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A RELATED WORK

Several value-based reinforcement learning methods Sunehag et al. (2018); Rashid et al. (2018); Son
et al. (2019); Yang et al. (2020); Rashid et al. (2020); Wang et al. (2021); Sun et al. (2021); Zohar
et al. (2022); Shen et al. (2022) are proposed to represent the global action value function with indi-
vidual counterpart whose complexity grows exponentially with the number of agents, due to partial
observability and large joint action. Specifically, VDN Sunehag et al. (2018) and QMIX Rashid
et al. (2018) learn a linear value decomposition by additivity and monotonicity. Qatten Yang et al.
(2020) is an extensive work of VDN, which uses the multi-head attention mechanism to approximate
joint action value. Besides, Weight QMIX Rashid et al. (2020) introduces a weighted projection to
rectify the challenge, suboptimal policies, caused by QMIX. QTRAN Son et al. (2019), DFAC Sun
et al. (2021) and QPLEX Wang et al. (2021) extend further the action-value function conditions on
Individual Global Max(IGM) to keep consistency of global and individual optimal action. However,
almost approaches (except QPLEX) are still suffer from the simplicity of decomposition and relax-
ation of these constraints, which may results in poor performance in some complex tasks. Last but
not least, the value-based Decomposition methods are limited to handle discrete action space.

In order to deal with discrete or continuous action space, some policy-based methods Lowe et al.
(2017); Foerster et al. (2018); de Witt et al. (2020); Wang et al. (2020); Kim et al. (2021); Zhang et al.
(2021) have been developed in recent years. MADDPG Lowe et al. (2017) and COMA Foerster et al.
(2018) are the variant of actor-critic method, which learn a centralized critic instead of individual
critic based on the observation and action of agent. In particular, Compared with MADDPG, COMA
only learn an actor network by sharing parameters to speed learning. de Witt et al. (2020) proposed
a novel method called FacMADDPG, which facilitates the critic in decentralized POMDPs based on
MADDPG and QMIX. DOP Wang et al. (2020) introduces firstly the value decomposition similar
to Qatten Yang et al. (2020) into multi-agent actor-critic framework with on-policy TD(λ) and tree
backup technique. Kim et al. (2021) poses a meta-learning multi-agent policy gradient theorem
to adapt quickly the non-stationarity of environment, and gives the theoretical analysis in detail.
However, due to centralized-decentralized mismatch (CDM) problems, the above methods perform
unsatisfactorily compared with value based methods. Furthermore, FOP Zhang et al. (2021) is
proposed to solve the above dilemma by transforming IGM into Individual-Global-Optimal (IGO)
conditions. However, as pointed out by Eysenbach & Levine (2019), the converged policy of FOP
may be biased. Although, FOP proves that factorized individual policies can converge to the global
optimum, there is an relatively strict constraint that the optimal joint behavior is required to be
consistent with the combination of optimal individual behaviors, which may failing to achieve high
performance in some complicated MARL tasks.

B MAXIMUM ENTROPY MULTI-AGENT REINFORCEMENT LEARNING PROOF

Theorem 3 (Soft Bellman Equation). According to the definition of soft joint Q-function Qsoft
jt and

soft joint V-function V soft
jt , Qsoft

jt (τ, u) and V soft
jt (τ) satisfy the soft Bellman equation

Qsoft
jt (τt, ut) = E(τt,ut)∼ρπjt

[
r(τt, ut) + γV soft

jt (τt+1)
]
, (17)

V soft
jt (τt) = Eut∼πjt(·|τt)

[
Qsoft

jt (τt, ut)− αlogπjt(·|τt)
]
. (18)

Proof. Recall the definition of the soft joint V-function:

V soft
jt (τt) = E(τt+l,··· )∼ρπjt

[ ∞∑
l=0

γl(r(τt+l, ut+l)) + αH(π∗
jt(·|τt+l)))

]
. (19)

Then the soft joint Q-function can be shown that

Qsoft
jt (τt, ut) = E(τt,ut)∼ρπjt

[
r(τt, ut) + γ(Qsoft

jt (τt+1, ut+1) + αH(πjt(·|τt)))
]

= E(τt,ut)∼ρπjt

[
r(τt, ut) + γV soft

jt (τt+1)
]
.

(20)
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Similarly, we can show that

V soft
jt (τt) = Eut∼πjt(·|τt)

[
Qsoft

jt (τt, ut)
]
+ αH(πjt(·|τt))

= Eut∼πjt(·|τt)
[
Qsoft

jt (τt, ut)
]
− αEut∼πjt(·|τt) [logπjt(·|τt)]

= Eut∼πjt(·|τt)
[
Qsoft

jt (τt, ut)− αlogπjt(·|τt)
]
.

(21)

This completes the proof of Theorem 3.

Theorem 4 (Optimal Joint Policy). According to the definition of soft joint Q-function Qsoft
jt , soft

joint V-function V soft
jt and soft joint A-function Asoft

jt , the optimal joint policy is given by

π∗
jt = exp(

1

α
Asoft

jt (τt, ut)). (22)

Proof. From the goal of MaxEnt MARL in Eq. (1), we can derive the objective of discounted max-
imum entropy multi-agent reinforcement learning:

J (πjt) =

T∑
t=1

γt−1E(τt,ut)∼ρπjt
[r(τt, ut) + αH(πjt(·|τt))]. (23)

This objective corresponds to maximizing the discounted expected reward and entropy for future
action-observation historical trajectory originating from every tuple (τt, ut) weighted by its proba-
bility ρπjt under the current joint policy. Therefore, the objective for t = T is given by

J (πjt) = EuT∼πjt(·|τT ) [r(τT , uT ) + αH(πjt(·|τT ))]

=

∫
U
[r(τT , uT ) + αH(πjt(·|τT ))]πjt(uT |τT )duT

=

∫
U
r(τT , uT )πjt(uT |τT )duT + α

∫
U
πjt(uT |τT )EuT∼πjt(uT |τT ) [−logπjt(uT |τT )] duT

=

∫
U
r(τT , uT )πjt(uT |τT )duT + αEuT∼πjt(uT |τT ) [−logπjt(uT |τT )]

=

∫
U
r(τT , uT )πjt(uT |τT )duT − α

∫
U
logπjt(uT |τT )πjt(uT |τT )duT

=

∫
U
[r(τT , uT )− αlogπjt(uT |τT )]πjt(uT |τT )dµT .

(24)
The optimal joint policy at last timestep can be expressed as follows:

π∗
jt(·|τT ) = arg max

πjt(·|τT )

∫
U
[r(τT , uT )− αlogπjt(uT |τT )]πjt(uT |τT )duT

=
exp( 1

αr(τT , uT ))∫
U exp( 1

αr(τT , u))du
= exp(

1

α
Asoft

jt (τT , uT )).

(25)

Similarly, we can show that

π∗
jt(·|τt) = arg max

πjt(·|τt)
Eut∼πjt(·|τt)

[
r(τt, ut) + αH(πjt(·|τt)) + γEp(τt+1|τt,ut)

[
V soft

jt (τt+1)
]]

= arg max
πjt(·|τt)

∫
U

[
r(τt, ut)− αlog(πjt(ut|τt)) + γEp(τt+1|τt,ut)

[
V soft

jt (τt+1)
]]
πjt(ut|τt)dut

=
exp{ 1α

[
r(τt, ut) + γEp(τt+1|τt,ut)

[
V soft

jt (τt+1)
]]
}∫

U exp{ 1α
[
r(τt, u) + γEp(τt+1|τt,ut)

[
V soft

jt (τt+1)
]]
}du

=
exp( 1

αQ
soft
jt (τt, ut))∫

U exp( 1
αQ

soft
jt (τt, u))du

= exp(
1

α
Asoft

jt (τt, ut)).

(26)
This completes the proof of Theorem 4.
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C INDIVIDUAL GLOBAL TRANSFORM OPTIMAL PROOF

Definition 3 (IGTO). For an optimal joint policy π∗
jt(u|τ) : τ × u → [0, 1], where τ is

a joint trajectory and u is a joint action, if there exists a transformed joint action ũ =
[ũ1; ũ2; · · · ; ũN ], which is expressed by an invertible transformation F , and individual optimal
policies [π∗

i (ui|τi) : τi × ui → [0, 1]]
N
i=1, such that the following holds

π∗
jt(ũ|τ) =

N∏
i=1

π̃∗
i (ũi|τi) =

N∏
i=1

π∗
i (ui|τi), (27)

s.t. ũ = F (u), u = F−1(ũ). (28)
then, we say that [πi] satisfy IGTO for πjt under τ . That is, π∗

jt(u|τ) is factorized by [π∗
i (ui|τi)].

C.1 POLICY PRESERVATION FOR IGTO

Theorem 5 (Policy Preservation). If we sequentially perform the transformation fi:

[ũi; û−i] = fi(ui, û−i), û−i = [ũ1, · · · , ũi−1;ui+1, · · · , uN ] , (29)

, the Jacobian matrix of the transformation exists and the Jacobian determinant satisfies |Gi| =
| ∂fi
∂[ui;û−i]

| = 1, then individual global transform optimal in Definition 3 is provable.

Proof. For simplification, we denote pi =
∏i
k=1 π̃k(ũk|τk) ×

∏N
k=i+1 πk(uk|τk), where p0 =∏N

k=1 πk(uk|τk) and pN =
∏N
k=1 π̃k(ũk|τk). For eq. (27), we only need to prove p0 = pN . To this

end, we take a progressive strategy to derive p0 = p1 = p2 = · · · = pN . The crucial requirement is
pi−1 = pi, which is derived as follows.

pi−1 =

i−1∏
k=1

π̃k(ũk|τk)×
N∏
k=i

πk(uk|τk)

=

i−1∏
k=1

π̃k(ũk|τk)× πi(ui|τi)×
N∏

k=i+1

πk(uk|τk)

= πi(ui|τi)× π−i(û−i|τ−i),

(30)

where π−i(û−i|τ−i) =
∏i−1
k=1 π̃k(ũk|τk)×

∏N
k=i+1 πk(uk|τk).

For the individual action ui ∈ Ui and action-observation historical trajectory τi, a simple prior
probability distribution πũi

on a latent action variable ũi ∈ Ũi under the joint action-observation
historical trajectory τ , and a bijection function fi : ui → ũi (with gi = f−1

i ), the change of
variable formula defines a policy distribution on Ui by

πi(ui|τi) = π̃i(ũi|τ)× |Gi|, (31)

where Gi =
∂fi

∂[ui;û−i]
is the Jacobian Matrix of fi at ui.

pi−1 = π̃i(ũi|τ)× |Gi| × π−i(û−i|τ)

=

i−1∏
k=1

π̃k(ũk|τk)× π̃i(ũi|τ)× |Gi| ×
N∏

k=i+1

πk(uk|τk)

=

i∏
k=1

π̃k(ũk|τk)×
N∏

k=i+1

πk(uk|τk)× |Gi|

= pi × |Gi|.

(32)

As the Jacobian determinant satisfies |Gi| = | ∂fi
∂[ui;û−i]

| = 1, the policy transformation has pi−1 =

pi. Therefore we have proven Theorem 5.
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Theorem 1 shows that, if the transformation is performed sequentially and the Jacobian determinant
of transformation satisfies |Gi| = 1, the IGTO condition will be guaranteed. In fact, the order of
performing transformation may be changed. For convenience, we take three agents as example, and
change the sequence from the original setting (f1, f2, f3) to a new setting (f2, f3, f1). We summary
the conclusion and proof as follows:

Remark Considering a factorizable MARL task with three agents, i.e., N = 3. We first perform
transformation f2, then transformation f3, finally transformation f1. If the Jacobian determinant of
transformation satisfies |Gi| = 1, i = 1, 2, 3, then the IGTO condition is provable.

Proof Let pi =
∏i
k=1 π̃k(ũk|τk) ×

∏3
k=i+1 πk(uk|τk), where p0 =

∏3
k=1 πk(uk|τk) and p3 =∏3

k=1 π̃k(ũk|τk). For the IGTO condition, we only need to prove p0 = p3. To this end, we take
a progressive strategy to derive p0 = p2 = p3 = p1. From the proof of Theorem 1(Please see
Appendix C.1), we can obtain the deduction (πi(ui|τi) = π̃i(ũi|τ)× |Gi|) according to the change
of variable formula.

p0 = π2(u2|τ2)× π1(u1|τ1)× π3(u3|τ3)
= π̃2(ũ2|τ)× |G2| × π1(u1|τ1)× π3(u3|τ3) = p2 × |G2|
= π̃3(ũ3|τ)× |G3| × π1(u1|τ1)× π̃2(ũ2|τ)× |G2| = p3 × |G3| × |G2|
= π̃1(ũ1|τ)× |G1| × π̃2(ũ2|τ)× π̃3(ũ3|τ)× |G3| × |G2|
= p1 × |G1| × |G3| × |G2|

(33)

As the Jacobian determinant satisfies |Gi| = | ∂fi
∂[ui;û−i]

| = 1, the policy transformation has p0 = p1.
Therefore, we have proven the above theorem.

C.2 NORMALIZED TRANSFORMATION FOR POLICY PRESERVATION

Definition 4 (Normalized Transformation). Given the individual actions [ui]
N
i=1, and transformed

action variables [ũi]
N
i=1, the bijection function fi(ui, û−i) : u = [ũ1, · · · , ũi−1, ui, · · · , uN ] →

ũ = [ũ1, · · · , ũi, ui+1; · · · ;uN ] can be defined as{
ũi = ui ⊙ 1

Fi
exp(gi(û−i)) + hi(û−i)

ũ−i = û−i
(34)

where û−i = [ũ1, · · · , ũi−1;ui+1, · · · , uN ], Fi = exp(
∑
g(û−i)) is a normalization factor, gi and

hi stand for scale and translation, and are functions from RN−1 7→ R, and ⊙ is the element-wise
product or Hadamard product.
Proposition 2. The transformation in Definition 4 makes policy preservation in Theorem 5.

Proof. According to the Definition 4, the Jacobian Matrix of the affine transformation fi is given
by

Gi =
∂fi

∂[ui; û−i]
T

=

[
∂ũi

∂[ui]
T

∂ũi

∂[û−i]
T

∂ũ−i

∂[ui]
T

∂ũ−i

∂[û−i]
T

]
=

[
diag( 1

Fi
exp(gi(û−i)))

∂ũi

∂[û−i]
T

0 I

]
, (35)

where diag( 1
Fi
exp(gi(û−i))) is the diagonal matrix whose diagonal elements correspond to the

vector 1
Fi
exp(gi(û−i)) and I is an identity matrix. Given the observation that this Jacobian matrix

is triangular, we can efficiently calculate its determinant as |diag( 1
Fi
exp(gi(û−i)))|. Since Fi =

exp(
∑
g(û−i)), we can show that

|Gi| = |diag(
1

Fi
exp(gi(û−i)))| =

1

Fi
· exp(

∑
g(û−i)) = 1. (36)

As a consequence, the conclusion is reached.

C.3 POLICY IMPROVEMENT UNDER IGTO

Under the condition of IGTO, the joint policy optimization would improve individual policies.
Formally, it can be proved by using the distance measure of KL-divergence, as follows. Let pi =
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∏i
k=1 π̃k(ũk|τk) ×

∏N
k=i+1 πk(uk|τk), where p0 =

∏N
k=1 πk(uk|τk) and pN =

∏N
k=1 π̃k(ũk|τk).

According to Eq.( 27), we can show that

DKL(πjt(ũ|τ) ∥ π∗
jt(ũ|τ)) = DKL(

N∏
i=1

π̃i(ũi|τ) ∥
N∏
i=1

π∗
i (ui|τi))

= DKL(pN ∥
N∏
i=1

π∗
i (ui|τi)))

=

∫
U
pN log

pN∏N
i=1 π

∗
i (ui|τi)

du

=

∫
U
pN−1|GN |−1

log
pN−1|GN |−1∏N
i=1 π

∗
i (ui|τi)

du

=

∫
U
pN−2|GN−1|−1|GN |−1

log
pN−2|GN−1|−1|GN |−1∏N

i=1 π
∗
i (ui|τi)

du

= · · · =
∫
U

p0

N∏
j=1

|Gj |−1
log

p0
∏N
j=1 |Gj |−1∏N

i=1 π
∗
i (ui|τi)

du.

(37)

Since each Jacobian determinant |Gj | = 1, then we can show that

DKL(πjt(ũ|τ) ∥ π∗
jt(ũ|τ)) =

∫
U

p0log
p0∏N

i=1 π
∗
i (ui|τi)

du

=

∫
U

N∏
i=1

πi(ui|τi)log
∏N
i=1 πi(ui|τi)∏N
i=1 π

∗
i (ui|τi)

du

=

∫
U

N∏
i=1

πi(ui|τi)
N∑
i=1

log
πi(ui|τi)
π∗
i (ui|τi)

du

=

∫
U

N∏
i=1

πi(ui|τi)log
π1(u1|τ1)
π∗
1(u1|τ1)

du+ · · ·+
∫
U

N∏
i=1

πi(ui|τi)log
πN (uN |τN )

π∗
N (uN |τN )

du

=

N∑
i=1

∫
ui

∫
u-i

πi(ui|τi)π-i(u-i|τ-i)log
πi(ui|τi)
π∗
i (ui|τi)

duidu-i

=

N∑
i=1

∫
ui

πi(ui|τi)log
πi(ui|τi)
π∗
i (ui|τi)

dui

∫
u-i

π-i(u-i|τ-i)du-i

=

N∑
i=1

DKL(πi(ui|τi) ∥ π∗
i (ui|τi))

∫
u-i

π-i(u-i|τ-i)du-i

=

N∑
i=1

DKL(πi(ui|τi) ∥ π∗
i (ui|τi)),

(38)
where u−i denotes the joint action without agent i, and π−i denotes the joint policy without agent i.

C.4 TRANSFORM POLICY ITERATION

Lemma 3 (Transform Policy Evaluation). Consider the transform Bellman backup operator T tra
πjt

in Eq. (9) and a mapping Q0
jt : τ × ũ → R with |A|<∞, and define Qk+1

jt = T tra
πjt
Qkjt . Then the

sequence Qkjt will converge to the soft joint Q-value of πjt as k →∞.

Proof. Define the entropy augmented reward as

rπ(τt, ũt) ≜ r(τt, ũt) + Eτt+1∼p(τt+1|τt,ũt) [Qjt(τt+1, ũt+1)] (39)
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Therefore, the soft action value function is given by

Qjt(τt, ũt)← rπjt(τt, ũt) + γEτt+1∼p(τt+1|τt,ũt),ũt+!∼π(·|τt+1) [Q(τt+1, ũt+1)] (40)

Apply the standard convergence results for policy evaluation Sutton & Barto (1999) and the assump-
tion |U|<∞ is required to guarantee that the entropy augmented reward is bounded.

Lemma 4 (Transform Policy Improvement). Let πold
jt ∈ Π and let πnew

jt be the optimizer of the

minimization problem defined in Eq. (11). ThenQπ
new
jt (τt, ũt) ≥ Qπ

old
jt (τt, ũt) for all (τt, ũt) ∈ τ×Ũ

with |Ũ |<∞.

Proof. Let Qπ
old
jt and V π

old
jt be the corresponding soft joint Q-value and soft joint V-value under the

old joint policy, and let πnew
jt be defined as

πnew
jt (·|τt) = argmin

π∈Π
DKL(π(·|τt) ∥ exp(Qπ

old
jt (τt, ·)− logZπ

old
jt (τt)))

= argmin
π∈Π

Eũt∼π(ũt|τt)

[
log

π(ũt|τt)
exp(Qπ

old
jt (τt, ũt)− logZπ

old
jt (τt))

]
= argmin

π∈Π
Eũt∼π(ũt|τt)

[
logπ(ũt|τt)−Qπ

old
jt (τt, ũt) + logZπ

old
jt (τt)

] (41)

Let Jπold
jt
(π(·|τt)) = Eũt∼π(ũt|τt)

[
logπ(ũt|τt)−Qπ

old
jt (τt, ũt) + logZπ

old
jt (τt)

]
, then

πnew
jt (·|τt) = argmax

π∈Π
Jπold

jt
(π(·|τt)) (42)

From the definition of πold
jt and πnew

jt , we can show that Jπold
jt
(πnew

jt (·|τt)) ≤ Jπold
jt
(πold

jt (·|τt)). Hence,

Eτ̃t∼πnew
jt (ũt|τt)

[
logπnew

jt (ũt|τt)−Qπ
old
jt (τt, ũt)

]
≤ Eũt∼πold

jt (ũt|τt)

[
logπold

jt (ũt|τt)−Qπ
old
jt (τt, ũt)

]
(43)

Consider the relationship between soft V-function and soft Q-function, the Eq. (43) reduces to

V π
old
jt (τt) ≤ Eũt∼πnew

jt (ũt|τt)

[
Qπ

old
jt (τt, ũt)− logπnew

jt (ũt|τt)
]

(44)

Next, we consider the soft Bellman equation:

Qπ
old
jt (τt, ũt) = r(τt, ũt) + γEτt+1∼p(τt+1|τt,ũt)

[
V π

old
jt (τt+1)

]
≤ r(τt, ũt) + γEτt+1∼p(τt+1|τt,ũt)

[
Eũt+1∼πnew

jt (ũt+1|τt+1)

[
Qπ

old
jt (τt+1, ũt+1)− logπnew

jt (ũt+1|τt+1)
]]

...

≤ Qπ
new
jt (τt, ũt)

(45)

This completes the proof of Lemma 4

Lemma 4 does not make the factorizable assumption on Q-value and thus is applicable to gen-
eral settings. In other word, the derivation on the case of Q-value decomposition is a special case
of Lemma 4. Here we provide a derivation example for monotonic linear value decomposition
(MLVD): Qjt(τ, u) =

∑N
i=1 wi(τi)Qi(τi, ui). Other value decomposition ways could have the sim-

ilar derivation.

Lemma 5 (Transform Policy Improvement with MLVD). If the soft joint Q-function satisfies
Qjt(τ, u) =

∑N
i=1 wi(τi)Qi(τi, ui) and let πnew

i be the optimizer of the minimization problem sat-

isfied πnew
i = argminπi

DKL(πi(·|τi) ∥
exp(wi(τi)Q

πold
i

i (τi,·))

Zπold
i (τi)

).Then Qπ
new
jt (τt, ũt) ≥ Qπ

old
jt (τt, ũt) for

all (τt, ũt) ∈ τ × Ũ with |Ũ |<∞, where πnew
jt =

∏N
i=1 π

new
i and πold

jt =
∏N
i=1 π

old
i .
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Proof.

πnewi = argmin
πi

DKL(πi(·|τi) ∥
exp(wi(τi)Q

πold
i
i (τi, ·))

Zπ
old
i (τi)

)

= argmin
πi

DKL(πi(·|τi) ∥ exp(wi(τi)Q
πold
i
i (τi, ·)− logZπ

old
i (τi)))

= argmin
πi

Eũi∼πi(ũi|τi)

[
log

πi(ũi|τi)

exp(wi(τi)Q
πold
i
i (τi, ũi)− logZπ

old
i (τi)))

]
= argmin

πi

Eũi∼πi(ũi|τi)

[
logπi(ũi|τi)− wi(τi)Q

πold
i
i (τi, ũi) + logZπ

old
i (τi)

]
= argmax

πi

∑
ũi

πi(ũi|τi)
(
wi(τi)Q

πold
i
i (τi, ũi)− logπi(ũi|τi)− logZπ

old
i (τi)

)
(46)

According to the above equation, we can obtain
∑
ũi
πnew
i (ũi|τi)

(
wi(τi)Q

πold
i
i (τi, ũi)− logπnew

i (ũi|τi)
)
≥∑

ũi
πold
i (ũi|τi)

(
wi(τi)Q

πold
i
i (τi, ũi)− logπold

i (ũi|τi)
)

.

Consider the relationship between soft V-function and soft Q-function, we can show that

Eũ∼πnew
jt (ũ|τ)

[
Qπ

old
jt (τ, ũ)− logπnew

jt (ũ|τ)
]

=
∑
ũ

πnew
jt (ũ|τ)

∑
i

(
wi(τi)Q

πold
i
i (τi, ũi)− logπnew

i (ũi|τi)
)

=
∑
i

∑
ũ-i

πnew
-i (ũ-i|τ-i)

∑
ũi
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i (ũi|τi)

(
wi(τi)Q

πold
i
i (τi, ũi)− logπnew

i (ũi|τi)
)

≥
∑
i

∑
ũ-i

πold
-i (ũ-i|τ-i)

∑
ũi

πold
i (ũi|τi)

(
wi(τi)Q

πold
i
i (τi, ũi)− logπold

i (ũi|τi)
)

= V π
old
jt (τt)

(47)

Next, we consider the soft Bellman equation:

Qπ
old
jt (τ, ũ) = r(τ, ũ) + γEτ ′

[
V π

old
jt (τ ′)

]
≤ r(τ, ũ) + γEτ ′

[
Eũ′∼πnew

jt

[
Qπ

old
jt (τt+1, ũt+1)− logπnew

jt (ũt+1|τt+1)
]]

...

≤ Qπ
new
jt (τt, ũt)

(48)

This completes the proof of Lemma 5

Theorem 6 (Transform Policy Iteration). Repeated application of Transform Policy Evaluation
and Transform Policy Improvement, we can obtain a sequence Qk and this sequence will converge
towards the optimal soft Q-functionQ∗

soft, while the corresponding sequence of policies will converge
towards the optimal policy π∗

jt .

Proof. Let πijt be the policy at iteration i. By Lemma 4, we can know that the sequence Q
πi

jt
soft is

monotonically increasing. Since Qπjt
soft is bounded above for πjt ∈ Π(both the reward and entropy are

bounded), the sequence converges to some π∗
jt . We will still need to show that π∗

jt is indeed optimal.
At convergence, it must be case that Jπ∗

jt
(π∗

jt(·|τt)) ≤ Jπ∗
jt
(πjt(·|τt)) for all πjt ∈ Π, πjt ̸= π∗

jt . Using

the same iterative argument as in the proof of Lemma 4, we get Qπ
∗
jt (τt, ũt)>Q

πjt(τt, ũt) for all
(τt, ũt) ∈ τ × Ũ . Therefore, the soft action-value of any other policy in Π is lower than that of the
converged policy. Hence, π∗

jt is optimal in Π.

19



Under review as a conference paper at ICLR 2024

D THE ALGORITHM OF IGNT-MAC

Algorithm 1 introduces the complete training procedure of IGNT-MAC.

Algorithm 1 IGNT-MAC
1: for episode = 1 to max-training-episode do
2: Initialize the environment and obtain the initial state and observations;
3: for t = 1 to max-episode-length do
4: for each agent {ai}Ni=1 do
5: Select a action from the individual policy ui ∼ πi(·|τi);
6: end for
7: Transform the joint action by an normalized transformation ũ = F (u)
8: Execute the transformed actions ũ = (ũ1, · · · , ũN ) to obtain shared reward r and the next

observation oi;
9: Store (o, u, r, onext, done) in replay buffer D;

10: end for
11: Sample a random minibatch of M samples from D:(om, um, rm, onext

m , donem);
12: for agent i = 1 to N do
13: Update individual policy πi: ϕi ←ϕi + βϕ∇ϕi

Lπi
;

14: end for
15: Update the critic: θ ← θ − βθ∇θLQ ;
16: Update the affine transformation: ψ ← ψ − βψ∇ψLπ ;
17: if step%C == 0 then
18: Update target individual policy: ϕi = (1− α)ϕi + αϕi;
19: Update target critic: θi = (1− α)θi + αθi;
20: end if
21: end for

E DETAILS OF ENVIRONMENTS

E.1 THE STARCRAFT MULTI-AGENT CHALLENGE

The StarCraft Multi-Agent Challenge (SMAC) Samvelyan et al. (2019) environment is an popular
platform for researching MARL, which is inspired by the real-time strategy (RTS) game StarCraft
II. The SMAC environment offers a competitive setting for agents, where they are required to col-
laborate or engage in competition on a virtual StarCraft II game map. Specifically, the environment
comprises two teams: the Red team and the Blue team. The Red team is controlled by a MARL
method, where each agent’s decision-making relies on its own action-observation historical trajec-
tory. On the other hand, the Blue team (enemy) is controlled by the built-in game AI that utilizes
handcrafted heuristics. Furthermore, SMAC encompasses a variety of StarCraft II micromanage-
ment scenarios typically categorized into three level of difficulty: Easy, Hard, and Super-Hard. In
our experiments, we consider six scenarios including 1c 3s 5z, 8m, 2c vs 64zg, 3s vs 5z, 25m and
MMM2, to evaluate the effectiveness of the IGTO framework. The exhaustive list of challenges is
presented in Table 1. Figure 4 shows the visualization of all scenarios utilized in our experiments.

Table 1: The details of StarCraft II challenges [SMAC Samvelyan et al. (2019)].
Map Name Ally Units Enemy Units

1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots
8m 8 Marines 8 Marines

2c vs 64zg 2 Colossi 64 Zerglings
3s vs 5z 3 Stalkers 5 Zealots

25m 25 Marines 25 Marines
MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 3 Marauders & 8 Marines
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(a) 1c3s5z (b) 8m (c) 3s vs 5z

(d) 2c vs 64zg (e) 25m (f) MMM2

Figure 4: The screenshots of SMAC scenarios utilized in our experiments.

During each time step, agents get local observations, which are composed of agent movement, en-
emy, ally and agent unit features, within their sight. The dimensionality of observation vector may
vary depend on the specific environment configuration and the types of units existing within the
scenario. Specifically, the feature vector of observation includes attributes such as health, unit type,
shield, relative x, relative y and distance for both allied and enemy units. The features of agent
unit contain its shield, health and unit type. Furthermore, the action space of each agent comprises
four features: move direction, no-option, stop, and attack target. Deceased agents are restricted to
selecting the no-option feature, while living agents are unable to choose it. Each agent can choose
to either stop or move in one of the four cardinal directions: north, east, south or west. Besides, the
agent is permitted to execute the attack action only if the enemy is within the shooting range or field
of attack. The detailed feature of observation and action for each agent are shown in Table 2.

Table 2: The feature size of observation and action for scenarios of SMAC.
Map Name Category Move Enemy Ally Own Attack id

1c3s5z
Easy

4 (9, 9) (8, 9) 5 9
8m 4 (8, 5) (7, 5) 1 8

2c vs 64zg
Hard

4 (64, 5) (1, 6) 2 64
3s vs 5z 4 (5, 6) (2, 6) 2 5

25m 4 (25, 5) (24, 5) 1 25
MMM2 Super-Hard 4 (12, 8) (9, 8) 4 12

In these combat scenarios, the goal is to maximize the win rate and episode reward. Note that all
agents obtain the shared global reward, which corresponds to the total damage inflicted on all enemy
agents combined. The reward scheme is that agents earns 10 points for successfully eliminating an
enemy unit. Moreover, when all enemies are collectively eliminated, each agent is granted a bonus
of 200 points. The cumulative reward is normalized to a range of 20.

E.2 THE MULTI-AGENT PARTICLE ENVIRONMENT

The Multi-agent Particle Environment(MPE) provides a configurable two-dimensional grid world
populated with a group of autonomous agents, where each agent is capable of perceiving the envi-
ronment and taking actions to achieve its specific objective. To perform our experiments, we adopt
some cooperative games in MPE including Cooperative Navigation, Modified Predator-prey, Phys-
ical Deception 2 and Physical Deception 4, as shown in Figure 5, and the detailed introduction and
settings of these scenarios are provided as bellow.
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(a) CN (b) MPP (c) PD2 (d) PD4

Figure 5: The visualization of the scenarios in MPE, including Cooperative Navigation(CN), Modi-
fied Predator-prey(MPP), Physical Deception 2(PD2) and Physical Deception 4(PD4).

Cooperative Navigation In this scenario, the objective is for three agents to collaborate by taking
physical actions in order to reach a designated set of three landmarks. The agents receive observa-
tions regarding the relative positions of other agents and landmarks, and their collective reward is
based on the proximity of any agent to each landmark. In essence, the agents must cover all of the
landmarks successfully. Additionally, as the agents occupy physical space, they receive penalties
for colliding with each other. The agents learn to deduce the specific landmark they need to reach,
navigate towards it, and at the same time, avoid collisions with other agents.

Modified Predator-prey In this modified version of the traditional predator-prey game, three co-
operating agents with slower speeds are tasked with pursuing a faster adversary within a randomly
generated environment. The environment is further obstructed by two large landmarks. Whenever
the cooperative agents successfully collide with the adversary, they receive rewards, while the ad-
versary incurs penalties. The agents have access to observations regarding the relative positions and
velocities of other agents, as well as the positions of the landmarks.

Physical Deception 2 In this scenario, a pair of agents work together in a cooperative manner
to reach a specific target landmark from a total of two available landmarks. The agents receive
rewards based on the minimum distance between any agent and the target landmark, indicating that
only one agent needs to reach the target. However, there is also a lone adversary in pursuit of
the target landmark. The twist is that the adversary is unaware of which landmark is the correct
one. Consequently, the cooperating agents, who face penalties based on the distance between the
adversary and the target, learn to disperse and cover all the landmarks to deceive the adversary
effectively.

Physical Deception 4 In this scenario, a group of four agents collaborates to reach a specific target
landmark from a set of four available landmarks. Their rewards are determined by the minimum
distance between any agent and the target landmark, indicating that only one agent needs to suc-
cessfully reach it. However, there is a lone adversary that also aims to reach the target landmark.
The twist lies in the fact that the adversary lacks knowledge of which landmark is the correct one.
As a result, the cooperative agents, who face penalties based on the distance between the adversary
and the target, learn to disperse and cover all the landmarks in order to deceive and confuse the
adversary.

F DETAILS OF IMPLEMENTATION

F.1 ADJUSTMENTS OF THE BASELINES

The adjustments of the baselines including VDN, QMIX, QTRAN and FOP are listed as follows:
VDN, QMIX, and QTRAN are value-based decomposition MARL methods. Consequently, we in-
corporate individual policy network and target policy network for each agent. The original individual
Q-value functions are retained to facilitate the learning of critic in IGNT-MAC variants. FOP, on the
other hand, is a multi-agent actor and critic method that combines value decomposition with entropy
regularization. Hence, we maintain the original architecture of FOP.
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F.2 HYPERPARAMETERS

All the individual policy networks consist of identical components, including two linear layers and
one GRUCell layer with ReLU activation. The number of hidden units in each layer is set to 64.
The architecture of individual Q-value function networks, which is shared across all value-based
methods, comprises a Gated Recurrent Unit (GRU) combined with a fully-connected layer before
and after. The learning rate for critic is 10−3 and the learning rate for actor is 10−4. Furthermore, γ
is set to 0.99. The replay buffer contains a collection of 5000 episodes. During the training process,
batches with 32 episodes are sampled uniformly from the replay buffer. The training is conducted on
fully unrolled episodes. After each episode, a single gradient descent step is performed to update the
parameters of networks. The setting of all hyperparameters for the training are presented in Table 3.

Table 3: Hyperparameters for training.
name Value Description

difficulty 7 the difficulty of the game
n steps 2× 106 Maximum steps until the end of training

buffer size 5000 capacity of replay buffer
batch size 32 number of samples from each update

evaluate cycle 5000 how often to evaluate the model
lrπi

5× 10−4 learning rate for individual policies
lrQ 5× 10−3 learning rate for critic
C 400 how often target networks update
γ 0.99 discount factor
α 0.999 the parameter used for soft updating target networks

G ADDITIONAL EXPERIMENTS RESULTS

Figure 6 and Figure 7 show the learning curves of COMA, MAAC, QMIX and DOP groups in
terms of average success rates and episode rewards in six SMAC scenarios including 1c3s5z, 8m,
2c vs 64zg, 25m and MMM2.

23



Under review as a conference paper at ICLR 2024

Figure 6: The performance in terms of average success rates for some baselines (VDN, QMIX,
QTRAN and FOP) and their variants under the framework of IGNT-MAC on other scenarios of
StarCraft II benchmark including 8m, 2c vs 64zg and 25m. In particular, each row exhibits the
results of different groups in the same scenario.
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Figure 7: The performance in terms of average episode rewards for baselines (VDN, QMIX,
QTRAN and FOP) and their variants under the framework of IGNT-MAC on various scenarios of
StarCraft II benchmark including 1c3s5z, 8m, 2c vs 64zg, 3s vs 5z, 25m and MMM2. In particular,
each row exhibits the results of different groups in the same scenario.
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