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1. Additional Discussions001

1.1. Limitations.002

FlowMap has several limitations that suggest exciting di-003
rections for future work. First, FlowMap requires off-the-004
shelf correspondences from optical flow and point tracking005
methods. An exciting direction is to remove the dependence006
on correspondence altogether or to jointly learn correspon-007
dence extraction. Second, we mainly analyze FlowMap008
in the setting of per-scene optimization, where our results009
demonstrate that the gradients provided by FlowMap’s for-010
mulation are robustly lead to high-quality depth and camera011
parameters. It is natural to attempt to use these gradients to012
train a feed-forward structure-from-motion method. Lastly,013
through its dependence on optical flow or point tracks,014
FlowMap can currently only process continuous video, in015
contrast to conventional SfM methods which can operate on016
unstructured image collections. This is a natural assump-017
tion for applications in embodied intelligence, navigation,018
and robotics, but limits applications in computer graphics.019
Leveraging unstructured correspondences, e.g. via [3], may020
be used to overcome this limitation.021

1.2. Relationship to Conventional SfM.022

Across many applications of conventional SfM, such as023
the reconstruction of large, non-continuous image collec-024
tions, FlowMap cannot serve as a drop-in replacement,025
and we note that this is not our objective. Rather, we026
demonstrate that a self-supervised, end-to-end differen-027
tiable, feed-forward formulation that can naturally be in-028
tegrated into neural network vision models surprisingly ap-029
proaches COLMAP’s performance on the downstream task030
of novel view synthesis in the context of video data. Here,031
FlowMap has the potential to make camera pose and depth032
supervision unnecessary for 3D deep learning, paving the033
way for training on unannotated, internet-scale video data.034

1.3. Memory and Time Requirements. 035

FlowMap’s complexity in time and memory is linear with 036
the number of input video frames. During each optimization 037
step, FlowMap recomputes depth for each frame, then de- 038
rives poses and intrinsics from these depths to generate gra- 039
dients. In practice, FlowMap optimization for a 150-frame 040
video takes about 20 minutes, with a peak memory usage 041
of about 36 GB. Precomputing point tracks and optical flow 042
takes approximately 2 minutes. Note that FlowMap’s run- 043
time could be reduced by early stopping, and its memory 044
usage could be reduced by performing backpropagation on 045
video subsets during each step, but we leave these optimiza- 046
tions to future work. 047

1.4. Sequence Length and Drift. 048

Since adjacent frames in typical 30 FPS videos usually con- 049
tain redundant information, we run FlowMap on subsam- 050
pled videos. We perform subsampling by computing opti- 051
cal flow on the whole video, then selecting frames so as to 052
distribute the overall optical flow between them as evenly as 053
possible. With this strategy, we find that an object-centric, 054
full 360◦ trajectory as is common in novel view synthe- 055
sis papers is covered by about 90 frames. We note that 056
FlowMap does not have a loop closure mechanism. Rather, 057
point tracks provide long-range correspondences that pre- 058
vent the accumulation of drift in long sequences. 059

2. Additional Ablation Studies 060

In Tab. 1, we include three additional ablations. The 061
“Random Init.” ablation uses a randomly initialized CNN 062
for FlowMap training with 2,000 steps of optimization. 063
The “Random Init. (20k)” ablation is identical, but 064
runs for 20,000 optimization steps. The “No Corresp. 065
Weights” ablation removes the correspondence weights 066
used in FlowMap’s Procrustes-solving step. We note that 067
the “Random Init. (20k)” ablation’s performance almost 068
matches FlowMap’s, indicating that although pre-training 069

1



3DV
#265

3DV
#265

3DV 2025 Submission #265. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Pose
Explicit Variable Baselines Implicit Param.

Depth Focal 1-Stage Full Poses Pose Error Focal Error

Figure 1. Pose and Geometry Convergence for Free-Variable vs. Proposed Parameterizations. We plot poses, depths, focal lengths,
and pose error (ATE) obtained with our proposed parameterizations (“Full”) vs. those obtained with free-variable parameterizations at
various optimization steps. With our proposed reparameterizations (“Full”) as a baseline, we ablate either depth, focal length, or poses as
free-variable optimizations and plot the resulting optimizations’ pose and depth estimates. For instance, “Depth” corresponds to making
the depth an explicit free-variable in the optimization. Using pose-as-variable and depth-as-variable often lead to “hollow-face” geometry,
where the geometry is effectively inverted but still mostly satisfies the optical flow constraints. We also show results from a single-stage
FlowMap pipeline, which only uses the implicit parameterization of intrinsics rather than switching to regressed intrinsics halfway through
optimization. Note that the plotted lines for “Full” are initialized with the results of “1-Stage” and represent the second stage (explicit focal
length) of FlowMap optimization.
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Method PSNR ↑ SSIM ↑ LPIPS ↓
FlowMap 27.70 0.863 0.089
Single Stage 26.66 0.842 0.112
Expl. Focal Length 25.15 0.788 0.141
Expl. Depth 8.84 0.168 0.684
Expl. Pose 16.00 0.533 0.495
No Tracks 25.83 0.822 0.122
Random Init. 25.54 0.808 0.129
Random Init. (20k) 27.25 0.850 0.101
No Corresp. Weights 24.18 0.765 0.168

Table 1. Additional Ablations. We report additional ablation results averaged across all scenes alongside the ablations found in the main
paper.

helps FlowMap converge much more quickly, it is not nec-070
essary for accuracy. In Tab. 2, we report per-scene abla-071
tion results. Finally, Fig. 1 compares convergence between072
FlowMap and the free-variable parameterization variants on073
more scenes.074

3. Additional Results075

3.1. Pre-Trained Depth vs. Fine-Tuned Depth vs.076
High-Resolution Fine-Tuned Depth.077

In Fig. 4, we compare the depths produced by FlowMap’s078
initialization to the depths produced after FlowMap opti-079
mization. We additionally compare these results to a MiDaS080
CNN fine-tuned at a significantly higher resolution. We081
find that per-scene fine-tuning leads to high-quality depth082
predictions. This is illustrated by Fig. 3, which demon-083
strates FlowMap’s ability to generate high-quality, consis-084
tent depths. However, it is worth noting that FlowMap’s off-085
the-shelf depths are slightly blurry. To investigate whether086
this is a limitation of our loss or the architecture of the087
depth-predicting CNN, we also perform optimization at a088
higher resolution. We find that this leads to crisp depth089
maps, demonstrating that blurry depth maps are a result of090
insufficient capacity of the MiDaS backbone and not a lim-091
itation of our camera-induced flow loss. Notably, the poses092
barely change in this fine-tuning stage. It is likely that re-093
placing the MiDaS depth predictor with a more powerful094
depth backbone would lead to sharper depth without high-095
resolution fine-tuning.096

3.2. Effects of Pretraining Expanded Figure097

We include an expanded figure with an additional ATE plot098
for the pretrained vs from-scratch optimization study in099
Fig. 6.100

3.3. Large-Scale Robustness Study 101

We study FlowMap’s robustness by using it to estimate 102
camera poses for 420 CO3D scenes from 10 categories. 103
We compare these trajectories to CO3D’s pose annotations, 104
which were computed using COLMAP. Since the quality of 105
CO3D’s ground-truth trajectories varies between categories, 106
we focus on categories that have been used to train novel 107
view synthesis models [1, 5, 6], where pose accuracy is ex- 108
pected to be higher. We find that FlowMap’s mean ATE 109
(0.0056) is lower than DROID-SLAM’s (0.0082) and simi- 110
lar to the mean ATE obtained by re-running COLMAP and 111
comparing the results to the provided poses (0.0038). This 112
demonstrates that FlowMap consistently estimates poses 113
which are close to COLMAP’s. We note that COLMAP 114
failed to estimate poses for 36 scenes, possibly because 115
we ran it at a sparser frame rate to be consistent with our 116
method or because the original annotations were generated 117
using different COLMAP settings; we exclude COLMAP’s 118
failures from the above mean ATE. See Fig. 7 for distribu- 119
tions of ATE values with respect to CO3D’s provided cam- 120
era poses. 121

3.4. Additional Point Clouds and Qualitative Pose 122
Reconstructions 123

In Fig. 3, we display 12 additional point clouds plus es- 124
timated camera poses across popular datasets and scenes 125
across the LLFF, Tanks and Temples, MipNeRF 360, and 126
CO3D datasets. FlowMap robustly recovers camera poses 127
and scene geometry across these diverse, challenging, and 128
real-world sequences. 129

3.5. Failure Cases 130

While running FlowMap, we observed failures on sev- 131
eral scenes. These include the Tanks-and-Temples Audi- 132
torium scene (our model struggles with rotation-dominant 133
trajectories), the LLFF Leaves scene (our model falls into 134
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Figure 3. Additional Point Clouds Here we plot additional point clouds across the Tanks and Temples, LLFF, Mip-NeRF360, and CO3D
datasets.

a “hollow-face minimum”), and the Tanks-and-Temples135
Lighthouse scene (this video features a large lens flare136
which degrades the optical flow). Future extensions to137
FlowMap could use an occlusion-aware formulation to138
avoid hollow-face minima.139

4. Implementation Details140

4.1. Procrustes Solver Details141

Our pose solver is the one introduced in FlowCam [4]; see142
[4] for details. The only difference is that instead of se-143
lecting 1000 random points for the Procrustes estimation,144
we fix the points (uniformly spaced throughout the image)145
when performing per-scene overfitting. We find that fix-146
ing the points used for the pose solver allows the network147
to better overfit confidence weights and subsequently yields148
better poses.149

4.2. Intrinsics Solver Details 150

For the intrinsics solver, we assume a pinhole camera esti- 151
mate and discretize a set of 60 candidate focal lengths be- 152
tween .5 and 2 (in resolution-independent units). We use a 153
softmin on the flow error maps, as discussed in the main pa- 154
per. We scale the error maps by a temperature factor of 10 155
and weight the error maps by the flow confidence weights. 156
See Fig. 8 for illustration. 157

4.3. Depth NN (MiDaS) details 158

For our depth network, we use the lightweight CNN version 159
of MiDaS [2], pretrained with the publicly available weights 160
trained on relative-depth estimation. We optimize the entire 161
network weights during training. 162
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Figure 4. Depth Estimates Before and After Optimization. The depth prediction neural network can either be randomly initialized
or pre-trained, though pre-trained depth networks lead to much faster convergence. In the second row, we show the output of the depth
prediction neural network after pre-training it on a dataset consisting of CO3D, KITTI, and RealEstate10k. These estimates converge
to high-quality depth within only a few hundred FlowMap optimization steps. We see that the quality of the initial, pre-trained depth
predictions is not critical to achieve accurate reconstructions. Although we estimate geometry at a lower resolution during optimization to
manage memory constraints, we can quickly fine-tune at high-resolution for more detailed depth maps if necessary (bottom row).

Figure 6. Effects of pretraining. While a randomly initialized FlowMap network often provides accurate poses after optimization, pre-
training leads to faster convergence and slightly improved poses. Here we plot depth estimates at specific optimization steps (left) as well
as pose accuracy with respect to COLMAP during optimization (right). Randomly initialized FlowMap networks often require more than
20,000 steps to match the accuracy of a pre-trained initialization at 2,000 steps.

4.4. Correspondence Weight MLP163

The correspondence weight MLP is a three-layer MLP with164
ReLU activations and 128 hidden units per layer. It takes as165
input two corresponding image features and outputs a per-166
correspondence weight between 0 and 1 via a sigmoid ac-167
tivation. Here we use intermediate feature maps from the168
depth network as the image features. These weights are169

used in the weighted Procrustes pose solver. 170

5. Experiment Details 171

5.1. Image Resolution 172

To manage computational cost (our current implementation 173
loads the entire video into memory), we compute optical 174
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Figure 7. Large-scale Robustness Study. We run FlowMap and DROID-SLAM on 420 CO3D scenes across 10 categories and plot mean
ATEs with respect to CO3D’s COLMAP-generated pose metadata. We also re-run COLMAP on the same data. Compared to DROID-
SLAM, which requires ground-truth intrinsics, FlowMap produces notably lower ATEs. FlowMap’s ATE distribution is similar to one
obtained by re-running COLMAP, with most ATEs falling under 0.005 in both cases.

Figure 8. In (a) we illustrate our implicit focal length formulation, which considers a set of candidate focal lengths, assigns each one an
error score, and softly selects the focal length with the lowest error. To calculate the error score for a focal length, we use that focal length
to estimate a pose, and then compare the resulting pose-induced optical flow to the ground truth optical flow. In (b) we illustrate that we
parameterize depth via the output of a monocular depth prediction CNN.

flow and point tracks at a resolution of around 700,000 pix-175
els, then perform FlowMap optimization at 1/16th the reso-176
lution.177

5.2. Hyperparameters178

We train for 2000 steps using Adam and use a learning rate179
of 3e-5. For the pose-as-variable experiments, we choose180
Euler angles as the parameterization of the rotation matrix.181

5.3. Pre-Training Details182

Before performing per-scene fine-tuning, we found it useful183
to learn a large-scale prior for better initialization. We use184
the same FlowMap loss formulation but train it on datasets185
of videos (instead of optimizing on a single scene). We use186
videos from CO3D, Real Estate 10K, and KITTI for pre-187
training. Note that we only use the raw videos from these188
datasets (no intrinsics, poses, or sparse geometry).189

6. Limitations 190

Wile our method is much faster than MVS COLMAP, it 191
is about 30 percent slower than COLMAP at its highest 192
quality setting (on long sequences, about 20 minutes for 193
our method vs. 14 minutes for COLMAP). It additionally 194
requires signficantly more GPU memory than COLMAP 195
does. Our method’s pose and intrinsics predictions are less 196
accurate and robust than COLMAP’s, as measured by ATE, 197
though after Gaussian Splatting with fine-tuning of camera 198
parameters, we often perform on par with COLMAP. 199

Our method further depends on correspondences esti- 200
mated by point tracks and optical flow. While existing 201
methods for computing point tracks and optical flow are ro- 202
bust, failures sometimes occur, and these failures can affect 203
FlowMap’s accuracy if they are significant. On the other 204
hand, FlowMap will directly improve alongside advance- 205
ments in these domains. 206

Finally, our method is constrained to work on frame 207
sequences with significant overlap (i.e., videos) and fails 208
when input sequences contain significant scene motion. The 209
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latter limitation is shared with COLMAP, though we hope210
that our method may serve as a step towards novel methods211
that address this shortcoming.212
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Freeman, and Vincent Sitzmann. Diffusion with forward mod-236
els: Solving stochastic inverse problems without direct super-237
vision. Advances in Neural Information Processing Systems238
(NeurIPS), 2023.239

[6] Christopher Wewer, Kevin Raj, Eddy Ilg, Bernt Schiele, and240
Jan Eric Lenssen. latentsplat: Autoencoding variational gaus-241
sians for fast generalizable 3d reconstruction. In arXiv, 2024.242

7



3DV
#265

3DV
#265

3DV 2025 Submission #265. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Fern (LLFF) Flower (LLFF) Fortress (LLFF)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 23.70 0.801 0.096 4.8 0.00233 29.07 0.877 0.084 6.6 0.00079 31.13 0.906 0.060 7.8 0.00049
Single Stage 23.64 0.797 0.098 4.9 0.00294 29.06 0.877 0.086 6.7 0.00065 31.05 0.908 0.058 7.9 0.00054
Expl. Focal Length 23.07 0.787 0.119 4.6 0.00296 29.13 0.874 0.079 6.4 0.00293 29.82 0.891 0.062 7.6 0.00223
Expl. Depth 4.71 0.001 0.785 2.9 0.00785 8.04 0.007 0.839 3.6 0.00666 2.60 0.001 0.774 4.1 0.00664
Expl. Pose 4.71 0.001 0.785 4.5 0.01118 15.51 0.569 0.428 6.3 0.00192 16.49 0.577 0.594 7.4 0.01302
No Tracks 23.58 0.796 0.099 4.3 0.00316 29.29 0.879 0.084 5.5 0.00337 30.92 0.906 0.059 6.3 0.00143
Random Init. 22.68 0.756 0.113 4.8 0.00371 28.47 0.864 0.084 6.6 0.00303 30.96 0.904 0.059 7.8 0.00068
Random Init. (20k) 23.50 0.791 0.098 44.2 0.00312 29.33 0.880 0.083 59.4 0.00054 31.04 0.911 0.057 69.7 0.00047
No Corresp. Weights 23.27 0.784 0.104 4.4 0.00311 27.61 0.844 0.090 6.0 0.00554 24.05 0.709 0.138 7.1 0.01363

Horns (LLFF) Orchids (LLFF) Room (LLFF)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 28.35 0.903 0.071 10.6 0.00049 19.16 0.615 0.132 5.5 0.00127 32.93 0.958 0.037 7.8 0.00274
Single Stage 28.19 0.899 0.071 10.7 0.00051 19.33 0.623 0.129 5.6 0.00120 32.75 0.959 0.037 7.9 0.00265
Expl. Focal Length 24.57 0.823 0.153 10.5 0.00100 18.96 0.606 0.151 5.3 0.00184 32.13 0.953 0.040 7.6 0.00274
Expl. Depth 5.94 0.002 0.788 5.3 0.00603 6.25 0.003 0.886 3.2 0.00647 5.78 0.004 0.616 4.1 0.00710
Expl. Pose 14.66 0.506 0.685 10.0 0.01230 12.80 0.279 0.429 5.2 0.01496 16.92 0.767 0.466 7.3 0.00596
No Tracks 28.32 0.900 0.071 8.2 0.00173 19.21 0.616 0.133 4.8 0.00195 28.98 0.922 0.068 6.3 0.00938
Random Init. 23.93 0.729 0.172 10.6 0.00486 18.85 0.594 0.146 5.4 0.00188 29.19 0.920 0.067 7.8 0.00422
Random Init. (20k) 28.33 0.900 0.068 94.2 0.00054 19.40 0.629 0.126 49.5 0.00112 31.92 0.949 0.043 69.4 0.00288
No Corresp. Weights 28.17 0.893 0.072 9.6 0.00169 18.76 0.597 0.148 5.1 0.00307 31.81 0.952 0.041 7.1 0.00331

Trex (LLFF) Bonsai (MipNeRF 360) Kitchen (MipNeRF 360)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 26.27 0.880 0.075 9.7 0.00655 32.24 0.950 0.047 24.2 0.00048 30.47 0.936 0.049 10.9 0.00041
Single Stage 26.65 0.886 0.073 9.8 0.00655 32.21 0.951 0.048 24.3 0.00046 30.26 0.925 0.051 11.1 0.00072
Expl. Focal Length 24.57 0.852 0.107 9.5 0.00766 21.36 0.689 0.231 24.1 0.00184 21.29 0.645 0.174 10.7 0.00449
Expl. Depth 5.56 0.002 0.759 4.8 0.04406 10.46 0.045 0.633 11.3 0.02830 5.08 0.016 0.753 5.3 0.00827
Expl. Pose 15.09 0.540 0.544 9.2 0.02277 13.12 0.425 0.577 22.8 0.01407 14.18 0.387 0.587 10.3 0.01669
No Tracks 24.36 0.831 0.110 7.8 0.02011 25.53 0.863 0.115 18.0 0.00291 25.48 0.794 0.112 8.5 0.00302
Random Init. 24.84 0.835 0.099 9.7 0.00598 18.38 0.585 0.342 24.2 0.01380 24.94 0.764 0.113 10.9 0.00345
Random Init. (20k) 26.45 0.882 0.076 86.5 0.00991 18.75 0.600 0.342 214.8 0.01433 31.69 0.945 0.044 96.8 0.00023
No Corresp. Weights 25.33 0.859 0.094 8.8 0.01083 25.59 0.841 0.118 21.8 0.00141 24.62 0.742 0.118 9.9 0.00422

Counter (MipNeRF 360) Barn (Tanks & Temples) Caterpillar (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 26.80 0.862 0.121 24.2 0.00076 27.10 0.872 0.090 22.3 0.00048 28.25 0.830 0.113 22.3 0.00030
Single Stage 26.65 0.857 0.124 24.3 0.00083 26.28 0.857 0.104 22.4 0.00102 28.32 0.834 0.110 22.4 0.00026
Expl. Focal Length 21.82 0.697 0.237 24.1 0.00355 27.04 0.873 0.086 21.9 0.00085 27.12 0.789 0.133 22.1 0.00046
Expl. Depth 8.80 0.029 0.719 11.4 0.01003 17.01 0.591 0.489 10.7 0.00923 9.15 0.016 0.732 10.7 0.00841
Expl. Pose 14.40 0.506 0.554 22.9 0.00611 18.09 0.625 0.455 20.9 0.02160 17.57 0.491 0.554 21.1 0.00817
No Tracks 23.91 0.788 0.183 18.1 0.00240 25.41 0.837 0.122 16.1 0.00363 27.33 0.807 0.133 16.1 0.00095
Random Init. 26.05 0.847 0.131 24.2 0.00088 26.24 0.864 0.100 22.2 0.00079 26.27 0.750 0.169 22.2 0.00147
Random Init. (20k) 26.88 0.867 0.115 214.3 0.00064 26.80 0.871 0.091 197.3 0.00049 28.01 0.823 0.122 197.3 0.00031
No Corresp. Weights 17.93 0.575 0.391 21.8 0.01099 24.53 0.820 0.133 20.3 0.00244 25.93 0.734 0.174 20.1 0.00106

Church (Tanks & Temples) Courthouse (Tanks & Temples) Family (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 28.29 0.883 0.074 22.4 0.00061 27.51 0.911 0.055 22.2 0.00129 27.96 0.889 0.067 22.1 0.00039
Single Stage 27.60 0.875 0.079 22.3 0.00061 27.67 0.914 0.054 22.3 0.00150 27.65 0.880 0.075 22.4 0.00033
Expl. Focal Length 27.29 0.856 0.088 22.0 0.00093 26.86 0.897 0.069 22.1 0.00234 27.10 0.873 0.082 22.0 0.00082
Expl. Depth 16.21 0.518 0.474 10.7 0.02314 3.52 0.001 0.745 10.7 0.00718 4.09 0.001 0.773 10.8 0.01403
Expl. Pose 17.66 0.582 0.457 21.0 0.00807 19.68 0.726 0.251 21.0 0.00511 15.79 0.562 0.507 21.1 0.03074
No Tracks 26.93 0.851 0.100 16.1 0.00259 25.27 0.858 0.108 16.1 0.00442 27.00 0.869 0.088 16.1 0.00172
Random Init. 27.45 0.858 0.089 22.2 0.00112 26.55 0.894 0.071 22.2 0.00314 26.36 0.858 0.093 22.2 0.00148
Random Init. (20k) 28.67 0.886 0.074 197.4 0.00030 27.62 0.911 0.054 197.8 0.00101 28.07 0.892 0.066 196.9 0.00019
No Corresp. Weights 27.86 0.875 0.081 20.3 0.00086 25.62 0.868 0.086 20.1 0.00264 19.01 0.629 0.313 20.2 0.00672

Francis (Tanks & Temples) Horse (Tanks & Temples) Ignatius (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 31.90 0.903 0.080 22.4 0.00058 28.35 0.917 0.064 22.4 0.00054 24.54 0.773 0.131 22.4 0.00037
Single Stage 32.20 0.905 0.078 22.4 0.00054 11.42 0.635 0.496 22.3 0.03959 24.48 0.764 0.131 22.4 0.00024
Expl. Focal Length 30.89 0.884 0.108 22.0 0.00040 27.82 0.905 0.074 22.0 0.00102 23.12 0.723 0.157 22.0 0.00071
Expl. Depth 7.42 0.006 0.631 10.8 0.01956 2.67 0.000 0.691 10.7 0.02555 5.68 0.006 0.867 10.7 0.02181
Expl. Pose 18.19 0.639 0.464 20.9 0.03102 14.60 0.661 0.468 21.0 0.03918 12.48 0.314 0.640 20.9 0.02886
No Tracks 30.72 0.887 0.100 16.1 0.00113 25.50 0.882 0.101 16.1 0.00241 23.54 0.727 0.163 16.1 0.00144
Random Init. 29.44 0.862 0.122 22.3 0.00289 25.07 0.871 0.119 22.2 0.00380 23.50 0.737 0.159 22.1 0.00084
Random Init. (20k) 31.56 0.899 0.085 197.7 0.00138 28.16 0.915 0.067 197.0 0.00066 24.47 0.771 0.133 197.5 0.00034
No Corresp. Weights 28.92 0.850 0.130 20.1 0.00397 25.82 0.871 0.100 20.2 0.00275 21.89 0.655 0.197 20.2 0.00108

M60 (Tanks & Temples) Museum (Tanks & Temples) Panther (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 23.23 0.805 0.190 22.4 0.00838 28.48 0.862 0.078 22.2 0.00070 27.50 0.882 0.105 22.3 0.00112
Single Stage 23.30 0.803 0.187 22.3 0.00832 28.62 0.866 0.076 22.4 0.00058 27.31 0.881 0.104 22.4 0.00118
Expl. Focal Length 19.65 0.696 0.278 22.1 0.01400 28.15 0.850 0.092 22.0 0.00124 21.86 0.737 0.239 22.1 0.00893
Expl. Depth 13.65 0.529 0.547 10.7 0.01945 16.55 0.507 0.489 10.7 0.03144 16.17 0.619 0.456 10.5 0.01527
Expl. Pose 14.37 0.566 0.546 21.1 0.01454 16.12 0.489 0.524 21.1 0.03128 16.41 0.613 0.460 20.9 0.00523
No Tracks 23.17 0.805 0.195 16.1 0.00674 27.63 0.844 0.096 16.1 0.00150 24.69 0.833 0.161 16.1 0.00605
Random Init. 21.81 0.781 0.206 22.3 0.01008 27.57 0.849 0.094 22.3 0.00108 25.25 0.845 0.141 22.2 0.00352
Random Init. (20k) 23.61 0.817 0.171 197.7 0.00869 28.74 0.868 0.075 196.9 0.00067 27.61 0.884 0.105 198.1 0.00131
No Corresp. Weights 9.44 0.545 0.651 20.2 0.02315 27.94 0.849 0.086 20.1 0.00122 26.00 0.850 0.138 20.0 0.00182

Playground (Tanks & Temples) Train (Tanks & Temples) Truck (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 24.29 0.727 0.192 22.2 0.00096 26.22 0.870 0.077 22.2 0.00082 24.34 0.828 0.098 22.3 0.00078
Single Stage 23.39 0.710 0.209 22.4 0.00102 26.11 0.863 0.082 22.3 0.00100 24.21 0.826 0.102 22.3 0.00074
Expl. Focal Length 18.55 0.525 0.380 21.9 0.00621 25.82 0.847 0.092 22.1 0.00199 24.03 0.816 0.110 22.0 0.00070
Expl. Depth 14.29 0.427 0.637 10.6 0.01642 15.89 0.553 0.464 10.7 0.01233 13.50 0.477 0.621 10.7 0.01430
Expl. Pose 15.78 0.467 0.625 21.0 0.03699 20.86 0.713 0.228 21.0 0.01469 14.39 0.509 0.556 21.0 0.01850
No Tracks 22.29 0.681 0.267 16.1 0.00215 25.75 0.856 0.087 16.2 0.00131 23.32 0.786 0.150 16.1 0.00221
Random Init. 21.78 0.654 0.262 22.1 0.00315 22.80 0.769 0.163 22.2 0.01824 24.26 0.823 0.104 22.2 0.00064
Random Init. (20k) 23.39 0.701 0.229 196.8 0.00092 26.66 0.877 0.072 197.4 0.00089 24.28 0.816 0.109 197.7 0.00100
No Corresp. Weights 17.10 0.477 0.456 20.2 0.03438 23.22 0.780 0.138 20.0 0.00283 23.18 0.792 0.122 20.1 0.00109

Bench (CO3D) Hydrant (CO3D)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 33.17 0.927 0.045 22.0 0.03094 29.05 0.865 0.083 22.1 0.00083
Single Stage 25.13 0.701 0.174 22.2 0.03539 29.58 0.884 0.073 22.2 0.00094
Expl. Focal Length 29.06 0.851 0.096 21.8 0.03244 22.70 0.543 0.230 21.9 0.00636
Expl. Depth 5.41 0.001 0.819 10.5 0.02829 5.31 0.000 0.789 10.5 0.00533
Expl. Pose 21.84 0.638 0.312 20.8 0.03456 24.39 0.699 0.188 20.8 0.00650
No Tracks 29.18 0.861 0.085 16.0 0.03298 24.39 0.692 0.173 16.0 0.00679
Random Init. 32.27 0.914 0.054 22.1 0.03100 29.16 0.874 0.080 22.1 0.00076
Random Init. (20k) 33.45 0.931 0.044 196.6 0.03068 30.09 0.896 0.065 197.7 0.00044
No Corresp. Weights 31.54 0.902 0.062 20.0 0.03212 23.55 0.596 0.193 20.0 0.00553

Table 2. Ablations for all individual scenes on all datasets.
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Fern (LLFF) Flower (LLFF) Fortress (LLFF)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 23.70 0.801 0.096 4.8 0.00233 29.07 0.877 0.084 6.6 0.00079 31.13 0.906 0.060 7.8 0.00049
COLMAP 24.04 0.818 0.133 0.4 N/A 29.60 0.884 0.090 2.5 N/A 25.69 0.892 0.087 1.4 N/A
COLMAP (MVS) 24.33 0.826 0.094 6.7 N/A 29.82 0.888 0.085 11.3 N/A 30.97 0.909 0.059 13.9 N/A
DROID-SLAM* 23.13 0.752 0.125 0.1 0.00089 28.48 0.860 0.079 0.2 0.00162 30.05 0.856 0.065 0.3 0.00038
NoPE-NeRF* 19.33 0.520 0.580 1227.0 0.01470 19.63 0.540 0.470 1777.7 0.02581 21.00 0.530 0.510 533.4 0.02068

Horns (LLFF) Orchids (LLFF) Room (LLFF)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 28.35 0.903 0.071 10.6 0.00049 19.16 0.615 0.132 5.5 0.00127 32.93 0.958 0.037 7.8 0.00274
COLMAP 27.82 0.888 0.095 1.5 N/A 19.33 0.636 0.126 0.7 N/A 25.69 0.927 0.096 0.3 N/A
COLMAP (MVS) 28.68 0.902 0.067 20.5 N/A 19.79 0.657 0.117 8.7 N/A 33.43 0.963 0.035 14.6 N/A
DROID-SLAM* 28.37 0.881 0.064 0.5 0.00045 18.44 0.555 0.179 0.2 0.00072 27.63 0.924 0.078 0.3 0.00051
NoPE-NeRF* 11.88 0.370 0.820 2597.7 0.07315 13.11 0.270 0.620 1377.9 0.05492 17.79 0.650 0.590 2500.5 0.03714

Trex (LLFF) Bonsai (MipNeRF 360) Kitchen (MipNeRF 360)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 26.27 0.880 0.075 9.7 0.00655 32.24 0.950 0.047 24.2 0.00048 30.47 0.936 0.049 10.9 0.00041
COLMAP 27.95 0.912 0.062 1.1 N/A 32.64 0.949 0.058 6.9 N/A 28.82 0.936 0.056 3.4 N/A
COLMAP (MVS) 28.92 0.922 0.049 18.4 N/A 33.14 0.957 0.045 52.2 N/A 31.33 0.948 0.045 22.4 N/A
DROID-SLAM* 27.36 0.898 0.067 0.3 0.00062 31.96 0.947 0.045 0.9 0.00016 29.75 0.903 0.054 0.4 0.00015
NoPE-NeRF* 18.71 0.550 0.550 2614.1 0.04796 13.49 0.370 0.770 2615.2 0.04475 14.86 0.370 0.710 516.3 0.05471

Counter (MipNeRF 360) Barn (Tanks & Temples) Caterpillar (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 26.80 0.862 0.121 24.2 0.00076 27.10 0.872 0.090 22.3 0.00048 28.25 0.830 0.113 22.3 0.00030
COLMAP 28.39 0.899 0.107 4.1 N/A 27.18 0.874 0.108 3.5 N/A 28.05 0.825 0.134 6.6 N/A
COLMAP (MVS) 28.61 0.909 0.089 52.9 N/A 27.91 0.889 0.075 51.5 N/A 28.52 0.839 0.103 51.1 N/A
DROID-SLAM* 27.78 0.890 0.099 0.7 0.00019 27.03 0.877 0.082 0.8 0.00029 28.13 0.829 0.108 0.9 0.00020
NoPE-NeRF* 12.44 0.390 0.770 2607.8 0.03342 13.06 0.460 0.710 2608.4 0.03761 16.42 0.390 0.680 2469.9 0.03112

Church (Tanks & Temples) Courthouse (Tanks & Temples) Family (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 28.29 0.883 0.074 22.4 0.00061 27.51 0.911 0.055 22.2 0.00129 27.96 0.889 0.067 22.1 0.00039
COLMAP 27.93 0.866 0.107 6.3 N/A 27.79 0.916 0.056 5.9 N/A 27.13 0.878 0.092 5.0 N/A
COLMAP (MVS) 28.71 0.890 0.068 50.9 N/A 28.56 0.926 0.044 51.9 N/A 28.40 0.897 0.062 50.9 N/A
DROID-SLAM* 27.79 0.869 0.084 0.8 0.00065 27.94 0.916 0.051 0.9 0.00034 27.78 0.873 0.081 0.8 0.00040
NoPE-NeRF* 12.91 0.400 0.700 2575.8 0.02752 14.92 0.510 0.590 2599.3 0.03462 12.87 0.470 0.700 2597.4 0.03232

Francis (Tanks & Temples) Horse (Tanks & Temples) Ignatius (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 31.90 0.903 0.080 22.4 0.00058 28.35 0.917 0.064 22.4 0.00054 24.54 0.773 0.131 22.4 0.00037
COLMAP 31.85 0.896 0.124 3.6 N/A 27.34 0.903 0.097 3.4 N/A 24.95 0.781 0.153 5.6 N/A
COLMAP (MVS) 32.73 0.913 0.069 51.1 N/A 28.82 0.926 0.062 53.2 N/A 24.93 0.795 0.113 51.2 N/A
DROID-SLAM* 22.23 0.753 0.275 0.9 0.00041 27.61 0.909 0.069 0.8 0.00051 24.28 0.750 0.142 0.8 0.00025
NoPE-NeRF* 17.27 0.570 0.640 524.9 0.02569 9.87 0.590 0.700 2587.4 0.04710 10.90 0.260 0.780 2583.2 0.04241

M60 (Tanks & Temples) Museum (Tanks & Temples) Panther (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 23.23 0.805 0.190 22.4 0.00838 28.48 0.862 0.078 22.2 0.00070 27.50 0.882 0.105 22.3 0.00112
COLMAP 22.04 0.803 0.219 6.2 N/A 28.94 0.863 0.100 5.3 N/A 27.32 0.882 0.129 5.0 N/A
COLMAP (MVS) 21.75 0.791 0.221 51.9 N/A 29.05 0.874 0.070 50.6 N/A 27.96 0.891 0.101 52.2 N/A
DROID-SLAM* 22.66 0.792 0.195 0.7 0.00667 27.74 0.833 0.096 0.8 0.00088 27.48 0.878 0.106 0.8 0.00150
NoPE-NeRF* 12.67 0.490 0.720 2485.1 0.04258 14.26 0.430 0.800 2606.9 0.03224 13.71 0.500 0.690 2591.0 0.03854

Playground (Tanks & Temples) Train (Tanks & Temples) Truck (Tanks & Temples)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 24.29 0.727 0.192 22.2 0.00096 26.22 0.870 0.077 22.2 0.00082 24.34 0.828 0.098 22.3 0.00078
COLMAP 22.24 0.684 0.292 7.4 N/A 26.09 0.857 0.104 8.4 N/A 25.57 0.848 0.104 4.9 N/A
COLMAP (MVS) 22.92 0.693 0.230 51.6 N/A 27.43 0.888 0.063 51.4 N/A 26.39 0.864 0.080 50.4 N/A
DROID-SLAM* 21.11 0.642 0.301 0.7 0.00284 26.51 0.872 0.069 0.8 0.00088 21.48 0.739 0.208 0.8 0.00127
NoPE-NeRF* 13.53 0.360 0.770 2613.1 0.04120 13.18 0.440 0.670 2614.8 0.04052 11.71 0.410 0.740 2603.3 0.04583

Bench (CO3D) Hydrant (CO3D)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 33.17 0.927 0.045 22.0 0.03094 29.05 0.865 0.083 22.1 0.00083
COLMAP 19.87 0.600 0.309 17.2 N/A 30.46 0.900 0.070 8.0 N/A
COLMAP (MVS) 20.00 0.616 0.292 53.2 N/A 30.70 0.908 0.057 50.8 N/A
DROID-SLAM* 22.48 0.699 0.206 0.9 0.03433 29.46 0.880 0.073 0.7 0.00024
NoPE-NeRF* 13.20 0.500 0.750 2604.0 0.03432 16.74 0.300 0.790 2605.8 0.03864

Table 3. Results for all individual scenes on all datasets.
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