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We organize the supplementary materials as follows:

• In SectionA,we analyze the challenges of the V2C-Animation
benchmark compared to the traditional TTS benchmark and
GRID benchmark.

• In Section B, we provide a more detailed description of the
model implementation, including the settings of the modules
and details of the loss function.

• In Section C, we introduce the baseline models.
• In Section D, we provide additional comparative experi-
ments and ablation studies to validate the effectiveness of
our method.

• In Section E, we provide additional visualizations of mel-
spectrograms to compare with other baseline models.

A THE CHALLENGE OF V2C-ANIMATION
BENCHMARK

As shown in Table 1, the V2C-Animation benchmark [1] differs
significantly from traditional TTS benchmarks in multiple aspects,
and its challenges are much greater than them. The main rea-
sons for this are as follows: (1) The V2C-Animation benchmark
has a smaller data scale and shorter speech duration compared to
other datasets. As shown in Table 1, the V2C-Animation bench-
mark contains only 10,217 samples. Although it is comparable in
quantity to LJSpeech [4], the average length of each sample is
only about one-third of LJSpeech. The GRID benchmark roughly
tripled the data volume with a slightly smaller average length
compared to V2C-Animation, LibriTTS [11] far exceeds the V2C-
Animation benchmark in both average length and total quantity.
(2) The V2C-Animation benchmark exhibits more noticeable back-
ground noise compared to other benchmarks. We estimate the
signal-to-noise (SNR) ratios of each dataset using a deep learning-
based approach [6], and the results are shown in Table 1. As shown
in the table, the other three datasets exhibit relatively high signal-
to-noise ratios because they are recorded in studio environments,
which can provide high-quality speech knowledge for models. How-
ever, the V2C-Animation benchmark is excerpted from real movies,
which contain background noise and environmental sounds. It
poses challenges for models to learn pronunciation accurately. (3)
The V2C-Animation benchmark exhibits greater pitch variation.
We compute the mean and variance of pitch across different bench-
marks and list in Table 1. This further enhances the challenge of the
V2C-Animation benchmark. (4) The V2C-Animation benchmark
contains more complex and realistic scenes compared to the GRID
benchmark. As a multi-speaker dubbing dataset, all speakers in
GRID are recorded using the same fixed perspective and uniform
background, while V2C-Animation includes more complex scenes
from real movies. Complex scenes and environments increase the
difficulty of modeling the prosody and variation information of
dubbing from visual information.

Overall, the V2C-Animation benchmark is more challenging than
traditional TTS benchmarks or GRID dubbing benchmark, both in

terms of the scale and quality of speech, as well as the complexity
of the visual scene.

Table 1: Difference between V2C-Animation benchmark and
other benchmarks.

Dataset Sample Number Avg. Length (s) SNR (dB) Pitch (Hz)
LJSpeech [4] 13,100 6.57 26.59 1921.75 ± 1249.77
LibriTTS [11] 149,736 6.34 26.72 2025.21 ± 1221.06
GRID [3] 33,000 1.83 23.77 1473.71 ± 1195.36

V2C-Animation [1] 10,217 2.46 10.15 1955.81 ± 1301.60

B IMPLEMENTION DETAILS
B.1 Detail of each module
Our proposedmodel comprisesmanymodules, including pre-trained
and non-pre-trained modules. To facilitate readers in better under-
standing the various modules in the paper, we provide an overview
indicating whether each module is pre-trained as shown in Table 2.

Table 2: The status of each module in the second stage.

Module Whether pretrained
Phoneme Encoder Yes
S3FD Yes
EmoFAN Yes
Emotion Encoder No
Mel-Timbre Encoder Yes
Energy/Pitch Predictor No
Lip Motion Encoder No
Mel-Decoder No
Length Regulator -

B.2 Training Loss in Second Stage
The total loss function of second training stage is:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆1L𝑚𝑒𝑙 + 𝜆2L𝑝𝑖𝑡𝑐ℎ + 𝜆3L𝑒𝑛𝑟𝑔𝑦 + 𝜆4L𝑎𝑙𝑖𝑔𝑛, (1)

L𝑚𝑒𝑙 =
1

𝐿𝑚𝑒𝑙

𝐿𝑚𝑒𝑙−1∑︁
𝑡=0

���𝑀𝑡
𝐷𝑢𝑏

−𝑀𝑡
𝐷𝑢𝑏

��� , (2)

L𝑝𝑖𝑡𝑐ℎ =
1
𝐿𝑝

𝐿𝑝−1∑︁
𝑖=0

���𝑃𝑖𝑝ℎ𝑜 − 𝑃𝑖
𝑝ℎ𝑜

��� , (3)

L𝑒𝑛𝑒𝑟𝑔𝑦 =
1
𝐿𝑝

𝐿𝑝−1∑︁
𝑖=0

���𝐸𝑖𝑝ℎ𝑜 − 𝐸𝑖
𝑝ℎ𝑜

��� , (4)

L𝑎𝑙𝑖𝑔𝑛 =
∑︁

𝐴̃ − 𝐴̃ ⊙ 𝐴∗, (5)
where the L𝑚𝑒𝑙 , L𝑝𝑖𝑡𝑐ℎ , and L𝑒𝑛𝑒𝑟𝑔𝑦 are the L1 loss between the
ground-truth and predicted mel-spectrogram, phoneme-level pitch,
and energy, respectively. The 𝐴̃ is the ground-truth alignment be-
tween the phoneme-level acoustics feature and the video frame-
level lip motion feature calculated by the ground-truth duration
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Table 3: Supplementary results on GRID benchmark with the same dub setting as the V2C-Animation benchmark.
Setting Dub 1.0 Dub 2.0
Methods Visual SECS (%) ↑ WER (%) ↓ MCD-DTW ↓ MCD-DTW-SL ↓ SECS (%) ↑ WER (%) ↓ MCD-DTW ↓ MCD-DTW-SL ↓

GT - 100.00 22.41 0.00 0.00 100.00 22.41 0.00 0.00
GT Mel + Vocoder - 97.57 21.41 4.10 4.15 97.57 21.41 4.10 4.15

Matcha-TTS [7] X 81.27 18.22 6.38 6.92 67.09 18.22 6.38 6.92

Ours ✓ 94.50 17.07 5.34 5.45 85.76 17.42 6.17 6.43

Table 4: Ablation studies about different second-stage strategies on V2C-Animation benchmark. The “p,e” denotes the pitch
and energy embedding layer.

Setting Dub 1.0 Dub 2.0
Frozen Modules Visual SECS (%) ↑ WER (%) ↓ EMO-ACC (%) ↑ MCD-DTW ↓ MCD-DTW-SL ↓ SECS (%) ↑ WER (%) ↓ EMO-ACC (%) ↑ MCD-DTW ↓ MCD-DTW-SL ↓

GT - 100.00 25.55 99.96 0.00 0.00 100.00 22.55 99.96 0.00 0.00
GT Mel + Vocoder - 96.96 24.40 97.09 3.77 3.80 96.96 24.40 97.09 3.77 3.80

Phoneme Encoder + Mel-Decoder ✓ 81.43 24.74 45.24 9.87 10.05 79.49 23.08 39.71 10.91 11.12
Phoneme Encoder + Mel-Decoder + p,e ✓ 81.34 23.50 44.70 9.76 9.95 80.49 23.05 40.33 10.81 11.02

Phoneme Encoder + p,e ✓ 81.40 17.60 46.45 9.48 9.66 79.81 17.43 41.20 10.70 10.90
Phoneme Encoder ✓ 81.50 17.51 46.80 9.46 9.65 79.86 17.33 43.66 10.64 10.84

Table 5: Ablation studies about pre-train mel-timbre encoder
or not on V2C-Animation benchmark.

Setting Dub 1.0 Dub 2.0
Frozen Module SECS (%) ↑ WER (%) ↓ SECS (%) ↑ WER (%) ↓

GT 100.00 25.55 100.00 22.55
GT Mel + Vocoder 96.96 24.40 96.96 24.40

w/o pre-trained Mel-timbre Encoder [8] 78.36 37.58 78.27 44.12
w/ pre-trained Mel-timbre Encoder (Ours) 81.50 17.51 79.86 17.33

of each phoneme. In the 𝐴̃, the values on the ground-truth align-
ment path are set to 1, while all other elements are set to 0. The
L𝑎𝑙𝑖𝑔𝑛 aims to optimize the lip motion encoder based on the align-
ment path of the ground truth, thereby achieving more accurate
pronunciation-lip alignment. The selection of loss weights is to
adjust all loss items to the same scale.

C BASELINE CHOICE
We compare our model with seven relevant methods for which code
is available. 1) FastSpeech2 [9] is a popular non-autoregressive
TTS method that explicitly models duration, pitch, and energy
as variation information. 2) StyleSpeech [8] is a TTS method
based on the FastSpeech2 [9] framework, which utilizes a style
encoder and meta-learning to adapt to multi-speaker environments.
3) Zero-shot TTS [8] is a content-dependent fine-grained speaker
method for zero-shot speaker adaptation. 4) Matcha-TTS [7] is
a state-of-the-art TTS model based on conditional flow matching.
5) V2C-Net [1] is the first visual voice cloning model for movie
dubbing. 6) HPMDubbing [2] is currently the most advanced
movie dubbing model. It employs a hierarchical prosody modeling
approach to connect the prosody of dubbingwith the lipmovements,
expressions, and scenes in movie clips. 7) FaceTTS [5] is a novel
diffusion-based TTS approach attempting to use facial to synthesize
voice timbre.

The baseline models include pure TTS and dubbing methods
for comprehensive comparative experiments. To ensure fairness in
comparison, we provide video embeddings as additional inputs for
all pure TTS methods following [1].

D SUPPLEMENTARY EXPERIMENTS
D.1 Supplementary Comparison on GRID

benchmark
We supplement the performance of Matcha-TTS [7] on the GRID
benchmark. As shown in Table 3, our proposed model still achieves
the best performance across all evaluation metrics.

D.2 Ablation Studies on Second Stage Strategy
In the main text, we mention that since speech and dubbing share
the same semantic space but differ significantly in tone and prosody,
pre-training only the phoneme encoder is the optimal choice. Due
to limitations in the length of the main text, we provide experimen-
tal evidence here in the appendix. We provide four pre-training
strategies, each freezing phoneme encoder, phoneme encoder +
mel-decoder, phoneme encoder + mel-decoder + pitch, energy em-
bedding, and phoneme encoder + pitch, energy embedding in the
second stage.

As shown in Table 4, the approach freezes only the phoneme
encoder during the second stage achieves the best dubbing perfor-
mance. Two methods that simultaneously freeze the mel-decoder
are limited by the prosody differences between speech and dub-
bing, failing to achieve better MCD-DTW and MCD-DTW-SL per-
formances and decreasing pronunciation clarity (See WER). The
approach of freezing the pitch and energy embeddings on top of
freezing the phoneme encoder achieves performance closer to the
approach of freezing only the phoneme encoder. However, due
to the differences in pitch and energy distribution between dub-
bing and speech, we ultimately chose only to freeze the phoneme
encoder as our second-stage training strategy.

D.3 Ablation Studies on Mel-timbre Encoder
We compare the differences between ourmethod and StyleSpeech [8]
in terms of timbre extraction on the V2C-Animation benchmark.
StyleSpeech [8] trains the style encoder with the model and then
integrates style information into the speech. Meanwhile, our model
employs a mel-timbre encoder pre-trained with GE2E loss [10] as
the timbre feature extraction module. Due to the lack of supervision
corresponding to vocal timbre (i.e., style), the approach used in [8]
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Figure 1: The visualization of the mel-spectrograms from ground truth and synthesized audios by different models. The red
and white bounding boxes highlight regions where different models exhibit significant differences in duration pausing and
pronunciation details.

cannot better efficiently and accurately extract timbre features in
the V2C-Animation benchmark. It also remains a risk of informa-
tion leakage. Moreover, the nature of environmental sounds in the
V2C-Animation dataset is not conducive to the generalization of
the style encoder. As shown in Table 5, our method outperforms
the approach as [8] on SECS in both dubbing settings. The poor
generalization ability also leads to an inferior pronunciation per-
formance.

E QUALITATIVE ANALYSIS
We visualize the mel-spectrograms of ground-truth and synthesized
audios by our model and the other two state-of-the-art methods
in Figure 1. The red and white bounding boxes represent regions
where different models exhibit significant differences in duration
consistency and pronunciation details compared to the ground truth.
Through the observation of the red bounding box, it is evident that

our model outperforms others in maintaining duration consistency.
The duration of pronunciation and pauses in the mel-spectrogram
generated by our model is notably closer to the ground truth dub-
bing. This phenomenon is more pronounced in the V2C-Animation
benchmark due to its complex speaking speed variation. Addition-
ally, from the clearer spectrum lines in the white bounding box, it
can be observed that the dubbing generated by our model exhibits
clearer and more natural pronunciation details.
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