COSE: A Consistency-Sensitivity Metric for Saliency on Image Classification

Rangel Daroya* Aaron Sun* Subhransu Maji
University of Massachusetts Amherst

{rdaroya, aaronsun}@umass.edu, smaji@cs.umass.edu

A. Additional Analysis
A.l. GradCAM can reflect changing model accuracy from transformed data

Figure 5 showed how different saliency methods respond to varying model accuracy as a response to changing model
weights. Here we explore the response of saliency methods on the model accuracy across different data transformations.
Given an input x and its transformed counterpart ¢(x), saliency methods should produce two corresponding maps M and M’.
If a model f classifies f(z) #Z f(t(x)), then the SSIM between M and M’ should be low (sensitivity metric). On the other
hand if f(z) = f(t(x)), then the SSIM between M and M’ should be high (consistency metric).

Given the above, we should see an increasing trend between model accuracy and SSIM. Figure A.1 shows GradCAM and
LIME with a high SSIM for high model accuracy, and low SSIM for low model accuracy. The slope is also noticeably steeper
for GradCAM than LIME. This indicates the saliency methods can capture the behavior of a model to changing inputs.

A.2. Saliency methods perform similarly for supervised and unsupervised networks

Exploring the implications of properties found in self-supervised transformers, we looked at the difference in explanations
between supervised and unsupervised models [1]. We speculated the explanations of unsupervised transformer networks
may perform better than their supervised counterparts since the former was explicitly trained to find common patterns within
classes. However, we did not observe significant performance differences between these two categories of networks.

Method = BlurlG Method = GradCAM Method = GradCAM++ Method = LIME
1.0] .

SSIM

0.5 e

. e
- 35

[AR p R o et e t
r=-0.03, p=0.36 ":;!" r=0.22, p=1.2e-09 r=-0.10, p=0.0052
50 100 50 100 50 100 50 100
Model Accuracy (%) Model Accuracy (%) Model Accuracy (%) Model Accuracy (%)
Method = GuidedIG Method = IG Method = SmoothGrad
1.0) - R,
R o R X
= N Lo S
B o5 P e T Ay i
LI R R . ML
r=-0.31, p=4.1e-17 r=-0.01, p=0.89 V3 r=-0.29, p=1.2e-15
50 100 50 100 50 100
Model Accuracy (%) Model Accuracy (%) Model Accuracy (%)

Figure A.1. SSIM of saliency maps M and M’ for varying model accuracy. M is the saliency map for an input image =, and M’
is the saliency map for a transformed input ¢(z). The correlation (r) and the corresponding p-values (p) are also annotated in each plot.
GradCAM and LIME show significant positive correlation between model accuracy and SSIM for various data transformations.

“Equal contribution

Input Image BlurlG GradCAM GradCAM++ GuidedIG IG LIME SmoothGrad

RNtsoms;g/
" e . g

o4
ResNet50 -a
(Unsup) & 7 -
ViT-B/16

(Sup)

ViT-B/16

(Unsup)

; |
Low Importance Medium Importance High Importance

Figure A.2. Results of saliency methods across supervised (Sup) and unsupervised (Unsup) ResNet50 and ViT-B/16 models. We
qualitatively observe that there is no significant difference between the saliency maps of the supervised and the unsupervised models.

Il Supervised [Unsupervised

100.0

80.0 1
w
3
S 40.0

20.0

0.0 T T T T T T
ResNet50 ViT-B/16 Swin-T ConvNext BIurIG GradCAMGradCAM++ LIME SmoothGradeded IG IG ConvNets Transformers

Base Model Saliency Method Network Type

Figure A.3. The average COSE of supervised and unsupervised models. From left to right, COSE is compared for different base
models, saliency methods, and network types, respectively. We see comparable performance between supervised and unsupervised models
— variations don’t strongly favor a single direction. Most notably, there is little difference in average performance between supervised and
unsupervised transformers.

Figure A.2 show qualitative results for comparing saliency maps of supervised and unsupervised model. We observe
that although there are variations between saliency maps, the differences are not notable. Figure A.3 supports this further
by showing the COSE of supervised and unsupervised networks for ViT-B/16 and ResNet50. Looking at the violin plot,
supervised and unsupervised networks have similar performance. Although we have previously found that model architecture
plays a role in the quality of saliency maps (transformers were found to have better explanations than ConvNets), there is no
significant difference when it comes to the type of pre-training.

Most saliency methods seem to have comparable performance on average for supervised and unsupervised models, but
we also observe unsupervised methods having higher COSE for BlurIlG and Guided IG but a lower COSE for GradCAM++.
Further investigation may be required into the individual methods to draw stronger conclusions about this result.

X 60+ ‘
w

8

O 404

ResNet50 ResNet101 ViT-B/16 ViT-L/16
Model

Figure A.4. Average COSE of variations of Transformers and ConvNets. The average performance of saliency methods on ResNet50
vs ResNet101 and ViT-B/16 vs ViT-L/16 are similar.

Saliency Method SSIM Spearman
COSE (%) | COSE (%)

BlurlG 63.23% 62.91%
GradCAM 64.66% 77.84%
GradCAM++ 54.59% 56.41%
GuidedIG 54.73% 56.03%

IG 61.33% 59.60%

LIME 60.11% 66.88%
SmoothGrad 57.94% 58.65%

Table A.1. Average COSE using SSIM and Spearman rank correlation. The performance of the saliency methods is similar, and COSE
remains the method with the highest COSE in both cases.

A.3. Saliency methods perform similarly on variations of transformers and convolutional networks

It was previously shown in Figures 3-4 that saliency methods perform better on Transformers than ConvNets. However,
further analysis shows that when comparing performance between two different Transformer models where one could be
larger than the other (e.g., ViT-B/16 vs ViT-L/16), the performance of saliency methods is similar. The same was also
observed with ConvNets. Figure A.4 shows the distribution of the performance of saliency methods across different types of
Transformers and ConvNets. This analysis can be further augmented with variations of models and architectures, which we
encourage with our open-source pipeline.

A.4. Spearman rank correlation performs similarly to SSIM

Table A.1 compares average COSE results for each saliency methods when using SSIM and Spearman as the similarity
metric. We found SSIM and Spearman rank correlation to provide very similar results, and our conclusion of GradCAM
providing the best explanations under our metric to be strengthened when using Spearman rank correlation.
B. Additional Metric Visualizations
B.1. Sensitivity

Figure B.1 shows the sensitivity metric capturing changes in saliency maps M — M’ due to model changes f — f.
Higher sensitivity implies a larger difference between M and M’ — a desired response. The figure thus shows whether or not
saliency methods can represent changes in the model. BlurlG, GradCAM, Guided IG, IG, and SmoothGrad were observed
to be responsive to model changes more than the other saliency methods.

B.2. Consistency

Figure B.2 shows additional consistency results on various datasets and data transformations. The figure shows that the
consistency metric can capture the robustness of saliency methods across different changes in the input image.
C. Implementation Details

The different saliency methods were evaluated on various models and datasets. Details of the implementation are thor-
oughly described in this section.

1 0% trained f':10% trained f':20% trained

Input Image f! f':30% trained f: Fully trained

BlurlG

GradCAM

GradCAM++

GuidedIG

Sensitivity: 0.85 0.41 0.41 0.42

[]
Low Importance Medium Importance High Importance

Figure B.1. Sensitivity values and visualizations of saliency methods at various epochs during model training. This shows sensitivity
can capture how a saliency method represents a changing model: f' — f through the corresponding saliency maps M — M’. The
sensitivity (difference between M and M) should be high for saliency maps that respond to changes in the model.

C.1. Datasets

Dataset Train/Test Splits. For CIFAR and CUB, we used the train/test splits provided by the dataset creators. For Oxford
Flowers, EuroSAT, and Caltech101, we used a fixed random split with 80% of the data in the training set and 20% of the data
in the test set.

Data Augmentations. We modified the TrivialWideAugment [9] implementation in PyTorch to run data augmentations
on images. In particular, we removed the transformations shear, posterize, and solarize and added the transformations flip
(both left/right and up/down). We also the pillow modified the implementations of blur and smooth to use the corresponding

Input Image BlurlG GradCAM GradCAM++ GuidedIG IG LIME SmoothGrad

Original
CUB200

Rotate
change

Consistency: 0.54 0.89 0.92 0.50 0.47 0.56 0.84
Original
CIFAR10

Color
change

Consistency: 0.48 0.71 0.92 0.34 0.37 0.65 0.45
Original
Caltech101 §

TranslateY §
change

Consistency: 0.48 0.87 0.92 0.39 0.40 0.92 0.41
Original
Oxford102

Brightness
change

Cosistency: 0.37 0.97 0.96 0.29 0.29 0.67 0.49

Original
EuroSAT

Consistency: 0.25 0.84 0.83 0.24 0.27 0.72 0.12

Low Importance Medium Irlnportance High Importance

Figure B.2. Consistency values and visualizations of saliency methods on various datasets and data transformations. The saliency
maps shown here are for inputs x and transformed inputs ¢(x) where the model has correct predictions: f(x) = f(¢(x)). Reliable saliency
methods should show similar saliency maps M (from x) and M’ (from t(x)) through high consistency.

Transformation | Magnitudes Applied Type
[min, max]
FlipUD - Geometric
FlipLR - Geometric
TranslateX [-32, 32] Geometric
TranslateY [-32, 32] Geometric
Rotate [-135°,135°] Geometric
Autocontrast - Photometric
Equalize - Photometric
Blur - Photometric
Smooth - Photometric
Brightness [-0.99, 0.99] Photometric
Color [-0.99, 0.99] Photometric
Contrast [-0.99, 0.99] Photometric
Sharpness [-0.99, 0.99] Photometric

Table C.1. Data transformations used in training and evaluations. Transformations are classified as either being photometric or geo-
metric. Rows without magnitudes are transformations that are binary in nature (either they are applied or they are not).

Pre-training Method | Caltech101 [12] | CIFAR10 [6] | CUB200 [13] | EuroSAT [5] | Oxford102 [10]

ResNet50 [4] Supervised 94.00% 85.00% 81.00% 94.00% 82.00%
DINO ResNet50 [1] Unsupervised 93.00% 84.00% 73.00% 96.00% 85.00%
MoCov3 ResNet50 [2] Unsupervised 96.00% 90.00% 72.00% 95.00% 83.00%
ConvNext [8] Supervised 95.56% 93.94% 82.86% 95.37% 79.53%
SparK ConvNext [1] Unsupervised 75.58% 78.27% 53.19% 87.20% 48.04%
ViT-B/16 [3] Supervised 96.00% 95.00% 81.00% 96.00% 81.00%
DINO ViT-B/16 [1] Unsupervised 97.00% 95.00% 75.00% 98.00% 91.00%
MoCov3 ViT-B/16 [2] Unsupervised 91.00% 93.00% 76.67% 96.00% 78.00%
iBOT ViT-B/16 [14] Unsupervised 96.00% 95.00% 73.00% 97.00% 89.00%
Swin-T [7] Supervised 96.00% 92.00% 84.00% 96.00% 84.00%
iBOT Swin-T [14] Unsupervised 96.00% 95.00% 80.27% 97.00% 88.00%
Average Performance 93.01% 90.12% 75.10% 95.16 % 80.76 %

Table C.2. The models used for evaluation across different datasets. The overall accuracy for each dataset was at least 75%. Models
with prefixes DINO, MoCov3, SparK, and iBOT were pretrained on ImageNet in an unsupervised way.

PyTorch version.

Table C.1 shows the range of values used for each transformation. For each augmentation with variable magnitude, we
sampled 62 evenly-spaced numbers from the given range. We used the entire suite of transformations during training by
randomly selecting a transformation type, and then randomly selecting a magnitude within the range (if applicable). Testing,
on the other hand, involved sequentially applying all the transformation types. To speed up evaluation run time, we then
randomly sampled 6 nonzero magnitudes for transformations with variable magnitudes.

C.2. Models

Table C.2 shows the test set accuracy of various models separately trained on five datasets. The models also vary across
supervised and unsupervised pre-training methods. To optimize each model for the corresponding dataset, the training
hyperparameters were varied for each dataset and each model. These are available in the open source code.

C.3. Saliency Methods

We used publicly-available implementations of each saliency method. For GradCAM and GradCAM++, we used the
implementations found on the pytorch-grad-cam repository'. For LIME, we used the official repository” from the authors.

Uhttps://github.com/jacobgil/pytorch-grad-cam
Zhttps://github.com/marcotcr/lime

Saliency Method | # Samples/model/dataset | Tunable Parameters
parameter: value

BlurlG 3,060 | linear interpolation steps: 100
GradCAM 30,600 | target layer: model-dependent
GradCAM++ 30,600 | target layer: model-dependent
Guided IG 30,600 | linear interpolation steps: 200

max distance factor: 0.02
network parameter sampling: 0.25

IG 30,600 | linear interpolation steps: 25
LIME 3,060 | number of samples for estimation: 1,000
SmoothGrad 3,060 | method: vanilla gradients

number of samples: 50
standard deviation spread: 0.15

Table C.3. The parameters used for each saliency method for evaluation. For each method, #Samples/model/dataset indicates the
number of data points from the test set for each possible model and dataset pair. This includes various data transformations. The tunable
parameters indicate the settings recommended by the authors of each method.

Finally, for IG, Guided IG, BlurlG, and SmoothGrad, we used the implementation from the PAIR-code saliency repository3.
Sampling of results. Based on the speed of each method, we ran consistency and sensitivity tests on either 3,060 or 30,600
data points of each dataset and model combination. Table C.3 enumerates the number of samples tested for each saliency
method for each dataset/model pair. In other words, for all possible combinations of models and datasets, we randomly
sampled wither 3,060 data points or 30,600 data points.

Saliency method parameters use recommended settings in their respective papers. For GradCAM and GradCAM++, we
used the activations in the layers suggested in the pytorch-gradcam-repository for each network. For methods with tunable
hyperparameters, we followed the recommendations of each respective paper. Table C.3 lists all the parameters set during
evaluation and the corresponding values.

References

[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties
in self-supervised vision transformers. In Proceedings of the IEEE/CVF international conference on computer vision, pages 9650—
9660, 2021. 1, 6

[2] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 9640-9649, 2021. 6

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. International Conference on Learning Representations (ICLR), 2021. 6

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778, 2016. 6

[5] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark
for land use and land cover classification. In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
volume 12, pages 2217-2226. IEEE, 2019. 6

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009. 6

[7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical
vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, pages
10012-10022, 2021. 6

[8] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11976-11986, 2022. 6

[9] Samuel G Miiller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmentation. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 774-782, 2021. 4

[10] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In Indian Conference
on Computer Vision, Graphics and Image Processing, Dec 2008. 6

3https://github.com/PAIR-code/saliency

[11]

[12]

[13]

(14]

Keyu Tian, Yi Jiang, Qishuai Diao, Chen Lin, Liwei Wang, and Zehuan Yuan. Designing bert for convolutional networks: Sparse and
hierarchical masked modeling. arXiv:2301.03580, 2023. 6

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and Pietro Perona. Caltech-ucsd birds
200. 2010. 6

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and Pietro Perona. Caltech-ucsd birds
200. Technical Report CNS-TR-201, Caltech, 2010. 6

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training with online
tokenizer. International Conference on Learning Representations (ICLR), 2022. 6

