
Supplementary Material487

A Proofs for Section 5488

Proof of Theorem 1489

First we recall the notion of Rényi Divergences and Concentrated Differential Privacy [11, 20], as490

well as some other standard DP notions. We also define the Discrete Gaussian and provide its DP491

guarantees. See [31] for more details. Then we prove Thoerem 1492

Definition 1 (Rényi Divergences). Let P and Q be probability distributions on some common domain493

⌦. Assume that P is absolutely continuous with respect to Q so that the Radon-Nikodym derivative494

P (x)/Q(x) is well-defined for x 2 ⌦.495

For ↵ 2 (1,1), we define the Rényi Divergence of order ↵ of P with respect to Q as:

D↵(P ||Q) :=
1

↵� 1
logEX P

"✓
P (X)

Q(x)

◆↵�1
#

We also define

D⇤(P ||Q) := sup
↵2(1,1)

1

↵
D↵(P ||Q)

Definition 2 (Concentrated Differential Privacy [11, 20]). A randomized algorithm M : X ⇤ ! Y496

satisfies
1
2"-concentrated differential privacy iff, for all x, x

0 2 X differing by the addition or removal497

of a single user’s records, we have D⇤(M(x)||M(x0))  1
2"

2
.498

Definition 3 (Rényi Differential Privacy [39]). A randomized algorithm M : X ⇤ ! Y satisfies499

(↵, ")-Rényi differential privacy iff, for all x, x
0 2 X differing by the addition or removal of a single500

user’s records, we have D↵(M(x)||M(x0))  1
2"

2
.501

Definition 4 (Differential Privacy [18]). A randomized algorithm M : X ⇤ ! Y satisfies (", �)-
differential privacy iff, for all x, x

0 2 X differing by the addition or removal of a single user’s records,

we have

Pr[M(x) 2 E]  e
" Pr[M(x0) 2 E] + �,

for all events E ⇢ Y . We refer to (", 0)-DP as pure DP and (", �)-DP for � > 0 as approximate DP.502

We remark that 1
2"

2-concentrated DP is equivalent to satisfying (↵, 1
2"

2
↵)-Rényi DP simultaneously503

for all ↵ 2 (1,1). We also have the following conversion lemma from concentrated to approximate504

DP [5, 13, 3].505

Lemma 1. If M satisfies (", 0)-DP, then it satisfies
1
2"

2
-concentrated DP. If M satisfies

1
2"

2
-DP

then, for any � > 0, M satisfies ("aDP (�), �)-DP, where

"aDP (�) = inf
↵>1

1

2
"
2
↵+

log(1/↵�)

↵� 1
+ log(1� 1/↵)  " · (

p
2 log(1/�) + "/2).

Discrete Gaussian Here we define the Discrete Gaussiasn [13] and give its DP guarantees.506

Definition 5 (Discrete Gaussian). The discrete Gaussian with scale parameter � > 0 and location

parameter µ 2 Z is a probability distribution supported on the integers Z denoted by NZ(µ,�2) and

defined by

8x 2 Z Pr
X NZ(µ,�2)

(X = x) =
exp

⇣
�(x�µ)2

2�2

⌘

P
y2Z exp

⇣
�(y�µ)2

2�2

⌘ .

Proposition 1 ([31], Proposition 14). Let � � 1
2 . Let XI,j NZ(0,�2) independently for each i507

and j. Let Xi = (Xi,1, . . . , Xi,d) 2 Zd
. Let Zn =

Pn
i=1 Xi 2 Zd

. Then, for all � 2 Zd
and all508

14

↵ 2 (1,1),509

D↵(Zn||Zn +�) min{↵||�||22
2n�2

+ ⌧d,

↵

2
·
✓
||�||22
n�2

+ 2
||�||1p

n�
· ⌧ + ⌧

2
d

◆
,

↵

2
·
✓
||�||2p

n�
+ ⌧

p
d

◆2

}

where ⌧ := 10 ·
Pn

k=1 e
�2⇡2�2 k

k+1 . An algorithm M that adds Zn to a query with `p sensitivity �p510

satisfies
1
2"

2
-concentrated DP for511

" =min{
r

||�||22
n�2

+ 2⌧d,
s

�2
2

n�2
+ 2

�1p
n�

· ⌧ + ⌧2d,

�2p
n�

+ ⌧

p
d}

Proof of Theorem 1512

Proof. First, it is sufficient to show that the computation CG + Z satisfies 1
2"

2-concentrated DP,
due to the post processing property of DP. Now consider two datasets G and H differing in one data
record according to participation schema �.4 By assumption in the theorem statement, we have

sens�(C) = �.

With the bound on the total sensitivity above, we know from [31, Proposition 14] (reproduced above)513

that the computation is 1
2"

2-concentrated DP, with the " from the theorem statement.514

Proof of Theorem 2515

We first prove the following exact result for the error:516

Theorem 3.

�̂
2(x) :=

⇢ · ||A[T,:]||22
d

TX

⌧=1

nX

i=1

||g⌧,i||22 + (
�
2 · ||A[T,:]||22

4
+ �

2 · ||B[T,:]||22) · n


⇢||A[T,:]||22

d
c
2
nT + (

�
2 · ||A[T,:]||22

4
+ ||B||22 · �2) · n

If �̂
2(x)  r

2
then517

E[||A(x)�A[T,:](
nX

i=1

xi)||22] 
dn

1� �

2
p
2 · r · e�r2/4�̂2(x)

p
n(1� �)nT�1

+

✓
||A[T,:]||22 ·

✓
�
2

4
+

�
2 · �2

n

1� �

◆
+ ||B[T,:]||22 · �2

◆1/2
!2

.

We start with a modified version of Proposition 26 in [31].518

Proposition 2.

E[||A(x)�A[T,:]

nX

i=1

Xi||22]  ||A[T,:]||22 · (
�
2 · d · n

4(1� �)
+ (

�

1� �
�

p
dn)2) + ||B[T,:]||22 · n · d · �2

.

519

8t 2 Rd E[exp(ht,A(x)�A[T,:]

nX

i=1

Xii)] 
exp((

�2·||A[T,:]||22
8 +

�2·||B[T,:]||22
2) · ||t||22 · n)

(1� �)nT
.

4
G and H really consist of entries that are sums of records.

15

Proof. We have520

E

2

4
�����A(x)�A[T,:]

nX

i=1

Xi

�����

2

2

3

5 = E

2

4
�����

TX

⌧=1

AT,⌧ ·

nX

i=1

(RG
� (g⌧,i)� g⌧,i)

!
+BT,⌧ ·

nX

i=1

� · z⌧,i

�����

2

2

3

5


TX

⌧=1

A
2
T,⌧ · E

2

4
�����

nX

i=1

R
G
� (g⌧,i)� g⌧,i

�����

2

2

3

5+B
2
T,⌧ · n · �2


��A[T,:]

��2
2
·

�
2 · d · n

4(1� �)
+

✓
�

1� �
�

p
dn

◆2
!

+
��B[T,:]

��2
2
· n · �2

,

where the last inequality is due directly to Proposition 26 of [31].521

Now, for each i 2 [n], ⌧ 2 [T], we have that R�(g⌧,i) 2 �bg⌧,i/�c + {0, �}d and is a product522

distribution with mean g⌧,i. Thus, R�(g⌧,i)� g⌧,i 2 {0, �}d and is a product distribution with mean523

0. Therefore, by Hoeffding’s lemma, we have:524

8t 2 Rd E[exp(ht,
TX

⌧=1

AT,⌧

nX

i=1

R�(g⌧,i)� g⌧,ii)]  exp(
�
2

8
· n · ||A[T,:]||22 · ||t||22).

Thus,525

8t 2 Rd E[exp(ht,
TX

⌧=1

AT,⌧

nX

i=1

R
G
� (g⌧,i)� g⌧,ii)] 

E[exp(ht,
PT

⌧=1 AT,⌧
Pn

i=1 R�(g⌧,i)� g⌧,ii)]
Pr[R�(g⌧,i) 2 G 8⌧, i]


exp(�

2

8 · n · ||A[T,:]||22 · ||t||22)
(1� �)nT

.

Moreover, we have that [13]:526

8t 2 Rd E[exp(ht,
TX

⌧=1

BT,⌧

nX

i=1

� · z⌧,ii)]  exp(
�
2

2
· n · ||B[T :,]||22 · ||t||22).

527

Finally, we are able to prove a modified version of Theorem 36 from [31].528

Proof of Theorem 3. By assumption, we have that529

8x 2 Rd 8j 2 [d] 8t 2 R E[exp(t(Ux)j)]  exp(t2⇢||x||22/2d).
Therefore,530

E[exp(t · (
TX

⌧=1

AT,⌧ · (U
nX

i=1

g⌧,i)j)] =
TY

⌧=1

·
nY

i=1

E[exp(t ·AT,⌧ · (Ug⌧,i)j)]


TY

⌧=1

·
nY

i=1

exp(t2 ·A2
T,⌧ · ⇢ · ||g⌧,i||22/2d)

= exp(t2 · ||A[T,:]||22 · ⇢ ·
TX

⌧=1

nX

i=1

||g⌧,i||22/2d).

Combining with the result of Proposition 2, we have531

8t 2 R 8j 2 [d] E[exp(t · (A(Ux))j)]  exp(
t
2 · ||A[T,:]||22 · ⇢

2d
·

TX

⌧=1

nX

i=1

||g⌧,i||22)

·
exp((

�2·||A[T,:]||22
8 +

�2·||B[T,:]||22
2) · t2 · n)

(1� �)nT

16

Recall �̂2(x) =
⇢·||A[T,:]||22

d

PT
⌧=1

Pn
i=1 ||g⌧,i||22 + (

�2·||A[T,:]||22
4 + �

2 · ||B[T,:]||22) · n.532

By Proposition 35 of [31], for all j 2 [d],533

E[(M[a,b](A(Ux))j �A(Ux)j)
2]  (b� a)2 · 1

(1� �)nT
· e�(b�a)

2/8�̂2(x) · (e
a2�b2

4�̂2 + e

b2�a2

4�̂2),

where a = �r and b = r here. Summing over j 2 [d] gives534

E[||M[�r,r](A(Ux))�A(Ux)||22]  4r2 · d

(1� �)nT
· e�r

2/2�̂2(x) · 2

Continuing with the proof from [31], we get:535

E[||Ã(x)�A[T,:]

X

i=1

Xi||22]



(8r2 · d

(1� �)nT
· e�r

2/2�̂2(x))1/2 +

✓
||A[T,:]||22 ·

✓
�
2 · d · n

4(1� �)
+

✓
�

1� �
�

p
dn

◆2◆
+

||B[T,:]||22 · n · d · �2

◆1/2
!2

=
dn

1� �

2
p
2 · r · e�r2/4�̂2(x)

p
n(1� �)nT�1

+

✓
||A[T,:]||22 ·

✓
�
2

4
+

�
2 · �2

n

1� �

◆
+ ||B[T,:]||22 · �2

◆1/2
!2

.

536

With this error bound, assuming that �  1/
p
n and �̂

2(x)  r
2
/4 log(r

p
n/�

2), we get537

E[||Ã(x)�A[T,:]

X

i=1

Xi||22]  O(dn((||A[T,:]||22 · �2 + ||B[T,:]||22 · �2)).

Proof of Theorem 2. Note that r = 1
2�m. We verify that setting the parameters as specified yields538

1
2"

2-concentrated DP and the desired accuracy. First,539

"
2  �2

ĉ
2

n�2
+ 2⌧d  �2(c+ �

p
d)2

n�2
+ 20nde�⇡

2(�/�/2

 2�2
c
2

n�2
+

2d�2

n(�/�)2
+ 20nde�⇡

2(�/�)2
.

Thus the privacy requirement is satisfied as long as � � 2c�/"
p
n and (�/�)2 � 8d�2

/"
2
n, and540

20nde�⇡
2(�/�)2  "

2
/4. So we can set541

� = max{ 2c�
"
p
n
,
��
p
8d

"
p
n

,
�

⇡2
log(

80nd

"2
)} = ⇥̃(

c�

"
p
n
+

r
d

n
· ��

"
+ � log(

nd

"2
).

We set � = min{1/n, 1/2} = ⇥(1n).542

Next,543

�̂
2 

⇢||A[T,:]||22
d

c
2
nT + (

�
2||A[T,:]||22

4
+ �

2||B[T,:]||22) · n


⇢||A[T,:]||22

d
c
2
nT + �

2||A[T,:]||22n+ �
2||B[T,:]||22 · n

 O(
⇢||A[T,:]||22

d
c
2
nT + �

2||A[T,:]||22n+ ||B[T,:]||22(
c
2�2

"2
+

�
2
d�

"2
+ �

2
n log2(

nd

"2
))

 O(
⇢||A[T,:]||22

d
c
2
nT + ||B[T,:]||22

c
2�2

"2
)) + �

2 ·O(||A[T,:]||22n+ ||B[T,:]||22(
d�

"2
+ n log2(

nd

"2
)).

17

Now we work out the asymptotics of the accuracy guarantee:544

E[||Ã(x)�A[T,:]

X

i=1

Xi||22]

 dn

1� �

2
p
2 · r · e�r2/4�̂2(x)

p
n(1� �)nT�1

+

✓
||A[T,:]||22 ·

✓
�
2

4
+

�
2 · �2

n

1� �

◆
+ ||B[T,:]||22 · �2

◆1/2
!2

.

 O(nd(
re
�r2/4�̂2

p
n

+
q
||A[T :,]||22�2 + ||B[T :,]||22�2))

 O(nd(
r
2
e
�r2/2�̂2

n
+ ||A[T :,]||22�2 + ||B[T :,]||22�2))

 O(nd(
�
2
m

2

n
exp(

��2
m

2

8�̂2
) + ||A[T :,]||22�2 + ||B[T :,]||22(

c
2�2

"2n
+

d�
2�2

"2n
+ �

2 log2(
nd

"2
))))

 O(||B[T :,]||22
c
2�2

d

"2
+ �

2
nd(

m
2

n
exp(

��2
m

2

8�̂2
) + ||A[T :,]||22 + ||B[T :,]||22(

d�2

"2n
+ log2(

nd

"2
))))

Similarly to the analysis of Theorem 2 in [31], if545

m
2 � O((||A[T :,]||22n+ ||B[T :,]||22(

d�

"2
+ n log2(

nd

"2
))) · log(1 +m

2
/n)

= Õ(||A[T :,]||22n+ ||B[T :,]||22(
d�

"2
+ n)),

then we can set546

�
2 = O(

⇢||A[T :,]||22c2nT
d

+
||B[T :,]||22c2�2

"2
) · log(1 +m

2
/n)

m2

so that m2

n exp(��
2m2

8�̂

2
)  1.547

This gives us,548

E[||Ã(x)�A[T,:]

X

i=1

Xi||22]

 O(||B[T :,]||22
c
2�2

d

"2
+ �

2
nd(1 + ||A[T :,]||22 + ||B[T :,]||22(

d�2

"2n
+ log2(

nd

"2
))))

 O(||B[T :,]||22
c
2�2

d

"2
+ (

⇢||A[T :,]||22c2nT
d

+
||B[T :,]||22c2�2

"2
)·

log(1 +m
2
/n)

m2
nd(1 + ||A[T :,]||22 + ||B[T :,]||22(

d�2

"2n
+ log2(

nd

"2
))))

 O(||B[T :,]||22
c
2�2

d

"2
+ ||B[T :,]||22

c
2�2

d

"2
(
log(1 +m

2
/n)

m2
n · (⇢||A[T :,]||22T+

1 + ||A[T :,]||22 + ||B[T :,]||22(
d�2

"2n
+ log2(

nd

"2
)))))

 O(||B[T :,]||22
c
2�2

d

"2
(1 +

log(1 +m
2
/n)

m2
n

· (⇢||A[T :,]||22T + 1 + ||A[T :,]||22 + ||B[T :,]||22(
d�2

"2n
+ log2(

nd

"2
))))).

So, if549

m
2 � O(log(1 +m

2
/n)n · (⇢||A[T :,]||22T + 1 + ||A[T :,]||22 + ||B[T :,]||22(

d�2

"2n
+ log2(

nd

"2
))))

= Õ(⇢||A[T :,]||22nT + ||B[T :,]||22
d�2

"2
),

then the mean squared error is O(||B[T :,]||22 c2�2d
"2), as required. The final bound is obtained by simply550

summing the above over each round from T = 1 to T = T
⇤.551

18

B Resharing Security Model and Proof552

Security proofs553

We first provide an intuition on the current analysis for proving the security of cryptographic protocols.554

In the security proof, we compare between an n-party function f(x1, . . . , xn) = (y1, . . . , yn) and555

a protocol P (x1, . . . , xn) that allegedly privately computes the function f . Intuitively, a protocol556

P correctly and privately computes f if the following hold: (a) Correctness: For every input ~x =557

(x1, . . . , xn), the output of the parties at the end of the protocol interaction P is the same as f(~x);558

(b) Privacy: There exists a simulator S that receives the input and output of the corrupted parties,559

and can efficiently generate the messages that the corrupted parties received during the protocol560

execution. The simulator does not know the input/outputs of the honest parties. Intuitively, the fact561

that the messages sent by the honest parties can be generated from the input/output of the corrupted562

parties implies that these messages do not contain any additional information about the inputs of the563

honest parties besides what is revealed from the output of the computation.564

Security Model565

We now introduce the formal security model. We first note that we consider robustness checks on566

inputs out of the scope of our security model; i.e., we do not cover poisoning attacks,which have567

been extensively studied in the literature, e.g., [46, 22]. Indeed, it is the case that malicious parties568

can input to the protocol whatever they want as their gradients and noise x, z, which can lead to a569

meaningless model.570

We follow the standard real/ideal world security paradigm of [26]. Consider some multi-party protocol571

⇧ that is executed by some parties P1, . . . , PN that are grouped into committees C1, . . . , CT⇤ from572

round 1 to round T
⇤ and a server S. Note: the committees can be arbitrarily chosen, but our protocol573

only provides security if the assumption that the number of parties A corrupts is at most t holds;574

in other words, we abstract out the committee selection process.5 Each of these parties has inputs575

x1, . . . ,xN , and they want to evaluate some given functionality F . In our case, the functionality576

FPPFL is resharing the inputs from all previous committees to the next committee, in each round, and577

then outputting the dAXT value to the sever in each round T , given some factorization A = BC. The578

security of protocol ⇧ is defined by comparing the real-world execution of the protocol with an ideal-579

world evaluation of F by a trusted party (ideal functionality), who receives the inputs x1, . . . ,xN580

from the parties in the clear and simply sends the relevant parties their outputs F(x1, . . . ,xN)581

periodically. There is an adversary A that chooses to corrupt at most t < N of the parties P1, . . . , PN .582

This adversary A sees all of the messages and inputs and outputs of the corrupted parties and is583

allowed to act arbitrarily on their behalf. We also assume that the server is corrupted and thus A584

can see all of the messages sent to the server and all of its outputs. Informally, it is required that for585

every adversary that corrupts some parties during the protocol execution, there is an adversary S , also586

referred to as the simulator, which can achieve the same effect and learn the same information in587

the ideal-world. This simulator only sees what the corrupted parties send to the honest parties and588

the output y vectors, not the inputs x of the honest parties.We now formally describe the security589

definition.590

Real Execution. In the real execution, ⇧ is executed in the presence of the adversary A. The view591

of a party P during an execution of ⇧, denoted by View
⇧
P consists of the messages P receives from592

the other parties during the execution and P ’s input. The execution of ⇧ in the presence of A on593

inputs (x1, . . . ,xN) denoted Real⇧,A(x1, . . . ,xN) is defined as {View⇧
P }P2C. The output of ⇧ in594

the presence of A on inputs (x1, . . . ,xN) is noted as Output.595

Ideal Execution. In the ideal execution, the parties and an ideal world adversary S interact with a596

trusted party (ideal functionality). The ideal execution proceeds as follows: As a committee CT comes597

online, the parties PT,1, . . . , PT,n in that committee send their inputs xT,1, . . . ,xT,n to the trusted598

party, who computes the output F(x1,1, . . . ,xT,n) to the server for that round. S is also allowed to599

release a vector �, which will be added to the output, to simulate additive attacks.600

5In practice, the committee selection is done by the server.

19

Definition 6. Protocol ⇧ securely computes F if for every adversary A there exists a simulator S
such that

SD(({View⇧
P }P2C,Output), (S({xT⇤,j}T,j2C(T),F(x1,1, . . . ,xT⇤,n),F(x1,1, . . . ,xT⇤,n)+�))  negl(�), 6

where SD is the statistical distance between the two distributions and C(T) is the set of corrupted601

parties in round T .602

Additional Protocol Details for Active Security603

Before proving the security of our protocol, we provide additional details that are needed for an604

adversary that is allowed to act arbitrarily on behalf of the corrupted parties, or an active adversary.605

For active security, our protocol relies on three main techniques:606

1. Commitments: Commitments are a two-stage protocol where first a party Pi commits to607

some value x by using c Comm(x) and sending c to the other parties. The important608

property is that Comm(x) hides x from the other parties. Next, the party Pi can open c by609

using o Open(c, x) and sending (o, x) to the other parties. The important property is that610

Pi cannot convince the other parties that it committed to another value x0 6= x in its original611

commitment c. There are several well-known constructions of commitments.612

2. Random Linear Combinations: If � 2 F is random and unknown to all, then to check that613

some secret sharings Share(�j) for j 2 [n � d � 1] each share 0, we can compute and614

reconstruct Share(�j)
Pn�d�1

j=1 �
j · Share(�j), then check that the reconstructed value615

is 0. Intuitively, we are evaluating the polynomial defined by the �j on random point �. So if616

some �j 6= 0, then by the Schwartz-Zippel Lemma, the reconstructed value will be non-zero617

with high probability.618

3. Parity Check Matrices: We let H 2 F(n�deg�1)⇥n be the parity check matrix such that619

H · x = 0 if and only if x 2 Fn are valid shares of a polynomial of degree  deg. This620

matrix intuitively takes the first deg+1 shares in x, computes the other n� (deg+1) shares621

(using lagrange interpolation), and compares them to those that are actually in x.622

With these tools in hand, we can describe the modifications to our passively-secure protocol above, to623

make it actively secure. After committee CT+1 receives the shared Reshare(⇣i
1, . . . , ⇣

i
k) from each Pi624

in committee CT , each party Pj in committee CT+1 samples random �j , sends c Comm(�j) to the625

other parties of committee CT+1 and finally opens �j to the other parties. The parties of CT+1 then626

define m to be the number of parties from CT that actually sent them reshared values and compute627

(yj
1, . . . ,y

j
m�deg�1) H · (Zj

1 , . . . , Z
j
m).

Note that since the secret sharing is linear, by the properties of parity check matrices above, the628

shared yl will be equal to 0 if and only if the underlying shares of the ⇣
i
1, . . . ⇣

i
k are valid shares of a629

polynomial of degree  deg. Finally, the parties compute630

y
j

d(m�deg�1)/(4"2n2)X

l=1

�
l · yj

l ,

then reconstruct it to the server who check if the reconstructed value is 0, and aborts if not. Otherwise,631

they abort.632

Security Intuition Let tc1 be the number of corrupted parties in committee CT that do not send to633

everyone in CT+1 and m = n � td � tc1 be the number of parties from committee CT that do not634

drop out (including those corrupted parties that do not send). Writing m = deg+w+1, we have that635

w = m� deg�1 = n� td� tc1 � ((1/2+ ")n� 1)� 1 = (1/2� ")n� td� tc1 > tc2 , where tc2636

is the number of corrupted parties that do send to CT+1, and thus tc1 + tc2 = tc. The last inequality637

holds, since we assume that td + tc < (1/2 � ")n. This means that if the corrupted parties from638

committee CT that do send, do not reshare their actual shares to committee CT+1, then the parity639

check sharing will not share yi = 0. This is because the number of honest parties who do not drop640

6negl(�) is any function in �!(1)

20

out is at least deg+1 and thus their shares completely define the correct polynomial and so if the641

corrupted parties’ shares do not match with this polynomial, it will be reflected. Using similar logic,642

the server in round CT+1 will be able to either successfully reconstruct the parity check sharing, or643

otherwise detect malicious behavior during the reconstruction.644

Added Communication Complexity Note that most of the updates to achieve active security are645

done locally. The only added communication is for committing to and opening the randomness �i,646

then reconstructing the y
i. Moreover, if we use the passively-secure protocol many times in parallel,647

then we can use the same � to take the random linear combination across all such instances. Thus the648

total communication complexity of the actively secure protocol is marginally changed with respect to649

the passively secure protocol, as long as if enough instances of the passive protocol are used at the650

same time.651

Security Proof652

Theorem 4 (Security). ⇧PPFL securely computes FPPFL with functionalities FSecAgg and FComm.653

Proof. We first build the simulator S. We first note that we model the SecAgg protocol as a trusted654

functionality FSecAgg which takes inputs a1, . . . ,am from some parties via SecAgg.Enc and outputs655

their sum
Pm

i=1 ai to the server S via SecAgg.Dec. We also model commitments as a trusted656

Functionality FComm that in the first stage takes in x from Pi and then does not reveal x to the other657

parties until the next stage. Indeed, the simulator emulates these trusted functionalities and thus can658

see whatever the corrupted parties input to them.659

We describe the simulator for the first rounds T = 1 and then inductively for the rest. Throughout,660

we will (inductively) show that the simulator knows all of the corrupted parties’ shares. We start with661

the case of a corrupted server S.662

Corrupted Server In round 1, S simulates the shares sent by honest parties of round 1 to corrupted663

parties of round 2 by sampling random values from the field F. In round 2, S receives on behalf of664

the honest parties in committee C2 the shares sent by corrupted parties from round 1. Note that the665

honest shares completely (and exactly) define these sharings since the number of honest parties is666

exactly deg+1, and thus S can compute the corrupted parties’ shares.667

In subsequent rounds T > 1, S first simulates the resharing of honest parties of round T to corrupted
parties of round T + 1 by sampling random values from the field F. In round T + 1, S first inputs to
FComm random �i on behalf of the honest parties. It also receives on behalf of the honest parties in
committee CT+1 the reshared shares sent by corrupted parties from round T . Note that the honest
shares completely (and exactly) define these sharings since the number of honest parties is exactly
deg+1, and thus S can compute the corrupted parties’ shares as well as the actual underlying
reshared shares ⇣̂i

1, . . . , ⇣̂
i
k of each corrupted party Pi in CT . Note that these might be different from

the actual underlying shares ⇣i
1, . . . , ⇣

i
k of the corrupted parties which, inductively, S knows. Thus, S

can compute e
i
m ⇣

i
m � ⇣̂

i
m for each m 2 [k]. We have for k 2 [m]:7

H · (⇣̂1
m, . . . , ⇣̂

n
m)| = H · (⇣1

m + e
1
m, . . . , ⇣

1
m + e

n
m)| = H(e1m, . . . , e

n
m)|.

Since these are the underlying values of the shared vectors when the parties compute H ·668

(Zj
1 , . . . , Z

j
n)

|, S can compute the underlying values of the shared vector defined by the shares669

y
j (also by using �). Thus, along with the corrupted parties’ shares yj , which it can compute manu-670

ally with the corrupted parties’ shares Zj
m and � which it knows, it can reconstruct the honest parties’671

shares yj and send these to the corrupted server.672

Now we show that this is a good simulation. By the properties of Shamir Secret Sharing, we know that673

the at most tc shares that the adversary receives in the real world for every sharing will be distributed674

randomly. Thus the shares that S sends are distributed the same way. Also the y
j shares that S sends675

to the corrupted server are computed exactly as they are in the real world, since S can compute the676

e
i
m exactly and also inductively computes the corrupted parties’ shares of all sharings exactly. Thus677

S perfectly simulates the real world.678

7For honest parties, ei
m = 0.

21

Honest Server In the case of an honest server, we can use all of the same simulation above, except679

we do not need to simulate the messages sent to the server. We do need to show that, even in the680

presence of honest dropout parties, the random linear combinations of the parity checks do indeed681

reconstruct to 0 if and only if the adversary did not tamper with its shares (which the simulator682

can trivially check and abort if so, since it keeps track of the corrupted parties’ shares). Since the683

packed secret sharing scheme we use is linear, it is clear that applying the parity check matrix to the684

shares of shares will result in shares of 0 if and only if the adversary reshared the correct underlying685

shares: Let tc1 be the number of corrupted parties in committee CT that do not send to everyone686

in CT+1 and m = n � td � tc1 be the number of parties from committee CT that do not drop687

out (including those corrupted parties that do not send). Writing m = deg+w + 1, we have that688

w = m� deg�1 = n� td� tc1 � ((1/2+ ")n� 1)� 1 = (1/2� ")n� td� tc1 > tc2 , where tc2689

is the number of corrupted parties that do send to CT+1, and thus tc1 + tc2 = tc. The last inequality690

holds, since we assume that td + tc < (1/2 � ")n. This means that if the corrupted parties from691

committee CT that do send, do not reshare their actual shares to committee CT+1, then the parity692

check sharing will not share yi = 0. This is because the number of honest parties who do not drop693

out is at least deg+1 and thus their shares completely define the correct polynomial and so if the694

corrupted parties’ shares do not match with this polynomial, it will be reflected. Using similar logic,695

the server in round CT+1 will be able to either successfully reconstruct the parity check sharing, or696

otherwise detect malicious behavior during the reconstruction.697

In fact, this holds even after the parties take the random linear combination y
j 698

Pd(n�deg�1)/4"2n2

l=1 �
l · yj

l , where d is the dimension of the model. This is because � was ran-699

dom and unknown to the adversary before it generated its shares of shares. Thus, the underlying700

values of this linear combination can be seen as the evaluation of a polynomial defined by coefficients701

being the underlying values of the y
j
l , on a random input �. By the Schwartz-Zippel Lemma, if any702

of the underlying values of the y
j
l 6= 0, then the result of this polynomial evaluation will not be 0703

with probability d(n� deg�1)/(4"2n2 · |F|).8 Thus, if the adversary does not tamper with its shares704

y
j , then the reconstruction to the server will be 0 if and only if the adversary reshared the correct705

shares. If the adversary does tamper with its shares yj , then we know by the properties of packed706

secret sharing that the server will detext this and abort.707

We also need to show that the output of the server is the same in the real and ideal worlds. Indeed, if
an adversary tampers with its shares before inputting them to SecAgg.Enc, the worst this can achieve
is an additive attack [24]: Let’s consider the reconstruction of the shares of some dAXT through
SecAgg, assuming w.l.o.g., that the first d+ 1 parties are honest:

nX

i=1

�
j
i · dAX

i,tamp

T =
dX

i=1

�
j
i · dAX

i

T +
nX

i=d+1

�
j
i · (dAX

i

T + �
i) = dAXT + �.

Indeed, since S sees the values input to SecAgg.Enc by the corrupted parties and also inductively708

knows what the corrupted parties’ real input values should be, it can compute
Pn

i=d+1 �
j
i · �i and709

thus �. This completes the security proof.710

C Discretization Details of [31]711

We use the randomized rounding strategy from [31] for discretization in ⇧PPFL. At a high-level, each712

client first clips and scales their input gradient. Then, the clients flatten their gradient vectors using713

some unitary matrix U (intuitively, this minimizes the risk of modulo overlap in vector elements that714

are particularly large). Finally, the clients use a randomized process to round their gradient vectors in715

Rd to Zd. On the sever side, after receiving the aggregated, noise outputs ÂXT in each round, the716

server unflattens the vector by applying U
T and then descales. Protocols 2 and 3 give more detail,717

but we refer the readers to [31] for full details on possible flattening matrices U and the randomized718

rounding procedure used.719

8We assume that |F| > �.

22

Protocol 2 Client Gradient Processing

Input: Gradient gi 2 Rd.

Parameters: model dimension d, clipping threshold c > 0, granularity �, modulus m, noise scale
� > 0 and bias � 2 [0, 1).

1. Clip and scale gradient: g0i =
1
� min{1, c

||gi||2 } · gi 2 Rd.

2. Flatten vector: g00i = U · g0i 2 Rd.
3. Repeat:

(a) Let g̃i 2 Zd be a randomized rounding of g00i . i.e., g̃i is a product distribution with
E[g̃i] = g

00
i and ||g̃i � g

00
i ||1 < 1.

until |||g̃||2  min{c/� +
p
d,

q
c2/�2 + 1

4d+
p
2 log(1/�) · (c/� + 1

2

p
d)}.

4. Output: g̃i.

Protocol 3 Server Aggregate Noisy Release Value Processing

Input: Vector dAXT .

Parameters: model dimension d, clipping threshold c > 0, granularity �, modulus m, noise scale
� > 0 and bias � 2 [0, 1).

1. Map Zm to {1�m/2, 2�m/2, . . . ,�1, 0, 1, . . . ,m/2� 1,m/2} so that dAXT is mapped
to dAX

0
T 2 [�m/2,m/2]d \ Zd (and we have dAX

0
T mod m = dAXT .

Output: � · U|dAX
0
T 2 Rd.

D Additional Experimental Results720

Here we empirically evaluate our Distributed Matrix Mechanism (DMM) for Federated Learning721

on the Stack Overflow Next Word Prediction public benchmark [4], as in [31, 15]. Stack Overflow722

is a large-scale text dataset based on the question answering site Stack Overflow. It contains over723

108 training sentences extracted from the site grouped by the N = 342477 users, and each sentence724

has associated metadata such as tags. The task of SO-NWP involves predicting the next words given725

the preceding words in a sentence We use the standard dataset split provided by TensorFlow. We726

compare to the Distributed Discrete Gaussian Mechanism for FL [31] that also obtains local DP, but727

with independent noise and reliance upon privacy amplification via sampling [1, 33, 7], as well as the728

central DP version of our paper for multiple epochs [15], where noise is correlated, but the server729

applies it.730

As in [31, 15], we use the LSTM architecture defined in [42] directly, which has a model size of731

d = 4050748 parameters (slightly under 222). We use namely momentum 0.9, 1 client training epoch732

per round, client learning rate ⌘c = 0.02, server learning rate ⌘s = 1, and client batch size to 16. For733

⇧PPFL, we assume that µ = 1/6; i.e., the number of corrupted parties and dropout parties per round734

satisfies tc + td < 1/3n.735

Matrix Factorizations As for EMNIST, we use two different matrix factorizations A = BC736

for our experiments. The first is the optimal with respect to the loss function L(B,C) =737

sens�(C)||B||2F for the (⌫, b)-participation schema �, as generated by the code from [15]. The738

second is the Honaker Online mechanism [32, 28], where C is essentially the binary tree matrix.739

Again, this mechanism has the benefit that it allows for implementations with only log(T ⇤) overhead;740

i.e., in the T -th round, the released model can be computed using at most d · log(T ⇤) values. Thus, the741

23

Figure 4: Test accuracies on SO NWP across different " for the DDG mechanism [31], the central-DP
matrix mechanism for multiple epochs [15], and our DMM instantiated with the optimal factorization
for multiple epochs and the Honaker online factorization.

size of the secret vectors that must be reshared from one committee to the next are at most d · log(T ⇤)742

instead of d · T ⇤, which greatly increases efficiency, as we will see below.743

Results Figure 4 shows that for several different " privacy levels, our DMM significantly out-744

performs the DDGauss Mechanism in terms of prediction accuracy, while getting close to that745

of the central-DP matrix mechanism of [15]. We also see that the Honaker mechanism only sees746

slight accuracy degradation compared to the mechanism based on the optimal (⌫, b)-participation747

matrix factorization. Therefore, the tree mechanism might be best in practice due to much better748

efficiency. These experiments all use n = 40 clients per round. For the tree mechanism, we use749

T
⇤ = 210 = 1024 and for the optimal matrix factorization, we use T

⇤ = 1500; this corresponds to750

⌫ = 13, b = 85 and ⌫ = 18, b = 85, respectively.751

E Attacks on Other Approaches and Future Work752

Instead of maintaining secret-shared versions of the aggregated gradients and noise vectors, the753

server could preserve the aggregated noise vectors and gradients of previous training iterations within754

the system by masking them with an appropriate mask mk invoking a secure aggregation protocol755

SecAgg1. The masks mk themselves would be secret shared and reshared among the clients. That756

said, the black-box secure aggregation SecAgg1 protocol would output aggregated gradients G and757

noise vectors masked by mk, i.e., G+mk to the server. When it is time to aggregate in each training758

iteration, another black-box SecAgg2 protocol is called in which the server would input the masked759

aggregated gradients and noise vectors along and the clients would input the negative shares of the760

masks mk. This ensures that the secure aggregation SecAgg2 protocol outputs the unmasked (the761

masks of the gradients and noise vectors from previous iterations would cancel out) noisy aggregate762

for the current iteration to the server.763

However, this approach faces a fundamental issue: the server holds the masked aggregated noise and764

gradients and could input any dishonest combination into the aggregation protocol to undermine DP.765

Specifically, the server might:766

• Selective Noise Cancellation: In the matrix mechanism, noise is added directly by the clients767

in the current training iteration, and past aggregated correlated noise is added to enhance768

24

utility by canceling out some of the total noise. If the server has access to the masked769

aggregated noise, it could selectively include or exclude certain masked noises as input770

to the secure aggregation protocol SecAgg2, effectively canceling out noise terms across771

training iterations. This would enable selective noisy cancellation, potentially weakening772

the overall differential privacy guarantees.773

• Manipulation of Scaled Aggregated Gradients: The server might multiply the aggregated774

masked gradients by a malleable value when inputting them into the secure aggregation775

protocol SecAgg2, causing the noise to be incorrectly scaled relative to the proper sensitivity.776

This manipulation could reveal information about the current iteration’s aggregated gradients,777

thereby compromising the privacy guarantees.778

Future work An alternative method for rolling noise forward to the next committee is to encrypt779

the noise rather than secret-sharing it based on our resharing protocol. However, an efficient solution780

is not straightforward, as the noise must remain encrypted while being used by the clients. The781

challenge lies in determining which keys to use for encryption. If the noise is encrypted using the782

server’s key, the server could decrypt it, compromising privacy. Conversely, if it is encrypted under783

the client’ keys, they would be able to decrypt it. Identifying an advanced encryption scheme that can784

maintain privacy and offer better efficiency remains an open question for future research.785

F ⇧PPFL without the Use of SecAgg786

In this section, we present a version of ⇧PPFL (below) without relying on any black-box secure787

aggregation protocol. Specifically, since the clients secret share both the noise vectors and the788

gradients, we perform secure aggregation in ⇧PPFL by having all clients within the same committee789

in the same training iteration receive these shares (via the server), aggregate them, and send the result790

back to the server, which recovers the final noisy sum. This requires an extra communication round791

per training iteration. However, it’s worth noting that current secure aggregation SecAgg protocols792

already require at minimum two rounds of interaction.793

The advantage of presenting ⇧PPFL in Section 5 with access to a secure aggregation SecAgg pro-794

tocol in a black-box manner is that future advancements might lead to a significantly faster secure795

aggregation protocol. As it stands, our protocol, based solely on secret sharing and our resharing796

protocol, efficiently packs multiple secrets into a single share, resulting to a communication overhead797

that asymptotically matches existing secure aggregation SecAgg protocols.798

25

Protocol 4 Privacy-Preserving Federated Learning Protocol ⇧PPFL without black box us of SecAgg

Protocol ⇧PPFL runs with clients P1, . . . , PN and a server S. Let PSS =
(Share,Reshare,Reconstruct,Recover) be a packed resharing protocol (See Section 3).
⇧PPFL = (Setup,Agg) proceeds as follows:
Parameters: Dimension d 2 N; clipping threshold c > 0; granularity � > 0; noise scale � > 0; bias
� 2 [0, 1); finite field F of bit-width m; public (lower-triangular) matrix encoding of prefix sums or
stochastic gradient descent with momentum (SGDM) [17]) A 2 RT⇤⇥T⇤

; matrices B,C such that
A = BC.
Inputs: For i 2 [N], party Pi holds input dataset Di. Without loss of generality we assume that
committees in each training iteration are of size n.

Agg(Di, YT�1, GT�1, ⇣T�1, {X⌧ , Z⌧}⌧2[T�2]): Let CT be the set of chosen clients for the
T -th training iteration. For each T each client Pi in CT proceeds as follows:

Round 1:
• Runs training model on YT�1, Di which generates the vector of local gradients gi

(that are then clipped to norm c, scaled via granularity parameter � > 0, flattened,
and rounded/discretized with bias � 2 [0, 1) as in [31]; details of this are provided in
Section C).

• Samples a noise vector zi from a Discrete Gaussian distribution NZ(0,�2
/�

2).
• Secret shares the noise vector and the gradients using the packed secret sharing scheme

as ⇣i
T = Share(zi) and G

i
T = Share(gi) to the set CT . Each j-th share of ⇣i

T and X
i
T

is encrypted to the j-th client of CT using authenticated and encrypted channels (via
the Server).

Round 2:
• Decrypts and aggregates the shares (received by the server) of the noise vector and

gradients Zi
T = (

Pn
j ⇣

j,i
T) and X

i
T = (

Pn
j G

j,i
T) and securely reshares them using

the packed resharing protocol as Zi
T+1 = Reshare(Zi

T), X
i
T+1 = Reshare(Xi

T) to
the set of clients in CT+1 for the next training iteration.

• For the j-th model parameter in each batch of parameters sends to S:

yi = Reconstruct

i,

TX

⌧=1

(A[T,⌧] ·Xi
⌧ +B[T,⌧] ·Zi

⌧), j

!
.

If T > 1:
• Decrypts and reshares all the previous ⌧ aggregated shares as X

i
T = Reshare(Xi

⌧)
and Z

i
T = Reshare(Zi

⌧) to set CT+1 for ⌧ 2 [1, T � 1].

Round 3:
1. S recovers the noisy sums as YT = (

Pn
i yi).

26

