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Supplementary Section
A SUPPLEMENTARY SECTION A

A.1 EXPERIMENTAL SETUP

A.1.1 HRSNN AND MRSNN

Table 1: Table showing the description of the models described in the paper

LIF Neurons STDP parameters
HRSNN Heterogeneous Heterogeneous
MRSNN Homogeneous Homogeneous

The models used in this paper were the Heterogeneous Recurrent SNN (HRSNN) and the Homoge-
neous Recurrent SNN (MRSNN). Both models use STDP as the learning method. For MRSNN, we
use STDP with uniform parameters for all the synapses. However, for HRSNN, we use a distribution
for each parameter to get a rich class of diverse LTP/LTD dynamics. But, at the core, all the training
is done using STDP.

A.1.2 LIF NEURON NUMERICAL IMPLEMENTATION

To implement the LIF model, we discretize time into multiples of a small-time step ∆t so that spikes
can only happen at multiples of ∆t. (Cramer et al., 2020; Perez-Nieves et al., 2021) Thus, we can
approximately solve Eq. ?? as

vi(t+∆t) = vi[t+1] = β (vi[t] − v0)+v0+(1−β)Ii[t]−(vth − vr)Si[t] s.t. β = exp(−∆t/τm) (1)

It is to be noted here that we use this approximation for numerically solving the LIF neurons. Hence,
although we use continuous notations for the remainder of the paper, it is to be noted that we use the
discrete form discussed here for numerical solutions.

A.1.3 SPIKE CODING

Encoding: For the RSNN to process our time series, the signal must be represented as spikes.
We use a temporal encoding technique for representing signals in this paper. The spikes are only
generated whenever the signal changes in value. The implementation of the temporal encoding used
in this research is based on the Step-Forward (SF) algorithm (Petro et al., 2019). The percentage of
neurons to input the spikes to (α) is also chosen to provide good recurrent layer dynamics.

Decoding: To represent the recurrent state, we use an exponentially decreasing rate decoding
strategy by taking the sum of all the spikes s over the last τ timesteps into account as follows:

xX
i (t) =

τ

∑
n=0

γnsi(t − n) ∀i ∈ E

where X denotes the model representation. The parameters τ and γ are balanced to optimize the
memory size of the stored data (e.g., τ ≤ 50 ) and its containment of information, which includes
adjusting τ to the pace at which the temporal data is presented and processed. The state of the
recurrent layer will be only based on the output of excitatory neurons. Thus, it is crucial for the
discount γ not to be too small, as it possibly flattens older values in the window to 0, making part of
the sliding window unusable. Recent spikes hardly affect the recurrent layer state when setting γ
too high in combination with a large window size. This causes the decoder to react too late to recent
information provided by the recurrent layer and complicates the learning process of the readout layer.
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Figure 1: Figure showing a snippet for the Y dimension of the Lorenz96 time series used for the
prediction problem

A.1.4 READOUT

After the initialization of the recurrent layer, the readout is the only component of the LSM with
trainable parameters. It consists of a single fully connected layer for regression or classification.
The readout does not have to be any deeper, as the output of the recurrent layer is already a high-
dimensional representation of the processed input. x and y present the continuous signals of the time
series T and model representation X .

xT
(t + k) = yT (t) ≈ ŷX(t) = fθ (x

X
(t))

The mean squared error (MSE) is used as the loss function to train the readout, and the network was
trained using the stochastic optimizer Adam (Kingma & Ba, 2014).

L (yT , ŷX) =
1

n

n

∑
i=0

(yTi − ŷ
X
i )

2

A.1.5 DATASETS

Lorenz96: (Lorenz, 1996)Our objective is more clearly demonstrated using the canonical chaotic
system we will use as a test bed for the prediction capabilities of the HRSNN model. We use a
multiscale Lorenz 96 system which is a set of coupled nonlinear ODEs and an extension of Lorenz’s
original model (Thornes et al., 2017), (Chattopadhyay et al., 2020).

dXk

dt
= Xk−1 (Xk+1 −Xk−2) + F −

hc

b
ΣjYj,k

dYj,k

dt
= − cbYj+1,k (Yj+2,k − Yj−1,k) − cYj,k +

hc

b
Xk −

he

d
ΣiZi,j,k

dZi,j,k

dt
=edZi−1,j,k (Zi+1,j,k −Zi−2,j,k) − geZi,j,k +

he

d
Yj,k (2)

This set of coupled nonlinear ordinary differential equations (ODEs) is a three-tier extension of
Lorenz’s original model (Lorenz, 1963) and has been proposed by Thornes et al. (2017) as a fitting
prototype for multiscale chaotic variability of the weather and climate system and a useful test bed
for novel methods. In these equations, F = 20 is a large-scale forcing that makes the system highly
chaotic, and b = c = e = d = g = 10 and h = 1 are tuned to produce appropriate spatiotemporal
variability. For this paper, we focus on predicting Y axes, which have relatively moderate amplitudes
compared to X,Z and demonstrate high-frequency variability and intermittency, which makes the
prediction problem difficult. It is to be noted here that the Lorenz 96 is a complex, difficult dataset
for climate modeling. A snippet of the time series is shown in Fig. 1.

SHD dataset: We use the Spoken Heidelberg Digits spiking dataset to benchmark the HRSNN
model with other standard spiking neural networks (Cramer et al., 2020). It was created based on the
Heidelberg Digits (HD) audio dataset which comprises 20 classes of spoken digits from zero to nine
in English and German, spoken by 12 individuals. For training and evaluation, the dataset (10420
samples) is split into a training set (8156 samples) and test set (2264 samples). To apply our RSNNs,
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we converted all audio samples into 250- by-700 binary matrices. For this, all samples fit within
a 1 the second window, shorter samples were padded with zeros, and longer samples were cut by
removing the tail. Spikes were then binned in time bins, both of sizes 10ms and 4ms; for the RSNNs,
the presence or non-presence of any spikes in the time bin is noted as a single binary event.

A.1.6 HYPERPARAMETERS

The hyperparameters used in this paper are summarized in Table 2

Table 2: Table showing the hyperparameters used in the experiments and their values

Parameter Value Description
|E|/|N| 80% Excitatory/inhibitory ratio
λ 2 Leak Exponent
τ 50 Sliding window size

γτ−1 0.02 Sliding Window Leak
SHD Parameters Lorenz-63 Parameters

Parameter Value Description Parameter Value Description
τ 17 Time delay ρ 28.0 ρ-parameter
a 0.2 a parameter σ 10.0 σ-parameter
b 0.1 b parameter β 8/3 β-parameter
n 10 n parameter x0 [1.0,1.0,1.0] Initial Condition

x0 1.2 Initial Condition h 0.03 Time delta between
two discrete timesteps

h 1.0 Time delta between
two discrete timesteps

A.2 MAXIMUM ENTROPY DISTRIBUTION

This subsection proves that the maximum entropy distribution with a fixed covariance matrix is
Gaussian.

Lemma: Let q(r) be any density satisfying ∫ q(r)xixjdr = Σij . Let p = N (0,Σ). Then h(q) ≤ h(p)
Proof.

0 ≤ KL(q∥p) = ∫ q(r) log
q(r)

p(r)
dr

= −h(q) − ∫ q(r) log p(r)dr

= −h(q) − ∫ p(r) log p(r)dr

= −h(q) + h(p)

since q and p yield the same moments for the quadratic form encoded by log p(r).

A.3 OPTIMAL HYPERPARAMETER SELECTION USING BAYESIAN OPTIMIZATION

Most recent research in Bayesian Optimization (BO) applications is limited to low-dimensional
problems, as BO fails catastrophically when generalizing to high-dimensional problems (Frazier,
2018). However, in this paper, we aim to use BO to optimize the neuronal and synaptic parameters of
a heterogeneous RSNN model. This BO problem thus entails a huge number of hyperparameters
to be optimized; hence, using standard BO algorithms remains a significant challenge. Hence, to
overcome this issue, we used a novel BO algorithm based on the assumption that our hyperparameters
to be optimized are not completely random and uncorrelated but can be thought of as being drawn
from a probability distribution as shown by Perez-Nieves et al. (2021). Thus, we use a modified BO
to estimate parameter distributions for the LIF neurons and the STDP dynamics instead of searching
for the individual parameters themselves. After learning the optimal distributions, we simply sample
from the distribution to get the distribution of hyperparameters used in the model. To learn the
probability distribution of the data, we modify the surrogate model and the acquisition function of the
BO to treat the parameter distributions instead of individual variables. This makes our modified BO
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Table 3: The list of parameter settings for the Bayesian Optimization-based hyperparameter search

Parameter Initial Value Range
η 10 (0,50)
γ 5 (0,10)
ζ 2.5 (0,10)
η∗ 1 (0,3)
g 2 (0,10)
ω 0.5 (0,1)
k 50 (0,100)

λ (SHD) 1 (0,2)
λ (Lorenz) 1.5 (0,4)

PIR 0.05 (0,0.1)
τn−E , τn−I (SHD) 50ms (0ms,100ms)
τn−E , τn−I (Lorenz) 100ms (0ms,300ms)

Aen−R,AEE ,AEI ,AIE ,AII 30 (0,60)

highly scalable over all the variables (dimensions) used. The loss for the surrogate model’s update is
calculated using the Wasserstein distance between the parameter distributions.

BO uses a Gaussian process to model the distribution of an objective function and an acquisition
function to decide on points to evaluate. For data points in a target dataset x ∈X and the corresponding
label y ∈ Y , an SNN with network structure V and neuron parametersW acts as a function fV,W(x)
that maps input data x to predicted label ỹ. The optimization problem in this work is defined as

min
V,W

∑
x∈X,y∈Y

L (y, fV,W(x)) (3)

where V is the set of hyperparameters of the neurons in R (Details of hyperparameters given in
the Supplementary) andW is the multi-variate distribution constituting the distributions of (i) the
membrane time constants τm−E , τm−I of the LIF neurons, (ii) the scaling function constants (A+,A−)
and (iii) the decay time constants τ+, τ− for the STDP learning rule in SRR.

Again, BO needs a prior distribution of the objective function f(x⃗) on the given data D1∶k =

{x⃗1∶k, f (x⃗1∶k)} . In the Gaussian Process (GP)-based BO, we assume that the prior distribution of
f (x⃗1∶k) follows the multivariate Gaussian distribution, which follows a GP with mean µ⃗D1∶k and
covariance Σ⃗D1∶k . Thus, we estimate Σ⃗D1∶k using the modified Matern kernel function. We use the loss
function as d(x,x′), which is the Wasserstein distance between the multivariate distributions of the
different parameters. That is, given two distributions of hyperparameters x1, x2, the distance between
these two distributions (given as d(x1, x2) is used as the loss function in the Matern kernel for the
modified BO. We want to learn the optimal distribution of hyperparameters x′, which maximizes the
performance. It is to be noted here that for higher-dimensional metric spaces, we use the Sinkhorn
distance as a regularized version of the Wasserstein distance to approximate the Wasserstein distance
(Feydy et al., 2019).

D1∶k are the points evaluated by the objective function. The GP will estimate the mean µ⃗Dk∶n and
variance σ⃗Dk∶n for the rest unevaluated data Dk∶n. The acquisition function used in this work is the
expected improvement (EI) of the prediction fitness as:

EI (x⃗k∶n) = (µ⃗Dk∶n − f (xbest ))Φ(Z⃗) + σ⃗Dk∶nϕ(Z⃗) (4)

where Φ(⋅) and ϕ(⋅) denote the probability distribution function and the cumulative distribution
function of the prior distributions, respectively. f (xbest ) =max f (x⃗1∶k) is the maximum value that
has been evaluated by the original function f in all evaluated data D1∶k and Z⃗ =

µ⃗Dk∶n−f(xbest )

σ⃗Dk∶n
. BO

will choose the data xj = argmax{EI (x⃗k∶n) ;xj ⊆ x⃗k∶n} as the next point to be evaluated using the
original objective function.

A.3.1 OPTIMIZED HYPERPARAMETERS

The list of the hyperparameters optimized using the Bayesian Optimization technique is shown in
Table 3. We also show the range of the hyperparameters used and the initial values. In addition to
this, Table 4 enlist the final optimized distributions of the STDP and the LIF parameters obtained
using BO.
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Table 4: Table showing the average final distributions of the hyperparameters

Parameter Distribution

4* STDP
Parameter τ+ Normal µ̄ = 18.235

σ̄ = 1.522

τ− Normal µ̄ = 22.382
σ̄ = 1.768

η+ Normal µ̄ = 0.516
σ̄ = 0.0055

η− Normal µ̄ = 0.448
σ̄ = 0.0057

2* LIF
Parameter τ

(e)
m Gamma

ᾱ = 2.89
1/β̄ = 0.248

τ
(i)
m Gamma

ᾱ = 5.14
1/β̄ = 0.313

Figure 2: Figure Showing the convergence behaviors of the three types of BO described in the paper
(a) BO optimizing the memory capacity C (b) BO optimizing the average spike count S̃ and (c) BO
optimizing the spike efficiency E

A.3.2 CONVERGENCE ANALYSIS

We compare the convergence analysis of the three Bayesian Optimization techniques and the results
are shown in Fig. 2. Each of the experiments was repeated five times and the mean and variance
of the observations are shown in the Figure. It is to be noted here that since we define the BO as a
minimization principle, we minimize 1

C
, S̃ and 1

E
.

A.4 COMPARING BAYESIAN OPTIMIZATION OBJECTIVE FUNCTIONS

We show the results of Bayesian Optimization results for the three cases we are considering in this
paper for both the classification and prediction problems. The results for the classification problem
are shown in Table 5. We tabulate the memory capacity, the average spike count and the observed
accuracy for the three BO cases. Similarly, the results for the prediction problem are shown in Table
6. In that case, we tabulate the memory capacity, the average spike count and the observed NRMSE
for the three BO cases. We rerun each of the experiments 5 times and report the mean and standard
deviation of the results obtained.

A.5 COMPARING THE GENERALIZABILITY

We observed that increasing the neuronal heterogeneity increases the memory capacity of the network.
However, this increment in the memory capacity might lead to a model which overfits the training data.
However, the heterogeneous STDP model with varying synaptic dynamics gives rise to a heavy-tailed
Feller process. Recent works by Simsekli et al. (2020) and Chakraborty & Mukhopadhyay (2021)
show that the generalization error can be controlled by the Hausdorff dimension of the trajectories of
the sample paths of the learning algorithm. This is intimately linked to the tail behavior of the driving
process. The authors showed that heavier-tailed processes achieve better generalization. Thus, the
tail index of the process can be used as a notion of capacity metric that estimates the generalization
error, which does not necessarily grow with the number of parameters. The authors discuss that the
stochastic process for the synaptic weights behaves like a Lévy motion around a local point. Because
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Table 5: Table showing the performance of the Bayesian Optimization on the SHD Classification
dataset for the three different cases where BO 1 optimizes C , BO 2 optimizes S̃ and BO 3 optimizes
E

N_R
BO 1

Memory
Capacity

BO 1
Average Spike

Count

BO 1
Accuracy

BO 2
Memory
Capacity

BO 2
Average Spike

Count

BO 2
Accuracy

BO 3
Memory
Capacity

BO 3
Average Spike

Count

BO 3
Accuracy

100 5.31 ± 0.36 1399.14 ± 113.66 67.41 ± 4.86 5.22 ± 0.58 1189.37 ± 86.95 66.23 ± 5.74 5.12 ± 0.31 1268.86 ± 91.15 68.67 ± 4.97
200 5.45 ± 0.39 1479.86 ± 133.72 67.85 ± 4.16 5.38 ± 0.53 1233.19 ± 122.56 67.21 ± 5.49 5.28 ± 0.34 1328.18 ± 131.45 69.54 ± 4.27
300 6.72 ± 0.4 1541.14 ± 148.83 68.41 ± 4.87 6.42 ± 0.57 1325.25 ± 128.47 67.95 ± 5.11 6.54 ± 0.36 1391.68 ± 140.37 70.1 ± 4.69
400 7.21 ± 0.44 1682.68 ± 239.95 70.11 ± 4.33 6.91 ± 0.51 1425.69 ± 129.57 68.23 ± 5.27 7.01 ± 0.35 1511.79 ± 200.96 71.54 ± 4.06
500 8.59 ± 0.48 1768.24 ± 287.94 71.05 ± 3.98 7.69 ± 0.46 1555.29 ± 139.17 69.31 ± 5.03 8.63 ± 0.38 1621.8 ± 250.46 73.05 ± 3.87
1000 11.22 ± 0.46 2251.17 ± 319.75 72.93 ± 3.38 9.03 ± 0.44 2015.24 ± 147.44 70.89 ± 4.91 12.25 ± 0.39 2102.59 ± 279.86 75.32 ± 3.44
2000 13.3 ± 0.51 2566.21 ± 348.68 75.36 ± 3.29 9.89 ± 0.46 2314.59 ± 151.18 72.33 ± 4.88 13.95 ± 0.37 2410.08 ± 301.57 77.25 ± 3.17
3000 14.47 ± 0.53 2825.47 ± 355.87 77.14 ± 3.38 10.48 ± 0.41 2623.41 ± 177.94 74.63 ± 4.93 14.88 ± 0.42 2708.52 ± 315.34 78.21 ± 3.24
4000 15.17 ± 0.52 3551.07 ± 366.19 78.05 ± 3.25 11.57 ± 0.45 3045.28 ± 225.53 75.15 ± 4.85 15.87 ± 0.38 3218.42 ± 328.19 79.36 ± 3.13
5000 15.64 ± 0.57 4186.49 ± 383.09 78.92 ± 3.31 11.68 ± 0.48 3294.62 ± 241.14 75.87 ± 4.81 16.03 ± 0.41 3573.51 ± 331.18 80.49 ± 3.15

Table 6: Table showing the performance of the Bayesian Optimization on the Lorenz System
Prediction dataset for the three different cases where BO 1 optimizes C , BO 2 optimizes S̃ and BO 3
optimizes E

N_R
BO 1

Memory
Capacity

BO 1
Average Spike

Count

BO 1
RMSE

BO 2
Memory
Capacity

BO 2
Average Spike

Count

BO 2
RMSE

BO 3
Memory
Capacity

BO 3
Average Spike

Count

BO 3
RMSE

100 3.56 ± 0.36 1354.35 ± 108.96 0.617 ± 0.019 3.02 ± 0.52 1101.25 ± 75.93 0.684 ± 0.026 3.45 ± 0.3 1207.52 ± 67.26 0.654 ± 0.0207
200 4.12 ± 0.39 1443.59 ± 127.23 0.587 ± 0.02 3.89 ± 0.48 1207.35 ± 118.57 0.639 ± 0.027 4.01 ± 0.33 1302.47 ± 96.05 0.613 ± 0.0218
300 5.26 ± 0.37 1499.62 ± 141.73 0.503 ± 0.027 4.44 ± 0.55 1257.26 ± 1257.26 0.558 ± 0.034 5.15 ± 0.34 1335.81 ± 168.02 0.531 ± 0.0287
400 6.37 ± 0.41 1528.73 ± 228.87 0.459 ± 0.033 5.87 ± 0.49 1304.35 ± 126.18 0.467 ± 0.04 6.05 ± 0.35 1415.32 ± 213.49 0.482 ± 0.0347
500 7.25 ± 0.45 1601.27 ± 277.97 0.389 ± 0.036 6.25 ± 0.45 1365.35 ± 137.04 0.421 ± 0.043 6.87 ± 0.36 1507.29 ± 219.58 0.411 ± 0.0377

1000 10.12 ± 0.43 1868.14 ± 301.17 0.316 ± 0.04 7.41 ± 0.51 1563.25 ± 146.76 0.396 ± 0.047 9.03 ± 0.37 1699.27 ± 275.79 0.332 ± 0.0417
2000 11.84 ± 0.48 2105.95 ± 331.54 0.293 ± 0.045 8.02 ± 0.5 1854.35 ± 150.28 0.351 ± 0.052 11.44 ± 0.39 2014.12 ± 280.03 0.301 ± 0.0467
3000 13.71 ± 0.51 2408.35 ± 348.26 0.258 ± 0.042 8.94 ± 0.53 2195.82 ± 179.75 0.335 ± 0.058 13.87 ± 0.4 2236.59 ± 281.05 0.241 ± 0.0482
4000 14.15 ± 0.52 2951.56 ± 352.66 0.242 ± 0.063 9.55 ± 0.55 2445.31 ± 217.73 0.326 ± 0.07 14.63 ± 0.41 2546.25 ± 289.81 0.227 ± 0.0649
5000 14.45 ± 0.54 3784.44 ± 353.51 0.203 ± 0.064 9.96 ± 0.58 2684.59 ± 234.63 0.302 ± 0.071 15.12 ± 0.42 2898.27 ± 307.14 0.195 ± 0.0655

of this locally regular behavior, the Hausdorff dimension can be bounded by the Blumenthal-Getoor
(BG) index (Blumenthal & Getoor, 1960), which in turn depends on the tail behavior of the Lévy
process. Thus, we can use the BG index as a bound for the Hausdorff dimension of the trajectories
from the STDP learning process. Now, as the Hausdorff dimension is a measure of the generalization
error and is also controlled by the tail behavior of the process, heavier tails imply less generalization
error. In this paper, we empirically study the generalization ability of the HRSNN network using the
BG index as a metric. We did the experiments on the 4 ablation study models for the classification
task on the SHD dataset, and the results are reported in Table 7. From the table, we see that the
heterogeneity in STDP improves the generalization error the most, while the heterogeneity in the LIF
neurons increases the training and testing accuracies.

A.6 RESULTS ON LIMITED TRAINING DATA

We have trained the models with limited training data. We observe that the HRSNN model with
heterogeneous LIF and STDP dynamics not only has better testing accuracy but also shows better
generalization behavior when compared to other homogeneous RSNN or the other ablation heteroge-
neous models (with heterogeneity in only one of them). Also, we see that the HRSNN model with
heterogeneous STDP shows distinctly better generalization ability than the generalization ability of

Table 7: Table showing the Ablation Study for the comparison of the Generalizability of heterogeneous
networks

BG Index Training
Accuracy (A)

Testing
Accuracy (B)

Generalization Error
(|A-B|)

Hom LIF
Hom STDP 1.522 87.33 73.58 13.75

Hom LIF
Het STDP 1.438 85.31 74.03 11.28

Het LIF
Hom STDP 1.835 95.29 78.87 16.42

Het LIF
Het STDP 1.711 94.32 80.49 13.83
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Table 8: Table showing results with limited training data

Percentange
Training Data

Train
Accuracy

(A)

Test
Accuracy

(B)

Generalization
Error
|A-B|

Train
Accuracy

(A)

Test
Accuracy

(B)

Generalization
Error
|A-B|

Heterogeneous LIF,
Heterogeneous STDP

Homogeneous LIF,
Homogeneous STDP

100 94.32 80.49 13.83 87.33 73.58 13.75
90 94.89 78.34 16.55 87.83 67.84 19.99
80 95.47 76.72 18.75 88.86 65.86 23
70 96.15 74.92 21.23 89.95 62.19 27.76
60 96.92 70.34 26.58 91.58 61.25 30.33
50 97.69 69.44 28.25 94.38 59.51 34.87
40 98.21 63.76 34.45 96.85 55.93 40.92
30 98.43 54.01 44.42 98.43 45.86 52.57
20 99.43 43.87 55.56 99.49 42.68 56.81
10 100 31.43 68.57 100 30.18 69.82
5 100 15.32 84.68 100 14.38 85.62

Heterogeneous LIF,
Homogeneous STDP

Homogeneous LIF,
Heterogeneous STDP

100 97.29 78.87 18.42 86.31 74.03 12.28
90 97.41 77.48 19.93 86.94 68.59 18.35
80 97.65 76.32 21.33 87.75 67.58 20.17
70 97.95 74.03 23.92 88.17 65.25 22.92
60 98.03 71.16 26.87 89.52 63.11 26.41
50 98.43 68.48 29.95 90.48 60.86 29.62
40 98.79 61.93 36.86 93.15 57.31 35.84
30 99.56 51.68 47.88 96.34 48.41 47.93
20 100 44.52 55.48 98.43 43.59 54.84
10 100 30.68 69.32 99.56 32.57 66.99
5 100 14.15 85.85 100 18.48 81.52

HRSNN with heterogeneous LIF neurons. On the other hand, the latter showcases significantly higher
training and testing accuracy compared to the former model. This can be interpreted as follows:
since heterogeneous LIF dynamics increase the memory capacity, it leads to an overfitting of the data.
Heterogeneous STDP dynamics help in obtaining more generalizable solutions from this. Each has
its own downsides; however, using HRSNN with both heterogeneous LIF and STDP dynamics shows
better performance and generalization abilities, as seen from Table 8.

A.7 FURTHER EVALUATIONS

In Section B, we argued that as the heterogeneity in the neuronal parameters increases, the covariance
decreases; hence the neurons become less correlated. In this section, we give empirical results to
support the theory.

• Impact of Heterogeneity on Covariance: We plot the covariance matrices for different
levels of heterogeneity J (Eq. 40) for a small network with 50 neurons. The covariance
matrix is calculated by taking the average neuronal states before the appearance of the first
spike in the final layer. We see that as the heterogeneity in the neuronal parameters increases,
the correlation between the neurons decreases. The results are shown in Fig. 3

• Impact of Heterogeneity on Principal Components: From the covariance plots, we see
that increasing J . reduces the correlation between neurons. We also plot the probability
density functions of the eigenvalues of the covariance matrix of the neurons with increasing
heterogeneity in the neuronal parameters. We see that with higher heterogeneity in the
neuronal parameters J , the distribution of the eigenvalues of the covariance becomes
flatter. This signifies that the covariance matrix has a lower variance for higher J . A flatter
distribution also indicates that a larger number of principal components are active. This
supports our hypothesis that heterogeneity in the neuronal parameters increases the number
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Figure 3: Figure showing as the heterogeneity in the neuronal parameters increases, the covariance
between the neurons decreases

Figure 4: With higher heterogeneity in the neuronal parametersH, the distribution of the eigenvalues
of the covariance becomes flatter. This signifies that the covariance matrix has a lower variance for
higher H. A flatter distribution also signifies a greater number of principal components are active,
which supports our hypothesis that heterogeneity in the neuronal parameters increases the number of
principal components and helps in increasing the memory capacity of the model.

of principal components and helps increase the model’s memory capacity. The result is
shown in this Fig. 4

• Impact of Heterogeneity in STDP on Firing Rate: We plot the mean firing rate of the
neurons for the four types of HRSNNs and MRSNN with homogeneous LIF and STDP
dynamics. We plot the results for a smaller network with 100 neurons and a Poisson input
process. We see that the MRSNN model shows a much higher firing rate, especially at a
higher frequency, demonstrating that MRSNN requires significantly more spikes than the
HRSNN model. The result is shown in Fig. 5

• Coupling Strength: We note here that in this paper, we use (homogeneous or heterogeneous)
STDP to learn the synaptic conductance connecting various neurons in the SNN. Therefore,
we do not control the synaptic coupling strength as independent variables and hence, cannot
perform control experiments with various extents of coupling strength. An interesting
future extension of the results will be to quantify the coupling strength for HRSNN with
heterogeneity in LIF and STDP dynamics. We can leverage McKenzie et al.McKenzie et al.
(2021), where the authors proposed statistical tools to estimate synaptic coupling dynamics
from spike-spike correlations.

B SUPPLEMENTARY SECTION B

B.1 APPROXIMATIONS AND ASSUMPTIONS

We make several approximations and assumptions for this section’s theoretical analysis of the
heterogeneous RSNN networks. Firstly, it must be noted that in this paper, the analytical relations are
derived by taking the heterogeneity individually. i.e., when we consider heterogeneity in the neuronal
parameters, we consider homogeneous STDP dynamics and vice-versa. In addition to this, we assume
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Figure 5: Figure showing the histograms of the firing rates for the four kinds of heterogeneous RSNN
with homogeneous /heterogeneous neurons and synapses

diffusion approximation. That is, if a neuron receives Poissonian uncorrelated input spike trains and
the contribution of a single synaptic connection is small compared to the distance between reset and
threshold w ≪ (VΘ − V0), the random input can be approximated by Gaussian white noise with mean
µ and noise intensity σ2. This approximation does not hold if the network features highly correlated
activity or receives strong external input common to many neurons. Also, we assume a fast/slow
synaptic regime in which the synaptic time constant τs is much shorter/longer than the membrane
time constant τm. In this work, we consider a mean-field approximation of the HRSNN network with
heterogeneity in the parameters of the LIF neurons and the STDP dynamics independently.

B.2 MEAN-FIELD REDUCTION MODEL OF HRSNN

In this section, we model the HRSNN network using heterogeneity in only the LIF neuron parameters.
Following the works of Ly (2015), we can write the equations for the excitatory neurons indexed by
j ∈ {1,2, . . . ,Ne} are:

τm
dvj

dt
= −vj − gie(t) (vj − EI) − gee(t) (vj − EE) + σEηj(t) (5)

vj (t
∗
) ≥ θj( refractory period )⇒ vj (t

∗
+ τref) = 0 (6)

τn
dηj

dt
= −ηj +

√
τnξj(t) (7)

gee(t) = qj
γee

peeNe
∑

j′∈{ presyn E cells}
Gj′(t) (8)

gei(t) =
γei

peiNi
∑

k′∈{ presyn I cells}
Gk′(t) (9)

τd
dGj

dt
= −Gj +Aj (10)

τr
dAj

dt
= −Aj + τrα∑

l

δ (t − tl) (11)

where the inhibitory and excitatory reversal potentials are EI , and EE , respectively, with EI < 0 < EE .
ξj(t) are uncorrelated white noise processes, pxy is the proportion of neuron type y (randomly chosen)
that provides presynaptic input to neuron type x (x, y ∈ {e, i}). The second line in the equations
describes the refractory period at spike time t∗. When the neuron’s voltage crosses threshold θj , the
neuron goes into a refractory period for τref where the voltage is undefined, after which we set the
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neuron’s voltage to 0. In the last equation, tl denotes the spike times of the j th excitatory neuron.
Now, for the mean-field analysis, we use qji to model the synaptic heterogeneity between the pre-and
post-synaptic neurons by modulating the synaptic conductance for both the excitatory and inhibitory
neurons.

We note here the numerical assumptions for the mean-field analysis:

1. finite size effects are negligible (N e/i≫ 1 )

2. the firing rate of presynaptic neurons is governed by a Poisson process

3. the population firing rate averaged over q and τm is a good approximation to the average
presynaptic input rate and

4. a single p.d.f. function is sufficient to describe the population behavior) (finite N )

Similarly, for the inhibitory neurons indexed by k ∈ {1,2, . . . ,Ni}, the equations are:

τm
dvk
dt
= −vk − gii(t) (vk − EI) − gei(t) (vk − EE) + σIηk(t) (12)

vk (t
∗
) ≥ 1( refractory period )⇒ vj (t

∗
+ τref) = 0 (13)

τn
dηk
dt
= −ηk +

√
τnξk(t) (14)

gie(t) = qj
γie

pieNe
∑

k′∈{ presyn I cells}
Gk′(t) (15)

gii(t) =
γii

piiNi
∑

k′∈ {presyn I cells}
Gk′(t) (16)

τd
dGk

dt
= −Gk +Ak (17)

τr
dAk

dt
= −Ak + τrα∑

l

δ (t − tl) (18)

For details regarding the equations, please refer to the paper by Ly (2015). Since the recurrent coupled
stochastic network is difficult to describe theoretically, we use population density methods, where the
probability of a neuron being in a particular state is determined by an equation. The variables in the
populations are determined using distribution functions. The two forms of heterogeneity introduce a
large number of dimensions. For simplicity, one can track a family of probability density functions
for each (qj , τj) pair for each neuron. The subsequent equations are a good approximation to the
HRSNN network with the following assumptions: (i) finite size effects are negligible (Ne/i ≫ 1) (ii)
the firing rate of presynaptic neurons is governed by a Poisson process (iii) the population firing rate
averaged over q and τm is a good approximation to the average presynaptic input rate (iv) a single
p.d.f. function is sufficient to describe the population behavior, and the heterogeneity is driven by
(qj , τm, j) For each pair of values (qj , τm, j), the probability density function ρ is defined by:

∫
Ω
ρ (vE ,wE , vI ,wI , t)dvEdwEdvIdwI = Pr((vE(t),wE(t), vI(t),wI(t)) ∈ Ω) (19)

where wX denotes the other states variables of the corresponding neuron type X ∈ {E, I}, consisting
of conductance, colored noise: wX = (gX , aX , ηX). The evolution of the p.d.f.’s is governed by a
continuity equation and boundary conditions:
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∂ρ

∂t
= −∇ ⋅ J (20)

J ∶= (JvE , JgE , JaE
, JηE

, JvI , JgI , JaI
, JηI
) (21)

JvE ∶= −
1

τm
[vE + qγeigI (vE − EI) + qγeegE (vE − EE) + σEηE]ρ (22)

JvI ∶= −
1

τm
[vI + γiigI (vI − EI) + γiegE (vI − EE) + σIηI]ρ (23)

JgX ∶= −
1

τd
[gX − aX]ρ (24)

JaX
∶= −

aX
τr
+ vX(t)∫

aX

aX−αX

ρ (. . . , a′X , . . .)da′X (25)

JηX
∶= −

1

τn
ηXρ +

1

τn

∂2ρ

∂η2X
(26)

vX(t) ∶=
y 1

τm
JvXdwXdqdτm (27)

JwX
∣ ∂wX = 0 (28)

The definitions of gXY in the LIF neuron equations defined above result in a total conductance of
γXY gY on average.

We describe an insightful analytic reduction that captures how the range of excitatory firing rates
changes in different regimes. We focus on only the excitatory neurons, which have fewer state
variables if the inhibitory population is ignored or assumed to be known.

Let us denote the approximate excitatory firing rate(s) vE as r. The deterministic firing rate of the
equation

τm
dvE
dt
= −vE − qg̃I (vE − EI) − qg̃E (vE − EE) + η̃E (29)

is given by

r0(q, τm; w̃E) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, if q(g̃EEE+g̃IEI)+η̃E

1+q(g̃E+g̃I)
≤ θ

1+q(g̃E+g̃I)

τm(g̃
∗
E
EE+g̃IEI)+η̃E

if q(g̃EEE+g̃IEI)+η̃E

1+q(g̃E+g̃I)
> θ

(30)

We define: g̃E ∶= γeegE , g̃I ∶= γeigI , η̃E ∶= σEηE . Finally, the given state variables are integrated
against their marginal density to get:

r(q, θ) = E [
r0

1 + r0τref
] = ∫

r0
1 + r0τref

ρ̃ (g̃E , g̃I , η̃E)dw̃E (31)

There is a slight abuse of notation because the auxiliary variables aX effect the conductances but are
not written in the previous equation; the emphasis is on how (g̃E , g̃I , η̃E) directly effects r. Since the
external noise is applied indiscriminately, η̃E is independent of the other variables and the marginal
density factors into:

ρ̃ (g̃E , g̃I , η̃E) = ρ̃ (g̃E , g̃I)
e−(η̃E/σE)

2

σE
√
π

(32)

However, ρ̃ (g̃E , g̃I) is still not analytically tractable, leading us to rely on Monte Carlo simulations
to numerically estimate ρ̃ (g̃E , g̃I).

It must be noted here that this is a reduction model for the HRSNN network with many simplifying
assumptions. It is not a complete mean-field derivation of the HRSNN model with heterogeneous
LIF neurons, and heterogeneous STDP dynamics is a fascinating research question but beyond the
scope of this paper.
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Figure 6: (a)Figure showing the variation of memory capacity with neuronal heterogeneity (b) Figure
showing the variation of efficiency E with number of neurons NR

B.3 ANALYTICAL RESULTS

Analytical Results of Memory Capacity Neuroscience networks of spiking neurons are increasingly
used to understand mechanisms underlying phenomena observed in electrophysiological recordings.
There are two complementary strategies for studying such a recurrent network of spiking neurons
- (a) numerical simulations and (b) analytical methods using mean field models. With numerical
simulations, we can simulate any network model without any approximation. However, this method
typically works in high dimensional parameter space and is, thus, hard to interpret. Also, it is generally
hard to characterize parameter regions where specific behaviors are found using numerical simulations.
On the other hand, with analytical calculations, we obtain deeper insights into mechanisms underlying
specific behaviors and can obtain critical parameters that control specific behaviors. So, now, we
analytically study the variance of the estimated memory capacity with the change in the heterogeneity
of neuronal parameters. We plot the change in the estimated memory capacity C, calculated using
Eq. ??. We plot this with respect to the neuronal heterogeneityH, measured using the entropy of the
neuronal parameters for the HRSNN model. The result is plotted in Fig. 6(a). We use a HRSNN
model with NR = 1000 and sequences of 4,000 random inputs chosen from U[−1; 1]. We see that, as
predicted, the memory capacity of the model increases linearly with the increase in heterogeneity
within the limits of the application, as proved in Theorem 1. The error bars in Fig. 6(a) represent the
standard deviation of the observations.

Analytical Study of Spike Efficiency We calculate the average firing rate of the heterogeneous
spiking neural network for the prediction task during inference, and the results are shown in Fig 6(b).
Using heterogeneity in the STDP parameters reduces the average number of spiking activations while
keeping the memory capacity almost equal. This result shows that Heterogeneous STDP leads to
sparse activation of neurons, as proved in Theorem 2.

Comparison with Neuroscience Works: We compare the analytical results obtained with some
of the standard recurrent LIF network models in the literature. Brunel (2000) analytically study the
dynamics of sparsely connected a network of sparsely connected excitatory and inhibitory integrate-
and-fire neurons. The authors showed the existence of a diverse set of states, including synchronous
states in which neurons fire regularly; asynchronous states with stationary global activity and very
irregular individual cell activity; and states in which the global activity oscillates but individual
cells fire irregularly, typically at rates lower than the global oscillation frequency. In this paper, we
use heterogeneity in the LIF neurons. This leads to a diverse set of states for the neurons, which
consequently helps orthogonalize the state space dynamics to increase the information stored in the
memory of the network.

Denève & Machens (2016) discussed the inefficiency of irregular Poisson rate encoding in the
brain. The authors argue that the Poisson point process, which we use to model the spike firing
rate, is extremely inefficient as it exponentially increases the number of spikes required to convey
information. The authors further discuss that in neuroscience, there exists a continuum between
loosely balanced and tightly balanced spike-coding networks. Though loosely balanced networks are
inefficient, they are cheap in terms of the number of connections per neuron and structure (Boerlin
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et al., 2013; Boerlin & Denève, 2011; Bourdoukan et al., 2012). On the other hand, tightly-balanced
spike-coding networks are highly efficient but extremely structured, dense connections that must
constantly be maintained by STDP rules. For the HRSNN model, since we are engineering an
artificial spiking neural network model, our network is highly structured and constantly updated
using the heterogeneous STDP rules. Thus, we might say that the HRSNN model is a tightly-coupled
network that helps in an efficient transfer of information. This hypothesis is supported by the results
shown in Table ??, where the HRSNN model shows a higher performance using a lesser number of
spikes.

B.4 MEMORY CAPACITY

Let x(t) ∈ U (where −∞ < t < +∞ and U ⊂ R is a compact interval) be a single-channel stationary
input signal. Assume that we have an RSNN, specified by its internal weight matrix W, its input
weight vector win and the unit output functions f , f out . The network receives x(t) at its input unit.
For a given delay τ and an output unit yτ with connection weight vector wout

τ we consider the
determination coefficient

d [wout
τ ] (x(t − τ), yτ(t)) =

= d(x(t − τ),wout
τ (

x(t)
r(t)

)

=
Cov2 (x(t − τ), yτ(t))

σ2(x(t))σ2 (yτ(t))

where Cov denotes covariance and σ2 variance. The τ -delay Memory capacity of the network is

defined by Cτ =max
wout

τ

d [wout
τ ] (x(t − τ), yτ(t)). The Memory capacity of the network is C =

∞

∑
τ=1

Cτ .

The determination coefficient of two signals is the squared correlation coefficient. It ranges between
0 and 1 and represents the fraction of variance explainable in one signal by the other. Thus, the
Memory capacity measures how much variance of the delayed input signal can be recovered from
optimally trained output units, summed over all delays. Note that the output units do not interfere;
arbitrarily, many output units yτ can be attached to the same network.

The performance of the heterogeneous network model derives from its ability to retain the memory of
previous inputs. To quantify the relationship between the recurrent layer dynamics and the memory
capacity, we note that the extraction of information from the recurrent layer is made through a linear
combination of the neurons’ states. Hence, more linearly independent neurons would offer more
variable states and, thus, more extended memory.

For reservoir computing (RC), Jaeger (2002) shows that C is bounded by the reservoir network size
of the linear RC with the identity activation function and the independent and identically distributed
(i.i.d.) model input. Memory capacity ( C) is used to quantify the memory of RSNN. Such memory
capacity measures the ability of RC to reconstruct precisely the past information of the model input.
Also, the network’s structural properties can greatly impact the C of the linear RC. Now, the question
arises what is the need to maximize the memory capacity of the network? The C normally serves
as a global index to quantify the memory property of the network. To comprehensively examine
the memory property deeply, the local measurement of its memory property is indispensable. Thus,
maximizing the C acts as an estimator for better prediction results of the trained network.

Since the first-order approximation of the model is linear, the heterogeneity between state variables
depends on all the eigenvalues of the adjacency matrix, with a larger mean eigenvalue meaning higher
heterogeneity. Hence we can use the eigenvalues {λi} of the weight matrix W to quantify how fast
the input decays in the recurrent layer approximately. In other words, the eigenvalues of W should be
related to the memory capacity of the heterogeneous neural network model. Indeed, we find that the
average eigenvalue modulus: ⟨∣λ∣⟩ = 1/NR∑

NR

i=1 ∣λi∣ strongly correlates withH and therefore with C
as well. Note that, as opposed to C andH, ⟨∣λ∣⟩ is much easier to compute and is solely determined
by the recurrent layer network.

The memory capacity reflects the precision with which previous inputs can be recovered. The
nonlinearity of the recurrent layer and other far-in-the-past inputs induce noise that complicates
recovery. Thus, similar to the analysis done by Aceituno et al. (2020) for Echo state networks, the
variance of the linear part of the recurrent layer is placed to maximize the recoverable information.
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Thus, the inputs are projected into orthogonal directions of the recurrent layer state space to not add
noise to each other. The variance spread across the different dimensions should be evenly distributed
within those orthogonal directions, quantified by the neurons’ covariance.

We start by noticing that the linear nature of the projection vector wout implies that we are treating
the system as

r(t) =
∞

∑
τ=0

aτx(t − τ) + ε(t) (33)

where the vectors aτ ∈ RNR correspond to the linearly extractable effect of x(t − τ) onto r(t) and
ε(t) is the nonlinear contribution of all the inputs onto the state of r(t).

Previous works have shown that linear recurrent layers have more extended memory, but nonlinearity
is needed to perform interesting computations. Here we show that for a fixed ratio of the nonlinearity,
greater heterogeneity leads to a lesser neuronal correlation, leading to a higher memory capacity.

To maintain this trade-off between linear and non-linear behavior, we will assume that linear and
non-linear strengths distribution is fixed. This can be achieved if we impose that the probabilities of
the neuron states do not change, meaning that the mean, variance, and other moments of the neuron
outputs are unchanged; hence, the strength of the non-linear effects is unchanged. A first constraint
can also be obtained from the maintained strength of the linear side of Eq.33

Var(
∞

∑
τ=1

aτx(t − τ)) = c (34)

where c is a constant.

Lemma 3.1.1: The state of the neuron can be written as follows:

ri(t) =
NR

∑
k=0

NR

∑
n=1

λk
n ⟨v

−1
n ,win⟩ (vn)i x(t − k) (35)

where vn,v
−1
n ∈V are, respectively, the left and right eigenvectors of W, and λk

n ∈ λ belongs to the
diagonal matrix containing the eigenvalues of W; ai = [ai,0, ai,1, . . .] represents the coefficients that
the previous inputs xt = [x(t), x(t − 1), . . .] have on ri(t).

Proof: We build on the work of Aceituno et al. (2020) where they showed that higher heterogeneity
among the neuronal states implies higher memory capacity. Here we aim to show that as the number
of neurons NR in the recurrent layer decreases, heterogeneity increases the spectral radius. More
formally, the spectral radius ∣λn∣ is directly proportional toH as NR decreases. We express the state
of a neuron ri(t) as

ri(t) =
∞

∑
k=0

(W kwin)
i
x(t − k) =

∞

∑
k=0

ai,kx(t − k) = ⟨ai,xt⟩ (36)

where the vector ai = [ai,0, ai,1, . . .] represents the coefficients that the previous inputs xt =

[x(t), x(t − 1), . . .] have on ri(t). We can then plug this into the covariance between two neu-
rons,

Cov (ri, rj) = lim
T→∞

1

T

t+T

∑
q=t

⟨ai,xq⟩ ⟨aj ,xq⟩

= ⟨ai,aj⟩ lim
T→∞

1

T

T

∑
qi=0

T

∑
qj=0

⟨xqi ,xqj ⟩

= ⟨ai,aj⟩ lim
T→∞

1

T

T

∑
q=0

⟨xq,xq⟩

= ⟨ai,aj⟩ ×E [x2
(t)]

= ⟨ai,aj⟩ (37)
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Now we write ai as a function of the eigenvalues of W. Using the eigenvalue decomposition of the
weight matrix W, we rewrite the state of the neuron as follows:

ri(t) =
NR

∑
k=0

NR

∑
n=1

λk
n ⟨v

−1
n ,win⟩ (vn)i x(t − k) (38)

where vn,v
−1
n ∈V are, respectively, the left and right eigenvectors of W, and λk

n ∈ λ belongs to the
diagonal matrix containing the eigenvalues of W; ai = [ai,0, ai,1, . . .] represents the coefficients that
the previous inputs xt = [x(t), x(t − 1), . . .] have on ri(t). ∎

Theorem 1: If the memory capacity of the HRSNN and MRSNN networks are denoted by CH and CM
respectively, then, CH ≥ CM , where the heterogeneity in the neuronal parametersH varies inversely
to the correlation among the neuronal states measured as ∑NR

n=1∑
NR
m=1Cov

2
(xn(t), xm(t)) which in

turn varies inversely with C.

Proof: As shown by Aceituno et al. (2020), the memory capacity increases when the variance
along the projections of the input into the recurrent layer state has higher heterogeneity. This can be
expressed in terms of the state space of the recurrent layer. Now, we aim to project the inputs into
orthogonal directions of the network state space. Thus, we model the system as

r(t) =
∞

∑
τ=1

aτx(t − τ) + ε(t) (39)

where the vectors aτ ∈ RN correspond to the linearly extractable effect of x(t − τ) onto r(t) and
ε(t) is the nonlinear contribution of all the inputs onto the state of r(t).

Since our goal is to have a variance as homogeneous as possible along with the directions of aτ , we
need a variance that is as homogeneous along with orthogonal directions, where the vectors aτ ∈ RN

correspond to the linearly extractable effect of the input variable x(t) onto the states of the neurons
(r(t)). Since the eigenvectors of Σ preserve orthogonality across the covariance matrix Σ, the new
variances are given by the eigenvalues of the covariance matrix, λn(Σ). Thus, we work on the
distribution of the eigenvalues of the covariance matrix. Specifically, we want to show that increasing
the heterogeneity in the neuronal membrane time constants decreases the correlation between the
neuron states, which decreases the variance of the neuronal states of the eigenvalues, which would
increase the memory capacity C. We quantify the heterogeneity using the mean with respect to the
square root of the raw variance of the eigenvalues of the covariance matrix given by

J =
∑

NR
n=1 λ

2
n(Σ)

(∑
NR
n=1 λn(Σ))

2
(40)

where λn(Σ) is the nth eigenvalue of Σ. To get an intuition of how this metric reflects the hetero-
geneity in the neuronal parameters, consider the case of two eigenvalues λ1, λ2; when λ1 = λ2-very
homogeneous − then J = 1

2
, but when λ1 > 0, λ2 = 0− heterogeneity is more and hence, J = 1. The

membrane time constant is given by the product of the membrane resistance Rm and membrane
capacitance Cm, such that τm = RmCm. Rm is the inverse of the permeability; the higher the
permeability, the lower the resistance, and vice versa. Thus, the lower the time constant, the faster or
more rapidly a membrane will respond to a stimulus. The effects of the time constant on propagation
velocity will become clear below. Hence, variability in the membrane time constants will lead to
variability in the propagation velocity of action potentials.

Now,

(
NR

∑
n=1

λn(Σ))

2

= (tr[Σ])2 = (
NR

∑
n=1

Var (rn(t)))
2 (41)

which is constant by the assumption that the probability distributions of the neuron activities are fixed.
Hence we can focus on the value of ∑NR

n=1 λ
2
n(Σ) which is true since

Σken(Σ) = λn(Σ)Σ
k−1en(Σ) = λ

k
n(Σ)en(Σ)⇒

NR

∑
n=1

λ2
n(Σ) = tr [Σ

2] (42)
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where en(Σ) and λn(Σ) are, resp. the nth eigenvector and eigenvalue of Σ. Hence, we can compute
this by decomposing the square of the covariance matrix as follows:

NR

∑
n=1

λ2
n(Σ) =

NR

∑
n=1

NR

∑
m=1

ΣnmΣmn =
NR

∑
n=1

NR

∑
m=1

Cov2 (xn(t), xm(t)) (43)

where Σij are the factor matrices obtained using Cholesky decomposition of Σ. Thus, ∑NR
n=1 λ

2
n(Σ)

increases as the neurons become more correlated; hence heterogeneity decreases.

Thus, from Eqs. 40, 43 we can write the heterogeneity as inversely proportional to
∑

NR
n=1Cov

2
(xn(t), xm(t)). We see that increasing the correlations between neuronal states de-

creases the heterogeneity of the eigenvalues, which would reduce the memory capacity of the model.
We show that the determinant of the covariance between neuronal parameters bounds the heterogene-
ity. Thus, asH increases → covariance decreases → neurons become less correlated. Aceituno et al.
(2020) proved that the neuronal state correlation is inversely related to the memory capacity of the
network. Hence, we claim that as H increases, the memory capacity C also increases. Hence, for
HRSNN, withH > 0, CH ≥ CM . ∎

B.5 SPIKING EFFICIENCY

In this section, we model the spiking activity using a point process called the multivariate Point
process model. A point process is a collection of random points on some underlying mathematical
space, such as the real line, the Cartesian plane, or more abstract spaces.

The notion of using point process models, especially the interactive Hawkes processes, to model the
spiking dynamics of LIF network dynamics has been studied in the literature previously (Löcherbach,
2017; Galves & Löcherbach, 2016; Mascart, 2021; Pfaffelhuber et al., 2022). We leverage these
results to prove that heterogeneity in the synaptic dynamics can help reduce the spike count, as
already discussed in the paper. We highlighted the key assumptions used in deriving the results in the
Suppl. Sec. C. We apologize if there is still confusion, and we will add more in-depth discussion
in the final manuscript as discussed below. In their paper, Löcherbach (2017) provide a survey
of some aspects of the study of Hawkes processes in high dimensions to model biological neural
systems and study their long-term behavior. Galves & Löcherbach (2016) provided an overview of
point processes used as stochastic models for interacting neurons in discrete and continuous time.
Similarly, Hawkes processes have met a recent interest in the mathematical neuroscience literature for
their ability to model the dependence of a neuron’s activity in the network’s history (Mascart, 2021;
Pfaffelhuber et al., 2022; Galves & Löcherbach, 2016; Gerhard et al., 2017; Zhou et al., 2020; Duval
et al., 2022). Other works have also used a nonlinear interactive Hawkes process to model spiking
neural networks with excitatory and inhibitory neurons (Chevallier et al., 2015; Chornoboy et al.,
1988; Hansen et al., 2015; Reynaud-Bouret et al., 2014). Taking inspiration from these works, we use
a microscopic model describing a large network of interacting neurons that can generate oscillations
in a macroscopic frame. In the model, the activity of each neuron is represented by a point process
indicating the successive times at which the neuron emits a spike, where each realization of this point
process is the spike train. We take the spiking intensity of a neuron as the probability of emitting a
spike during the next time instant, depending on the past history of the neuron and the activity of
other neurons in the network. The neurons interact through their synapses. This means that a spike of
a pre-synaptic neuron leads to an increase of the membrane potential of the post-synaptic neuron if
the synapse is excitatory or to a decrease if the synapse is inhibitory, possibly after some delay, like
the process of synaptic integration. When the membrane potential reaches a certain upper threshold,
the neuron fires a spike. Thus, excitatory inputs from the neurons in the network increase the firing
intensity, and inhibitory inputs decrease it. Hawkes processes provide good models of this synaptic
integration phenomenon by the structure of their intensity processes. In this paper, we use a general
class of mean-field interacting Hawkes processes, modeling the reciprocal interactions between a
population of excitatory neurons and a population of inhibitory neurons.

Let us consider a subsection of the HRSNN network as shown in Fig. 7 denoted by Nx. We use the
multivariate Point process model to create a probabilistic model that relates the inner structure of the
sub-network and its spiking activity. In this model, each neuron i has a background spiking intensity
νi caused by neurons outside the network. We know that when a neuron spikes, it exerts an impact on
its own spiking activity and the spiking activity of its output neurons. The impact of a neuron j on
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Figure 7: Figure showing the excitatory and inhibitory pre-synaptic neurons with excitatory and
inhibitory spikes respectively incident on the post-synaptic neuron. We use this model to model the
nonlinear interacting Hawkes process with inhibition.

neuron i is modeled by a real function hj→i(t). This impact can be excitatory or inhibitory depending
on whether the pre-synaptic neuron is excitatory or inhibitory, as shown in Fig. 7. While the spikes
from excitatory neurons try to excite another spike, spikes originating from inhibitory neurons try to
inhibit the spiking of the cascading neuron.

A Hawkes process is a point process in which each point is commonly associated with event
occurrences in time, where every event time impacts the probability that other events will take place
subsequently. These processes are characterized by the conditional intensity function, seen as an
instantaneous measure of the probability of event occurrences. A Hawkes process is a point process
in which each point is commonly associated with event occurrences. In this past-dependent model,
every event time impacts the probability that other events take place subsequently. These processes
are characterized by the conditional intensity function, seen as an instantaneous measure of the
probability of event occurrences. Although the self-exciting Hawkes process remains widely studied,
there has been a growing interest in modeling the opposite effect, known as inhibition, in which
the probability of observing an event is lowered by the apparition of certain events. In practice,
this amounts to considering negative kernel functions. To maintain the positivity of the intensity
function, a non-linear operator is added to the expression, which in turn entails the loss of the cluster
representation. This model is known as the non-linear Hawkes process, where the existence of such
processes was proved via construction using bi-dimensional marked Poisson processes. The general
Hawkes framework can be written as:

λi
t = Φi

⎛

⎝
∑

j∈Si,E

∫

t

0
hj→i(t − u)dZ

j
u

⎞

⎠
, (44)

where λi
t is the intensity of neuron i,Φi a positive function, Zj,t is the counting process associated

with neuron j, hj→i(t) is the synaptic kernel associated with the synapse between neurons j and i.

To simplify the notation, we can rewrite Eq. 44 as

λi(t) = Φi (∑
k∈I
∫
(0,t)

hki(t − s)dZk(s)) . (45)

where hik(t − s) measures the influence of neuron k on neuron i and how this influence vanishes
with the time. More precisely, hik(t − s) describes how a spike of neuron k lying back t − s time
units in the past influences the present spiking rate at time t.

The goal of using heterogeneity in the STDP dynamics is to get better orthogonalization among
the recurrent network states to lower higher-order correlations in spike trains. Studies have shown
that the correlation of higher order progressively decreases the information available through neural
population (Montani et al., 2009; Abbott & Dayan, 1999). Since we are trying to engineer a spike-
efficient model, we leverage the heterogeneity in the STDP dynamics to reduce the higher-order
correlations. The hypothesis is that using heterogeneity in STDP helps us orthogonalize the recurrent
layer that can help us achieve an efficient representation of the input spike patterns with fewer spikes.
This may be interpreted as the recurrent layer acting as an orthogonal bases function where inputs are
projected onto these bases. Thus, having orthogonal bases can efficiently map inputs without much
loss. While heterogeneous LIF neurons help us increase the number of principal components, thereby
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enabling us to store a greater subclass of features, heterogeneous STDP helps us efficiently encode
this orthogonalization of the recurrent layer, resulting in fewer spikes compared to a homogeneous
RSNN. Thus, in effect, heterogeneous STDP parameters can learn the output more precisely, which is
projected back into the recurrent network. One of the primary reasons why heterogeneous STDP helps
project the input to orthogonal activations of the recurrent network can be attributed to the distribution
of LTD dynamics, as this increases the competition and helps in distributing the projection of the
inputs to multiple principal components. We discuss that the heterogeneous LTP/LTD dynamics in
STDP lead to fewer spikes in the transmission of information.

Lemma 3.2.1: If the neuronal firing rate of the HRSNN network with only heterogeneity in LTP/LTD
dynamics of STDP is represented as ΦR and that of MRSNN represented as ΦM , then the HRSNN
model promotes sparsity in the neural firing which can be represented as ΦR < ΦM .

Proof: In this lemma, we show that the average firing rate of the model with heterogeneous STDP
(LTP/LTD) dynamics (averaged over the population of neurons) is lesser than the corresponding
average neuronal activation rate for a model with homogeneous STDP dynamics. We prove this by
taking a sub-network of the HRSNN model as illustrated by Fig. 7. Now, we model the input spike
trains of the pre-synaptic neurons using a multivariate interactive, nonlinear Hawkes process with
multiplicative inhibition (Duval et al., 2022).

We consider a population of neurons of size N that is divided into population A (excitatory) with size
NA ∶= αN and a population B (inhibitory) with size NB = (1 − α)N . A particular instance of the
model is then given in terms of a family of counting processes (Z1

t , . . . , Z
NA
t ) (population A) and

(ZNA+1
t , . . . , ZN

t ) (population B ) with coupled conditional stochastic intensities given respectively
by λA and λB . Consider on a filtered probability space (Ω,F , (Ft)t≥0 ,P) an independent family
of i.i.d. Poisson measures (πi( ds, dz), i ∈ {1, . . . ,N}) with intensity measure ds × dz on [0,∞) ×
[0,∞). Let (x, y)↦ F (x, y) and (x, y)↦ G(x, y) two nonnegative functions defined on (0,∞)2.
We assume that F and G satisfy

F (x, y) = ΦA(x)ΦB→A(y),G(x, y) = ΦB(x) +ΦA→B(y),

where ΦA,ΦB→A,ΦB and ΦA→B are nonnegative functions, each of them globally Lipschitz with
ΦB→A bounded (and with no loss of generality we assume 0 ≤ ΦB→A ≤ 1 ).

Let us consider the family of càdlàg (Ft)t≥0 point processes (Zi
t)t≥0,i=1,...,N

given by

Zi
t = ∫

t

0
∫

∞

0
1z⩽λi

s
πi( ds, dz), i = 1, . . . ,N,

where the intensity λi, i = 1, . . . ,N , is given as:

λA,N
t ∶= ΦA

⎛

⎝

1

N
∑
j∈A
∫

t−

0
h1(t − u)dZ

j
u

⎞

⎠
ΦB→A

⎛

⎝

1

N
∑
j∈B
∫

t−

0
h2(t − u)dZ

j
u

⎞

⎠
(46)

λB,N
t ∶= ΦB

⎛

⎝

1

N
∑
j∈B
∫

t−

0
h3(t − u)dZ

j
u

⎞

⎠
+ΦA→B

⎛

⎝

1

N
∑
j∈A
∫

t−

0
h4(t − u)dZ

j
u

⎞

⎠
(47)

, where A&B are the populations of the excitatory and inhibitory neurons, respectively.

The dynamics given by Eq. 47 is of Hawkes type: each particle’s intensity depends on the whole
system’s history, through memory kernels hi, i = 1, . . . ,4 and firing rate functions ΦA and ΦB .
The multiplicative influence of inhibitory population B onto population A, is represented using the
inhibition kernel ΦB→A which is a decreasing nonnegative function on [0,+∞), with ΦB→A(0) = 1
and ΦB→A(x) Ð→

x→∞
0- i.e., activity of population A should decrease as activity of population B

rises. The model secondly incorporates retroaction from population A onto population B, which is
supposed to be mostly additive, although possibly modulated by a nonlinear feedback kernel ΦA→B .

Now, without loss of generality we assume that ΦA and ΦB are linear - i.e., ΦA(x) = µA+x,ΦB(x) =
µB + x,x ≥ 0, where µA, µB ≥ 0, and hi ≥ 0 for i = 1, . . . ,4.
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Hence, Eq. 47 becomes
⎧⎪⎪
⎨
⎪⎪⎩

λA
t = (µA + α ∫

t
0 h1(t − u)λ

A
u du)ΦB→A ((1 − α) ∫

t
0 h2(t − u)λ

B
u du) ,

λB
t = µB + (1 − α) ∫

t
0 h3(t − u)λ

B
u du +ΦA→B (α ∫

t
0 h4(t − u)λ

A
u du) .

(48)

For heterogeneous neuron populations, there exists an asymmetry of the weights. Based on balanced
spiking neural networks with heterogeneous connection strengths, previous works have revealed
that such heterogeneous networks possess heavy-tailed Lévy fluctuations (Shlesinger et al., 1987;
Mantegna & Stanley, 1995; Cossell et al., 2015). The heterogeneous heavy-tailed distributions of
synaptic weights have been fitted to lognormal distributions (Buzsáki & Mizuseki, 2014; Kuśmierz
et al., 2020). We model the inputs to neuron i ∈ E as:

li(t) =WEXτmE ∑
j∈X

cijsj(t) +WEEτmE ∑
j∈E

cijsj(t) −WEIτmE∑
j∈I

cijsj(t) (49)

= µ1E +∆µi + ηi(t) (50)

where µ denotes the mean inputs such that µE = KτmE (WEXrX +WEErE −WEIrl);
∆µi = ’quenched’ fluctuations (from neuron to neuron) with variance ⟨∆µ2⟩

E
=

Kτ2mE (W
2
EX (r

2
X +∆r2X) +W

2
EE (r

2
E +∆r2E) +W

2
EI (r

2
I +∆r2I)) due to random connectivity.

Finally, ηi denotes temporal fluctuations due to spiking activity. We assume that the pre-synaptic
neurons fire as using the interactive Hawkes process described above.

Consider a case where µA ≫ 1, µB = 0 and h = 1[0,θ]

⎧⎪⎪
⎨
⎪⎪⎩

λA
t ∶= (µA + α ∫

t
0 h1(t − u)dλ

A
u )ΦB→A ((1 − α) ∫

t
0 h2(t − u)dλ

B
u ) ,

λB
t ∶= (1 − α) ∫

t
0 h3(t − u)dλ

B
u + α ∫

t
0 h4(t − u)dλ

A
u .

(51)

In a normal case, the excitatory and inhibitory populations follow the following steps: (1) t ≈ 0, λA
t ≈

µA is high and λB
t ≈ 0 is small (2) Feedback from A to B ∶ λB

t increases (3) Inhibition of B to A :
when λB

t gets high, ΦB→A reduces λA
t (4) h4 has compact support: after a time θ4,B no longer feels

the influence of A : intensity of B is back to µB ≈ 0 and A to its normal high activity µA (State 1)

This leads to oscillations which lead to spikes. However, heterogeneity in the synaptic dynamics
increases the stochasticity of the pre-synaptic spike arrival. Thus, due to the heterogeneity, ΦB→A

promotes the system in the inhibition state (state 3) and inhibits the system’s movement to system 4
and system 1, thereby creating a spike. Hence, ΦA

R < Φ
A
M . Similarly, for the inhibitory neurons, we

can show that ΦB
R < Φ

B
M . Thus, we get ΦR < ΦM ∎

This lemma might be interpreted as the heterogeneous STDP dynamics increasing the synaptic noise,
which reduces the number of spikes of the post-synaptic neuron. A heterogeneous STDP leads to
a non-uniform scaling of correlated spike trains leading to de-correlation. Hence, we can say that
heterogeneous STDP models have learned a better-orthogonalized subspace representation, leading
to a better encoding of the input space with fewer spikes.

It is to be mentioned here that the synaptic noise might be thought of as analogous to the stochasticity
in the gradient descent algorithm. As recently proved by Simsekli et al. (Simsekli et al., 2020; 2019),
stochasticity plays an important role in the generalization ability of the model. We might interpret the
synaptic noise in the heterogeneous STDP to play a similar role and helps in better generalizability of
the HRSNN model. This hypothesis is empirically proven in Supplementary Section A. However, a
detailed theoretical analysis would be a very interesting direction for future work.

Theorem 2: For a given number of neurons NR, the spike efficiency of the model E = C(NR)
S

for
HRSNN (ER) is greater than MRSNN (EM ) i.e., ER ≥ EM

Proof: To study the effect of the spike time when the weight wk changes, we look into the expected
value of the time difference in the post-synaptic spikes, which is given as:

E [∆tpost ] = E [tpost − tpost ] = (E [tpost ] − tpost )Pr[s] (52)

where Pr[∃s] is the probability of occurrence of the post-synaptic spike. Thus, the expected input
to the neuron at time t(E [i(t)]), which comprises of its excitatory and inhibitory components
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E [ie(t)] ,E [ii(t)] can be expressed as:

E [∆i(t)] =∆E [ie(t)] −∆E [ii(t)] for t < tpost (53)

where E [ie(t)] = ρe ∫
∞

0
µwe(w, t)dw ; E [ii(t)] = ρi ∫

∞

0
µwi(w, t)dw (54)

where ρe, ρi are the rates of incoming spikes and µwe(w, t), µwi(w, t) the probabilities of the weights
associated to time t. Now, considering the case for RSNNs with homogeneous STDP (M ) and with
heterogeneous STDP (R), the difference in the variances of the two populations is given as:

∆Var[VM ] −∆Var[VR] =∆∫
t

−∞
[E [i2M(t)] − (E [i

2
R(t)] −E[iR(t)]

2)]dt (55)

Since t < tpost , STDP potentiates both inhibitory and excitatory synapses, so ∆E [i2i (t)] >
0,∆E [i2e(t)] > 0. The term E[iM(t)]2 = 0 by the symmetry of the weights, and it is main-
tained at zero by the symmetry of the STDP. But for heterogeneous neuron populations, as described
above, there exists an asymmetry of the weights. Based on balanced spiking neural networks with
heterogeneous connection strengths, previous works have revealed that such heterogeneous networks
possess heavy-tailed, Lévy fluctuations (Shlesinger et al., 1987; Mantegna & Stanley, 1995; Cossell
et al., 2015). This implies E[iR(t)]2 > 0⇒∆Var[VR] <∆Var[v(t)M ]We calculate the number of
post-synaptic spikes triggered when the stimulus is present. Now, representing the spike rate of the
HRSNN and the MRSNN as ΦR,ΦM resp.,

∫

t

0
ΦR(t)dt ≤ ∫

t

0
ΦM(t)⇒ SR = NR

T

t̂ISI
R

≤ NR
T

t̂ISI
M

= SM (56)

Thus, spikes decrease when we use heterogeneity in the LTP/LTD Dynamics. Hence, we compare the
efficiencies of the HRSNN with that of MRSNN as follows:

ER

EM
=
MR(NR) × SM

SR ×MM(NR)
=

∑
NR
τ=1

Cov2
(x(t−τ),aR

τ rR(t))

Var(aR
τ rR(t))

×
∞

∫
tref

tΦRdt

∑
NR
τ=1

Cov2(x(t−τ),aM
τ rM (t))

Var(aM
τ rM (t))

×
∞

∫
tref

tΦMdt

(57)

Since SR ≤ SM and also,the covariance increases when the neurons become correlated, and as
neuronal correlation decreases,H increases (Theorem 1), we see that ER

EM
≥ 1⇒ ER ≥ EM ∎

C SUPPLEMENTARY SECTION C

C.1 HIGHER ORDER CORRELATION

In this paper, we took inspiration from results in reservoir computing, which show that we can
maximize memory capacity using orthogonalization among reservoir states in the case of reservoir
computers (Farkaš & Gergel’, 2017; Farkaš et al., 2016). The goal of using heterogeneous STDP
dynamics is to get better orthogonalized recurrent network states to achieve more efficient information
transfer with lower higher-order correlations in spike trains. Recent studies (Montani et al., 2009;
Abbott & Dayan, 1999) have shown that the correlation of higher order progressively decreases the
information available through the neural population. The decrease in information becomes larger
as the interaction order grows. Since we are trying to engineer a spike-efficient model, we leverage
the heterogeneity in neuronal parameters to reduce the higher-order correlations. The hypothesis is
that an orthogonal recurrent layer can help us efficiently represent the input spike patterns with fewer
spikes. This may be interpreted as the recurrent layer acting as an orthogonal bases function where
the inputs are projected onto these bases. Thus, having orthogonal bases can efficiently map the inputs
without much loss. The heterogeneous STDP helps us efficiently achieve this orthogonalization of
the recurrent layer, resulting in a lesser voltage variance across the neuron population. This leads
to fewer spikes (since the mean is constant) compared to a homogeneous RSNN. Thus, in effect,
heterogeneous STDP parameters can learn the output more precisely, which is projected back into the
recurrent network. Hence, using heterogeneous STDP parameters leads to a better orthogonalization
among the neuronal states and hence, a higher C.

In this paper, we show that using a distribution of LTP/LTD dynamics in the STDP parameters helps
us in mappings the input onto the orthogonal activations of the recurrent network to capture the
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principal components of the input signal. The LTD dynamics play an important role in determining
the orthogonality of neuronal activations. LTD windows of the STDP rules enable robust sequence
learning amid background noise in cooperation with a large signal transmission delay between
neurons and a theta rhythm (Hayashi & Igarashi, 2009). The LTD window in the range of positive
spike-timing plays an important role in preventing noise influences with sequence learning. Oja
(Oja, 1982; 1989) showed that the LIF neuron’s time constant is very fast compared to the time
constant of learning in which the weights wji change. The learning is assumed to take place according
to the STDP type conjunction of the inputs ξi and the integrated effect of the inputs, νj , with an
additional forgetting term attributed to the LTD dynamics: dwji

dt
= ανjξi − f (νj , ξi,wji) In the

case of homogeneous STDP, f(.) is a constant; hence, the model can only efficiently learn the first
principal component of the input. However, quite interesting functions emerge when considering
STDP to have a distribution. This also helps us determine the next principal components other
than the first one. Hence the diversity in the different LTD dynamics increases the competition and
helps that not all inputs are mapped to the first principle component. Thus, the diversity in the LTD
dynamics helps in projecting the input to orthogonal activations of the recurrent network.

Table 9: Table Showing the estimated highest order of correlation for HRSNN vs. MRSNN using
CuBIC

ξ̂ p-value
Estimated Highest-
order of correlation

(ξ̂ + 1)
HRSNN 2 0.423 3
MRSNN 5 0.358 6

Now, for homogeneous RSNNs, several higher-order correlations, which according to our hypothesis,
arise because of the poor orthogonalization among the network states. This results in the redundancies
of spikes for encoding the same information. In this paper, we use heterogeneous STDP dynamics to
learn an efficient orthogonal representation of the state space, which result in the network learning the
same patterns but using fewer spikes. (theorem: 3) We also show that heterogeneity in the neuronal
parameters decreases the neuronal correlation (theorem 1 And fig 2a). Thus, since heterogeneity
results in better orthogonalization among the neuronal states, it results in fewer higher-order cor-
relations. Moreover, recent studies have shown that the correlation of higher order progressively
decreases the information available through the neural population, and the decrease in information
becomes larger as the interaction order grows. Since we are trying to engineer an efficient model, we
aim to reduce the higher-order correlations using heterogeneity in neuronal parameters (as shown
in Theorem 1). In addition to this, to verify this, we used CuBIC (Staude et al., 2010), a cumulant-
based inference of higher-order correlations in massively parallel spike trains. The details of the
experimental methodology are given in Supplementary Section C. The outcome of CuBIC is a lower
bound ξ̂ on the order of correlation in the spiking activity of large groups of simultaneously recorded
neurons. CuBIC can provide statistical evidence for large correlated groups without the discouraging
requirements on a sample size that direct tests for higher-order correlations have to meet. This is
achieved by exploiting constraining relations among correlations of different orders. However, it
must be noted that CuBIC is not designed to estimate the order of correlation directly; the inferred
lower bound might not always correspond to the maximal order of correlation present in a given data
set.
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