)|  O(
p

|S| log T) with probability at least 1� T�3. (G.2)
This is by Azuma-Hoeffding inequality, since (Radt(at)� Radt(Y t) : t 2 S) is a martingale
difference sequence. We extend this observation to random sets S. A random set S ⇢ [T] is called
time-consistent if the event {t 2 S} does not depend on the choice of arm at or anything that happens
afterwards, for each round t. (But it can depend on the choice of distribution Y t.)
Claim G.2. For any any time-consistent random set S ⇢ [T],

|Wdis(S)�Wact(S)|  O
⇣p

|S| log T + log T
⌘

with probability at least 1� T�3. (G.3)

Proof. By definition of time-consistent set, for each round t,
E[1{t2S} · Radt(at) | (Y 1, a1) , . . . , (Y t�1, at�1),Y t] = 1{t2S} · Radt(Y t).

Thus, 1{t2S} Radt(at)�Radt(Y t), t 2 [T] is martingale difference sequence. Claim G.2 follows
from a concentration bound from prior work (Theorem D.3).

25

We complete the proof of Lemma G.1 as follows. Fix � > 0. Since S is a time-consistent random
subset of [T], by Eq. (G.1) and Claim G.2, with probability at least 1� � it holds that

✓0 · |S|  Wdis(S)  O
⇣p

|S|KCrad +K Crad +
p
|S| log T + log T

⌘
.

We obtain the Lemma by simplifying and solving this inequality for |S|.

G.2 Connecting LP-gap and the confidence radius

In what follows, let Bsc = B(1� ⌘LP) be the budget in the rescaled LP.
Lemma G.3. Fix round t 2 [T], and assume the “clean event" in (2.7). Then

GLP(Xt)  (2 + T/Bsc)Radt(Xt).

Proof. Let ↵ := Bsc/T . For any distribution X , let

V+(X) := Bsc/T · r(X)/max
j2[d]

c�j (X).

denote the value of X in the optimistic LP (2.6), after proper rescaling. Let X⇤ be an optimal solution
to the (original) LP (2.2). Then

GLP(Xt) = V (X⇤)� V (Xt)� V+(Xt) + V+(Xt). (G.4)
Since V+(Xt) is the optimal solution to the optimistic LP (2.6),

V+(Xt) � V+(X
⇤).

Moreover, since X⇤ is feasible to the optimistic LP (2.6) with the scaled budget Bsc,
V+(X

⇤) � V (X⇤).

It follows that Eq. (G.4) an be upper-bounded as
GLP(Xt)  V+(Xt)� V (Xt). (G.5)

We will now upper-bound the right-hand side in the above. Denote

cmax(Xt) := max
j2[d]

X

a2[K]

cj,t(a)Xt(a)

c�max(Xt) := max
j2[d]

X

a2[K]

c�j,t(a)Xt(a).

By definition of the value of a linear program, we can continue Eq. (G.5) as follows:
GLP(Xt)  V+(Xt)� V (Xt)

 ↵ · r̂(Xt) + Radt(Xt)

c�max(Xt)
� ↵ · r(Xt)

cmax(Xt)
. (G.6)

Under the clean event in Eq. (2.7), we continue Eq. (G.6) as follows:

 ↵

✓
2Radt(Xt) + r(Xt)

c�max(Xt)
� r(Xt)

cmax(Xt)

◆
. (G.7)

Since time is one of the resources, c�max(Xt) � Bsc

T . Thus, we continue Eq. (G.7) as follows:

 2Radt(Xt) + ↵r(Xt)

✓
1

c�max(Xt)
� 1

cmax(Xt)

◆

= 2Radt(Xt) + ↵r(Xt)

✓
Radt(Xt)

c�max(Xt) · cmax(Xt)

◆

 2Radt(Xt) +
Radt(Xt)

c�max(Xt)
(G.8)


⇣
2 + T

Bsc

⌘
Radt(Xt) (G.9)

Eq. (G.8) uses the fact that ↵ r(Xt)
cmax(Xt)

 B
T

r(Xt)
cmax(Xt)

= V (Xt)  1. Eq. (G.9) uses the fact that
time is one of the resources and thus, c�max(Xt) � Bsc

T .

26

G.3 Finishing the proof of Theorem 4.1

Claim G.4. Fix round t, and assume the “clean event" in (2.7). Then

OPTDP/T � r(Xt)  GLP(Xt) + ⌘LP.

Proof. By (2.7) and because Xt is the solution to the optimistic LP, we have

max
j2d

cj(Xt) � max
j2d

c�j (Xt) = B/T (1� ⌘LP).

It follows that r(Xt) � V (Xt)(1� ⌘LP). Finally, we know that OPTLP � OPTDP/T .

Condition on (2.7), and the high-probability event in Lemma G.1. (Take the union bound in
Lemma G.1 over all thresholds ✓0 � 1/

p
T , e.g., over an exponential scale.) Fix ✏ > 0. By

Claim G.4 and Lemma G.3, any round t with simple regret at least ✏ satisfies

✏  OPTDP/T � r(Xt)  ⌘LP + (2 + T/Bsc)Radt(Xt).

Therefore, Radt(Xt) � ✓0, where ✓0 = ✏�⌘LP

(2+T/Bsc)
� ⇥(✏) when ✏ � 2⌘LP. Now, the theorem

follows from Lemma G.1. Note, when ✏ < 2⌘LP, then the total number of rounds in the theorem is
larger than T and hence not meaningful.

G.4 The standard confidence-sum bound: proof of Eq. (G.1)

Let us prove Eq. (G.1) for the sake of completeness. By definition of Radt(at) from Eq. (2.8),

Radt(at) = f(n) := min
⇣
1,

p
Crad/n+ Crad/n

⌘
,

where Nt(a) is the number of times arm a was chosen before round t. Therefore:

X

t2S

Radt(at) 
X

a2[K]

|S|/KX

n=1

f(n)


X

a2[K]

Z |S|/K

x=1
f(x) dx  3

⇣p
K|S|Crad +K · ln |S| · Crad

⌘
.

H Reduction from BwK to bandits

We extend our results to any problem which can be cast as a special case of BwK and admits an upper
bound on action-confidence sums, in the style of (G.1), for a suitably defined confidence radius.

To state the general result, let us define an abstract notion of “confidence radius". For each round t, a
formal confidence radius is a mapping Radt(a) from algorithm’s history and arm a to [0, 1] such that
with probability at least 1�O(T�4) it holds that

|r(a)� r̂t(a)|  Radt(a) and |cj(a)� ĉj,t(a)|  Radt(a)

for each resource j, where r̂t(a) and ĉj,t(a) denote average reward and resource consumption, as
defined in Eq. (B.3). Such Radt(a) induces a version of UcbBwK with confidence bounds

r+t (a) = min(1, r̂t(a) + Radt(a)) and c�j,t(a) = max(0, ĉj,t(a)� Radt(a)).

We allow the algorithm to observe auxiliary feedback before and/or after each round, depending on a
particular problem formulation, and this feedback may be used to compute the confidence radii.

We replace Eq. (G.1) with a generic bound on the action-confidence sum, for some � that can depend
on the parameters in the problem instance, but not on S:

P
t2S Radt(at) 

p
|S|�, for any algorithm and any subset S ⇢ [T]. (H.1)

Theorem H.1. Consider an instance of BwK with time horizon T . Let Radt(·) be a formal confidence
radius which satisfies (H.1) for some �. Consider the induced algorithms UcbBwK and PrunedUcbBwK
with rescaling parameter ⌘LP =

2
B

p
�T .

27

(i) Both algorithms obtain regret OPTDP � E[REW]  O(
p
�T)(1 + OPTDP/B).

(ii) Theorem 3.2 holds with = �G�2
LAG

and regret O
�
�G�1

LAG

�
in part (ii).

(iii) Theorem 4.1 holds with N✏ = O
�
� ✏�2

�
.

Proof Sketch For part (i), the analysis in [3] explicitly relies on (G.1). For part (ii), we modify
the proof of Theorem 3.2 so as to use (G.1) instead of Claim 3.4. For part (iii), our proof of
Theorem 4.1 uses (G.1) explicitly. In all three parts, we replace (G.1) with (H.1), and trace how the
latter propagates through the respective proof. ⌅
We apply this general result to three specific scenarios: linear contextual bandits with knapsacks
(LinCBwK) [5], combinatorial semi-bandits with knapsacks (SemiBwK) [49], and multinomial-logit
bandits with knapsacks (MnlBwK) [26]. In all three applications, the confidence-sum bound (H.1) is
implicit in prior work on the respective problem without resources. The guarantees in part (i) match
those in prior work referenced above, up to logarithmic factors, and are optimal when B = ⌦(T); in
fact, we obtain an improvement for MnlBwK. Parts (ii) and (iii) – the results for logarithmic regret and
simple regret – did not appear in prior work.

H.1 Linear Contextual Bandits with Knapsacks (LinCBwK)

In Contextual Bandits with Knapsacks (CBwK), we have K actions, d resources, budget B and time
horizon T , like in BwK, and moreover we have a set X of possible contexts. At each round t 2 [T], the
algorithm first obtains a context xt 2 X . The algorithm then chooses an action at 2 [K] and obtains
an outcome ot(at) 2 [0, 1]d+1 like in BwK. The tuple (xt;ot(a) : a 2 [K]) is drawn independently
from some fixed but unknown distribution. The algorithm continues until some resource, including
time, is exhausted. One compares against a given a set ⇧ of policies: mappings from contexts to
actions. We can formally interpret CBwK as an instance of BwK in which actions correspond to policies
in ⇧. This interpretation defines the benchmarks OPTDP and OPTFD that we compete with.

LinCBwK is a special case of CBwK in which the context space is X = [0, 1]K⇥m, for some parameter
m 2 N, so that each context xt is in fact a tuple xt = (xt(a) 2 [0, 1]m : a 2 [K]). We have a
linearity assumption: for some unknown matrix W ⇤ 2 [0, 1]m⇥(d+1) and each arm a 2 [K],

E [ot(a) | xt(a)] = W T
⇤ · xt(a).

The policy set ⇧ consists of all possible policies.

Linear contextual bandits, studied in prior work [e.g., 9, 29, 43, 27, 2], is the special case without
resources. Much of the complexity of linear contextual bandits (resp., LinCBwK) is captured by the
special case of of linear bandits (resp., linear BwK) where the context is the same in each round.

The general theme in the work on linear bandits (contextual or not) to replace the dependence on the
number of arms K in the regret bound with the dependence on the dimension m and, if applicable,
avoid the dependence on |⇧|. This is what we accomplish, too.
Corollary H.2. For LinCBwK, Theorem H.1 holds with � = O(m2d2 log(mTd)).

Proof. Combining Lemma 13 of [9] and Theorem 2 of [1], it follows that the confidence-sum bound
Eq. (H.1) holds with � = O(m2d2 logmTd).

H.2 Combinatorial Semi-bandits with Knapsacks (SemiBwK)

SemiBwK is a version of BwK, where actions correspond to subsets of some fixed ground set [N]
(whose elements are called atoms). There is a fixed family F ⇢ 2[N] of feasible actions. In each
round t, the algorithm chooses a subset At 2 F and observes the outcome ot(a) 2 [0, 1/n]d for each
atom a 2 At, where n = maxA2F |A|. The outcome for a given subset A 2 F is defined as the sum

ot(A) =
P

a2A ot(a) 2 [0, 1]d+1. (H.2)

The outcome matrix (ot(a) : a 2 [N]) is drawn independently from some fixed but unknown
distribution. The algorithm continues until some resource, including time, is exhausted.

Combinatorial semi-bandits, the problem studied in prior work [e.g., 25, 40, 39], is the special case
without resources. Note that the number of feasible actions can be exponential in N . The general

28

theme in this line of work is to replace the dependence on |F| in the regret bound with the dependence
on N , or, even better, on n. We extend this to SemiBwK.

Corollary H.3. For SemiBwK, Theorem H.1 holds with � = O(n log(NdT)).

Proof. Using Lemma 4 in [60] we immediately obtain the confidence-sum bound Eq. (H.1) with
� = n logKdT .

H.3 Multinomial-logit Bandits with Knapsacks (MnlBwK)

In the MnlBwK problem, the setup starts like in SemiBwK. There is a ground set of N atoms, and a fixed
family F ⇢ 2[N] of feasible actions. In each round, each atom a has an outcome ot(a) 2 [0, 1]d+1,
and the outcome matrix (ot(a) : a 2 [N]) is drawn independently from some fixed but unknown
distribution. The aggregate outcome is formed in a different way: when a given subset At 2 F is
chosen by the algorithm in a given round t, at most one atom at 2 At is chosen stochastically by
“nature", and the aggregate outcome is then ot(At) := ot(a); otherwise, the algorithm skips this
round. A common interpretation is that the atoms correspond to products, the chosen action At 2 F
is the bundle of products offered to the customer, and at most one product from this bundle is actually
purchased. As usual, the algorithm continues until some resource (incl. time) is exhausted.

The selection probabilities are defined via the multinomial-logit model. For each atom a there is a
hidden number va 2 [0, 1], interpreted as the customers’ valuation of the respective product, and the

Pr [atom a is chosen | At] =

(
va

1+
P

a02At
va0

if a 2 At

0 otherwise.

The set F of possible bundles is

F = {A ⇢ [N] : M · x(A)  b } ,

for some (known) totally unimodular matrix M 2 RN⇥N and a vector b 2 RN , where x(A) 2
{0, 1}N represents set A as a binary vector over atoms.

Multinomial-logit bandits, the problem studied in prior work [e.g., 7, 48, 51, 24], is the special case
without resources. We derive the following corollary from the analysis of MNL-bandits in Agrawal
et al. [7], which analyzes the confidence sum for the va’s.

Corollary H.4. Consider MnlBwK and denote V :=
P

a2[N] va. Theorem H.1 holds with

� = O
✓⇣

lnT
ln(1+1/V)

⌘2 ⇣
N
p

ln(NT) + ln(NT)
⌘◆

= eO
�
N3

�
.

Proof. The proof is implicit in the analysis in Agrawal et al. [7]. As in their paper, let n` denote the
number of time-steps in phase `. Let V` =

P
a2S`

va. Recall that n` is a geometric random variable
with mean 1

1+V`
. Using Chernoff-Hoeffding bounds we obtain that with probability at least 1� 1

T 2 ,
n`  lnT

ln(1+1/V`)
.

Consider a random subset S. Summing the LHS and RHS in Lemma 4.3, we get
that

P
t2S Radt(at) 

P
a2[N]

P
`:t2Ta(`)

R̃a(S`). Using Lemma 4.3 in [7] we have,
P

a2[N]

P
`:t2Ta(`)

R̃a(S`) 
P

a2[N]

P
`:t2Ta(`)

n`

q
va ln

p
NT

Ta(`)
+ ln

p
NT

Ta(`)
. Note that va  1.

Using the upper bound on n` derived above combined with the argument used to obtain (A.19) in [7]
we get the desired value of �.

The worst-case regret bound from Corollary H.4 improves over prior work [26]. In particular, consider
the worst-case dependence on N , the number of atoms. Our regret bound scales as N3/2, whereas
the regret bound in [26] scales as N7/2 (while both scale as

p
T).

29

H.4 Computational issues

We do not provide a generic computationally efficient implementation for UcbBwK in our reduction.
The algorithm constructs and solves a linear program in each round, with one variable per arm in the
reduction. So, even if the regret is fairly small, the number of LP variables may be very large: indeed,
it may be exponential in the number of atoms in SemiBwK and MnlBwK, arbitrarily large compared
to the other parameters in linear BwK, or even infinite as in LinCBwK. The corresponding LPs have
a succinct representation in all these applications, but we do not provide a generic implementation.
However, such (or very similar) linear programs may be computationally tractable via application-
specific implementations, and indeed this is the case in LinCBwK [5] and SemiBwK [49]. In the prior
work on MnlBwK [26], the

p
T -regret algorithm is not computationally efficient, same as ours; there

is, however, a computationally efficient algorithm with regret T 2/3.

30

