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ABSTRACT

Recently, 3D Gaussian Splatting (3DGS) has demonstrated remarkable success in
3D reconstruction and novel view synthesis. However, reconstructing 3D scenes
from sparse viewpoints remains highly challenging due to insufficient visual in-
formation, which results in noticeable artifacts persisting across the 3D represen-
tation. To address this limitation, recent methods have resorted to generative pri-
ors to remove artifacts and complete missing content in under-constrained areas.
Despite their effectiveness, these approaches struggle to ensure multi-view con-
sistency, resulting in blurred structures and implausible details. In this work, we
propose FixingGS, a training-free method1 that fully exploits the capabilities of
the existing diffusion model for sparse-view 3DGS reconstruction enhancement.
At the core of FixingGS is our distillation approach, which delivers more accu-
rate and cross-view coherent diffusion priors, thereby enabling effective artifact
removal and inpainting. In addition, we propose an adaptive progressive enhance-
ment scheme that further refines reconstructions in under-constrained regions. Ex-
tensive experiments demonstrate that FixingGS surpasses existing state-of-the-art
methods with superior visual quality and reconstruction performance. Our code
will be released publicly.

1 INTRODUCTION

3D reconstruction and novel view synthesis (NVS) are fundamental problems in computer vision
and computer graphics, with a broad range of applications, e.g., VR/AR (Jiang et al. (2024)), au-
tonomous driving (Zhou et al. (2024); Khan et al. (2025)), robotics (Lu et al. (2024); Zheng et al.
(2024)), etc. Among recent advances, 3D Gaussian Splatting (3DGS) (Kerbl et al. (2023)) has
demonstrated remarkable performance in both reconstruction quality and rendering efficiency. De-
spite its effectiveness, the requirement of dense support views and carefully curated captures hin-
ders its practical applications. When constrained to sparse observations, 3DGS suffers from severe
performance degradation, manifesting as noticeable artifacts and incomplete reconstructions, partic-
ularly in under-observed regions. This phenomenon arises because, under sparse input conditions,
3DGS tends to overfit the limited views and simulate view-dependent effects by introducing arti-
facts.

To address this limitation, previous works have introduced various forms of regularization strategies
during the optimization of 3DGS (Zhu et al. (2024); Li et al. (2024); Turkulainen et al. (2025); Zhang
et al. (2024)), yet these approaches remain sensitive to noise and often deliver only limited gains. In
parallel, another line of research resorts to large generative models. In particular, diffusion models
(DMs), which are trained on internet-scale data and have shown the remarkable capacity to generate
diverse and photorealistic images, have also gained significant attention in 3D reconstruction and
novel view synthesis enhancement. For instance, 3DGS-Enhancer (Liu et al. (2024)) and GenFusion
(Wu et al. (2025b)) incorporate fine-tuned video diffusion models to fix the artifact-prone renderings
and distill back to the 3D representation. Difix3D+ (Wu et al. (2025a)) also follows a similar process,
but fine-tunes a single-step diffusion model for efficiency and further improves rendering quality by
an additional post-process diffusion inference. Despite notable improvements, these approaches still

1“Training-free” in this paper means that our method does not require any additional training or fine-tuning
of the diffusion model.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Ours

iterationiteration

Previous

Fix Round 1 Fix Round 2

Training View Extra View Fix with Diffusion Model

Differentiable Rendering Priors Update

Loss Function

Priors Update and Backpropagation

Figure 1: Schematic diagram of the difference between previous methods and ours. Left: Previous ap-
proaches update diffusion priors as pseudo ground truth of extra views at each fix rounds, keeping them un-
changed in between. Until the next fix round, the previous priors still act as guidance to the ongoing opti-
mization, leading to confused supervision. Right: In contrast, our method dynamically distills diffusion priors
throughout the optimization process, yielding more reliable guidance and significantly improved results.

face challenges in maintaining cross-view consistency, frequently resulting in blurred structures or
noisy reconstructions.

Existing 3DGS enhancement methods with diffusion models typically rely on training their powerful
and task-specific diffusion models with hand-crafted and carefully curated datasets, a process that is
both labor-intensive and time-consuming. Moreover, they fail to fully exploit the potential of their
pre-trained diffusion models. In practice, they all follow a similar protocol that updates diffusion pri-
ors at regular intervals. Since these priors are generated from previously rendered images that may
suffer from severe artifacts and missing content, they can inadvertently introduce misleading super-
vision signals into the ongoing optimization process, thereby hindering high-fidelity reconstruction.
For detailed analysis, please refer to Section 3.2.

In this work, we introduce FixingGS, a novel framework tailored for improving 3DGS represen-
tations under sparse-view settings. Unlike previous approaches that update diffusion priors only
at fixed intervals, which may lead to misguidance, the core of FixingGS is a training-free distil-
lation mechanism that continuously leverages the effective and timely priors from a pre-trained
diffusion model, as illustrated in Figure 1. This enforces consistency across viewpoints of diffusion
guidance, thereby facilitating high-quality novel view synthesis. Moreover, we empirically observe
that diffusion priors become unreliable when viewpoints deviate significantly from the observed
set, often hallucinating rendering content and thus producing spurious reconstructions. To mitigate
this issue, we propose an adaptive progressive enhancement strategy around unreliable viewpoints.
By leveraging multiple reference views, this dynamic approach strengthens supervision in under-
constrained regions and further boosts reconstruction quality. Experimental results demonstrate that
the proposed FixingGS achieves superior reconstruction performance, yielding cleaner and sharper
rendering results.

The contributions of this paper are summarized as follows:

• A training-free distillation scheme is proposed to fully leverage the existing diffusion model
and address the cross-view inconsistency issue.

• An adaptive progressive enhancement is developed, strengthening supervision around un-
reliable viewpoints with multiple references to improve reconstruction quality.

• Extensive experiments on multiple benchmarks demonstrate superior quantitative and qual-
itative performance over state-of-the-art approaches.
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2 RELATED WORKS

Priors for Novel View Synthesis. Neural Radiance Fields (NeRFs) (Mildenhall et al. (2020)) and
3D Gaussian Splatting (3DGS) (Kerbl et al. (2023)) have revolutionized the reconstruction and novel
view synthesis (NVS). However, they rely on strong assumptions about the capture setup, typically
requiring perfect data like dense coverage and carefully controlled conditions, which largely pro-
hibit its practical applicability. Achieving photorealistic rendering becomes challenging from sparse
and extreme novel viewpoints, with severe artifacts and missing regions in under-observed areas.
Numerous works have attempted to address this issue by incorporating additional priors and regu-
larizations into the NeRF or 3DGS optimization, including depth supervision (Deng et al. (2022);
Wang et al. (2023); Zhu et al. (2024); Wang et al. (2023); Li et al. (2024); Chung et al. (2024)),
normal supervision (Yu et al. (2022); Yang et al. (2023); Turkulainen et al. (2025)), smoothness
constraints (Niemeyer et al. (2022); Yang et al. (2023); Zhang et al. (2024)), random dropout strat-
egy (Park et al. (2025); Xu et al. (2025)), etc, to enhance novel view synthesis. While these methods
provide incremental improvements, their effectiveness is often scene-dependent and they remain
sensitive to noise, which hinders broader applicability.

Generative Priors for Novel View Synthesis. Recently, generative models (Rombach et al.
(2022); Sauer et al. (2024)) have made remarkable progress in generating photorealistic content.
Building on this progress, a growing body of work (Weber et al. (2024); Wu et al. (2024); Paliwal
et al. (2025); Liu et al. (2024); Wu et al. (2025b;a); Yin et al. (2025); Wei et al. (2025)) leverages gen-
erative priors to repair degraded regions and inpaint implausible content, thereby improving novel
view synthesis. To improve temporal coherence, several works resort to video diffusion models.
3DGS-Enhancer (Liu et al. (2024)) is the pioneering work that trains a video diffusion model on a
large-scale dataset, repairs extra views, and distills to the low-quality 3DGS representation. GenFu-
sion (Wu et al. (2025b)) constructs an artifact-prone RGB-D video dataset via a masking strategy
and fine-tunes a video diffusion on it for improved outpainting performance. Concurrently with our
work, GSFixer (Yin et al. (2025)) continues this line of research, training a powerful video diffusion
model that jointly leverages 2D semantic cues and 3D geometric features. Another representative
approach is Difix3D+ (Wu et al. (2025a)), which consists of three stages: (a) training a single-step
diffusion model, Difix, on hand-crafted artifact-clean image pairs; (b) distilling diffusion priors into
the optimization every 2k steps, referred to as Difix3D; (c) applying additional inference-time refine-
ment by Difix, dubbed Difix3D+. In this paper, we take a different perspective. Instead of investing
in the training of more powerful diffusion models, we investigate how to fully exploit the existing
diffusion model (i.e., Difix) to enhance sparse-view 3DGS reconstruction.

3 METHOD

Our goal is to enhance 3D Gaussian Splatting from sparse inputs. We first present the necessary pre-
liminaries (Section 3.1), followed by an analysis of shared problems on existing 3DGS enhancement
approaches with diffusion models (Section 3.2). We then detail the training-free 3DGS enhance-
ment via score distillation (Section 3.3). Finally, we introduce an adaptive progressive enhancement
(APE) that further improves the representation quality (Section 3.4).

3.1 PRELIMINARY

3D Gaussian Splatting (3DGS) (Kerbl et al. (2023)) represents a scene as a collection of explicit
3D Gaussian spheres, enabling high-quality 3D reconstruction and efficient novel view synthesis.
Each Gaussian sphere {Gi} is parameterized by its position µi ∈R3, rotation ri ∈R4, scale si ∈R3,
opacity ηi ∈ R and its view-dependent color ci ∈ R3 represented by sphere harmonics (SH). Each
Gaussian sphere is formulated by a Gaussian function:

Gi(x|µi,Σi) = e−
1
2 (x−µi)

TΣ−1
i (x−µi), (1)

where Σi is the corresponding 3D covariance matrix and can be decomposed into Σi =RiSiS
T
i R

T
i ,

Si and Ri denote the scaling matrix and rotation matrix correponding to si and ri respectively. Novel
view can be rendered by fast α-blending rendering, defined as:

3
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C = ∑
i∈M

ciαi

i−1

∏
j=1

(1−α j), (2)

where C denotes the final pixel color, αi is calculated by evaluating Gi(x) multiplied with ηi, M is
the number of Gaussian spheres that overlap with the pixel on the 3D camera planes.

Diffusion models (DMs) (Ho et al. (2020); Sohl-Dickstein et al. (2015); Song et al. (2020)) are a
series of generative models that generate data by iteratively denoising from pure Gaussian noise by
learning a distribution of data pθ (x). DMs consist of two stages: the forward diffusion stage and
the reverse denoising stage. During the forward diffusion stage, DMs progressively add Gaussian
noise ε ∼N (0,I) to the clean data x0 to obtain the diffused version xt = αtx0 +σtε , where αt and
σt represent the noise schedule coefficients at timestep t. The reverse denoising process learns the
distribution pθ (x) with a noise predictor εθ to recover the original data by removing noise. The
noise predictor is trained to minimize the denoising objective as:

min
θ

Et∼U (0,1),ε∼N (0,I)[||εθ (xt ;c, t)− ε||22], (3)

where c denotes optional conditioning information (e.g., text prompts or image content).

3.2 ANALYSIS OF PREVIOUS 3DGS ENHANCEMENT METHODS USING DIFFUSION MODELS
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RightLeft RightLeft RightLeft RightLeft

Figure 2: Illustration of the main difference between Difix3D+ (Wu et al. (2025a)) and our proposed
method. We compare two adjacent rendered extra views and corresponding diffusion priors at iterations 1000,
1500, 2000, 2500, for instance. We color the borders of diffusion priors, with the same color indicating the
same diffusion priors. The same 3D region is highlighted with red bounding boxes. Top: Difix3D+ updates
diffusion priors only every 2000 steps, leaving them unchanged in between, which results in misleading guid-
ance. This progressive approach results in notable artifacts and multi-view inconsistency (e.g., the bicycle
wheel and bottom-left artifacts). Bottom: Our approach instead continuously distills diffusion priors through-
out optimization, fully exploiting the diffusion model for accurate guidance, which yields improved cross-view
consistency and cleaner renderings.

Recently, leveraging diffusion models to enhance 3DGS quality from limited inputs has gained
increasing attention. Given an initial low-quality 3D representation, representative works such
as 3DGS-Enhancer (Liu et al. (2024)), Difix3D+ (Wu et al. (2025a)), and GenFusion (Wu et al.
(2025b)) generally follow a similar pipeline:

• Train a novel diffusion model tailored for enhancing artifact-prone rendered images on
carefully curated datasets.
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• At fixed intervals of M iterations (where M varies across different methods), repair all
rendered images from extra viewpoints using the trained diffusion model. Then add the
repaired views to the training set.

• Optimize the 3DGS representation with the current training set and repeat the process until
convergence.

While these methods yield notable improvements, they fail to fully exploit the capacity of diffusion
models. Under sparse-view conditions, regions with limited observations often suffer from severe
degradation. Although recent diffusion models are effective at enhancing artifact-prone images, re-
covering accurate cross-view consistent content in heavily degraded regions remains a challenge.
In existing methods, diffusion priors are updated only every M iterations, remaining unchanged in
between. These repaired images, derived from low-quality renderings from the previous steps, be-
come lagged and unreliable priors in subsequent M steps optimization, often misguiding the process
toward multi-view inconsistency and ambiguous results, as illustrated in detail in Figure 2. Follow-
ing this protocol, even if we invest significant time and effort into training more powerful diffusion
models, we still cannot overcome this limitation.

Analyzing this limitation of previous works motivates us to rethink how pre-trained diffusion models
should be utilized. To this end, we introduce a distillation strategy that continuously incorporates
diffusion priors throughout the optimization process, without requiring additional diffusion model
training (Section 3.3).

3.3 TRAINING-FREE SCORE DISTILLATION FOR 3DGS ENHANCEMENT

We begin by revisiting score distillation sampling (SDS), which underpins our design. Originally
introduced in DreamFusion (Poole et al. (2023)), SDS distills guidance from a 2D pre-trained dif-
fusion model to optimize a 3D representation parameterized by θ . We denote the diffusion model
as εφ (xt , t,y) with extra condition y and timestep t. Given a camera pose ci, an image is rendered
from 3DGS by a differentiable rendering function g(θ ,ci). In the original SDS setting, the rendered
image x = g(θ ,ci) is used to optimize θ through the following gradient:

∇θ LSDS = Et,ε,c[ω(t)(εφ (xt , t,y)− ε)
∂g(θ ,ci)

∂θ
], (4)

where xt = αtg(θ ,ci)+σtε , and ω(t) is a weighting function.

Thanks to the full differentiability of 3DGS, we can directly optimize θ via score distillation. In this
work, we primarily adopt Difix (Wu et al. (2025a)) as the pre-trained diffusion model for distillation.
Difix treats artifacts in renderings as Gaussian noise in the denoising process of the original diffusion
model, effectively serving as an image enhancer. In this case, we follow (Zhu (2023); Zhu et al.
(2023)) and employ an image residual formulation instead of the original noise residual formulation.
For extra views, we formulate the distillation loss as:

Ldistillation =
∥∥ω(t0)

(
g(θ ,c)−Dφ (g(θ ,c); t0,y)

)∥∥2
2, (5)

where Dφ (g(θ ,c); t0,y) denotes the recovered image from Difix, and y represents the clean reference
image. We set t0 = 199, following the official configuration of Difix (Wu et al. (2025a)), and assign
ω(t0) = 0.5.

For training views, we maintain the photorealistic loss function as the original implementation of
3DGS, defined as:

Lphoto = λl1Ll1 +λSSIMLSSIM, (6)
where λl1 and λSSIM are set to 0.2 and 0.8, respectively.

3.4 ADAPTIVE PROGRESSIVE ENHANCEMENT AROUND UNRELIABLE VIEWS

As a rendering enhancer, the fixing ability of the diffusion model is inherently limited by the quality
of renderings. When the desired novel views lie far from or are weakly constrained by the input

5
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Algorithm 1: Adaptive Progressive Enhancement (APE)
Input: Initial 3DGS parameters θ , Differentiable rendering function g(θ ,c) given a camera

pose c, Pre-trained diffusion model (DM) Dφ , Number of iterations per enhancement
Niter, Number of reference M, Unreliable threshold η , Training view poses Ctrain, Extra
view poses Cextra.

1 Definition: Pose distance calculator: dist(·), PSNR calculator: psnr(·), Pose shifting: shi f t(·)
2 while not converged do
3 for i = 1 to Niter do
4 Optimize θ using the current training set.
5 for each c ∈Cextra do
6 Iextra← g(θ ,c) ; /* Render the extra view */
7 [Ire f1 , ..., Ire fM ]← dist(Ctrain,c)[: M] ; /* Find M nearest reference views

*/
8 I f ix←Dφ (Iextra; Ire f1) ; /* Obtain the fixed extra image via DM */
9 if psnr(I f ix, Iextra)< η then

10 for each ire f ∈ [Ire f1 , ..., Ire fM ] do
11 cshi f t ← shi f t(cre f ,c, i) ; /* cre f is the related pose of ire f */
12 Ishi f t ← g(θ ,cshi f t) ; /* Render the shifted view */
13 Inovel ←Dφ (Ishi f t ; ire f ) ; /* Obtain fixed novel view via DM */
14 Add Inovel to the training set.

observations, their renderings often suffer from severe artifacts and missing regions. In such cases,
the diffusion model struggles to recover reliable high-fidelity details and instead tends to hallucinate,
thereby providing unreliable guidance for optimization.

To address this challenge, we propose an adaptive progressive enhancement (APE) strategy to further
strengthen supervision around unreliable views. As outlined in Algorithm 1, when a viewpoint is
identified as unreliable, APE leverages multiple training views as stronger references and applies
pose perturbations toward the target viewpoint. This adaptive design progressively improves the
quality of novel view renderings. By jointly exploiting multiple references and an adaptive selection
mechanism, FixingGS with APE significantly outperforms Difix3D, as shown in Section 4.3. More
details are provided in the Appendix.

4 EXPERIMENTS

We first describe the experimental setup used to evaluate FixingGS (Section 4.1). We then present
quantitative and qualitative comparisons with state-of-the-art 3DGS reconstruction enhancement
methods (Section 4.2). Finally, we conduct ablation studies to analyze the contribution of each
component (Section 4.3).

4.1 EXPERIMENTAL SETUP

Evaluation Dataset. We evaluate FixingGS on two challenging real-world datasets: 10 scenes
from DL3DV-10K (Ling et al. (2024)) and 9 scenes from Mip-NeRF 360 (Barron et al. (2022)).
Both datasets cover indoor and outdoor scenarios. For DL3DV-10K, we randomly select 10 scenes
and uniformly sample training views along the camera trajectory, while test views are chosen every
8 views from the remaining held-out set. For Mip-NeRF360, we adopt the same data partitioning
protocol as ReconFusion (Wu et al. (2024)).

Metrics. For metrics, we calculate commonly-used PSNR, SSIM (Wang et al. (2004)), as well as
LPIPS (Johnson et al. (2016)) on novel views to measure 3D reconstruction quality and fidelity.

Baselines. We compare our FixingGS against its backbone method, 3DGS (Liu et al. (2024)), as
well as several recent state-of-the-art approaches for 3DGS reconstruction enhancement, including
FSGS (Zhu et al. (2024)), GenFusion (Wu et al. (2025b)), and Difix3D+ (Wu et al. (2025a)). For

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3
D
G
S

F
S
G
S

D
if
ix
3
D

O
u
rs

G
T

3 views 6 views 9 views

G
en
F
u
si
o
n

Figure 3: Qualitative Comparison on the DL3DV-10K dataset (Ling et al. (2024)).

PSNR ↑ SSIM ↑ LPIPS ↓
3-view 6-view 9-view Avg. 3-view 6-view 9-view Avg. 3-view 6-view 9-view Avg.

3DGS (Kerbl et al. (2023)) 16.40 19.70 21.28 19.13 0.588 0.709 0.737 0.678 0.498 0.321 0.252 0.357
FSGS (Zhu et al. (2024)) 16.98 20.47 23.01 20.15 0.645 0.740 0.802 0.729 0.437 0.322 0.258 0.339
GenFusion (Wu et al. (2025b)) 15.97 20.49 23.02 19.83 0.615 0.750 0.814 0.726 0.438 0.311 0.248 0.332
Difix3D (Wu et al. (2025a)) 16.86 20.59 23.13 20.19 0.609 0.731 0.799 0.713 0.417 0.270 0.197 0.295
Difix3D+ (Wu et al. (2025a)) 16.45 20.03 22.54 19.67 0.583 0.709 0.778 0.690 0.393 0.287 0.230 0.303
FixingGS (Ours) 17.67 21.28 23.73 20.89 0.648 0.760 0.824 0.744 0.396 0.239 0.174 0.270

Table 1: Quantitative comparison on the DL3DV-10K dataset (Ling et al. (2024)). We compare the render-
ing quality with baselines given 3, 6, and 9 views. Each column is colored as: best and second best .

experiments on the Mip-NeRF360 dataset, we further include representative NeRF-based baselines
(Barron et al. (2023); Yang et al. (2023); Somraj et al. (2023); Sargent et al. (2024); Wu et al. (2024))
for comprehensive comparison.

The official implementation of Difix3D+ incorporates an additional diffusion inference step as a ren-
dering enhancer. We follow the official implementation using its open-sourced code to evaluate our
experimental setup. However, under our conditions, we observe a noticeable drop in performance,
contrary to the claims reported in the paper. Please refer to the Appendix for explanations. Mean-
while, it is important to note that our method does not rely on any inference-time enhancement.
For a fair comparison, we also report results from Difix3D (i.e., Difix3D+ without the additional
inference step).

Implementation Details. In our framework, we use Difix (Wu et al. (2025a)) as the pre-trained
diffusion model for both distillation and adaptive progressive enhancement (APE). FixingGS is
trained for 6,000 steps in all experiments. Our empirical findings indicate that diffusion priors
tend to stabilize in the later stages of optimization, with variations progressively diminishing. To
enhance efficiency, we freeze the priors once they converge without noticeable changes. All results
are obtained using a single NVIDIA RTX 3090 GPU. Our implementation is based on PyTorch.
Discussions on the associated training-time trade-offs are provided in the Appendix.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Qualitative and quantitative comparisons on the DL3DV-10K dataset are reported in Figure 3 and
Table 1, while results on the MipNeRF360 dataset are shown in Figure 4 and Table 2. Numerical
results (Table 1 and Table 2) on both datasets shows that our method consistently outperforms all

7
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Figure 4: Visual Comparisons on the Mip-NeRF 360 dataset (Barron et al. (2022)).

PSNR ↑ SSIM ↑ LPIPS ↓
3-view 6-view 9-view Avg. 3-view 6-view 9-view Avg. 3-view 6-view 9-view Avg.

ZipNeRF† (Barron et al. (2023)) 12.77 13.61 14.30 13.56 0.271 0.284 0.312 0.289 0.705 0.663 0.633 0.667
FreeNeRF† (Yang et al. (2023)) 12.87 13.35 14.59 13.60 0.260 0.283 0.319 0.287 0.715 0.717 0.695 0.709
SimpleNeRF† (Somraj et al. (2023)) 13.27 13.67 15.15 14.03 0.283 0.312 0.354 0.316 0.741 0.721 0.676 0.713
ZeroNVS† (Sargent et al. (2024)) 14.44 15.51 15.99 15.31 0.316 0.337 0.350 0.334 0.680 0.663 0.655 0.666
ReconFusion† (Wu et al. (2024)) 15.50 16.93 18.19 16.87 0.358 0.401 0.432 0.397 0.585 0.544 0.511 0.547
3DGS† (Kerbl et al. (2023)) 13.06 14.96 16.79 14.94 0.251 0.355 0.447 0.351 0.576 0.505 0.446 0.509
FSGS† (Zhu et al. (2024)) 14.17 16.12 17.94 16.08 0.318 0.415 0.492 0.408 0.578 0.517 0.468 0.521
GenFusion† (Wu et al. (2025b)) 15.29 17.16 18.36 16.93 0.369 0.447 0.496 0.437 0.585 0.500 0.465 0.517
Difix3D‡ (Wu et al. (2025a)) 15.05 17.26 18.36 16.89 0.357 0.449 0.510 0.439 0.479 0.371 0.320 0.390
Difix3D+‡ (Wu et al. (2025a)) 14.72 16.85 17.81 16.46 0.315 0.406 0.455 0.392 0.490 0.422 0.386 0.433
FixingGS (Ours) 15.78 17.72 18.87 17.46 0.376 0.464 0.523 0.454 0.483 0.383 0.303 0.390

Table 2: Quantitative comparison on the Mip-NeRF 360 dataset (Barron et al. (2022)). We compare the
rendering quality with baselines given 3, 6, and 9 views. † denotes results reproduced by ReconFusion and
GenFusion; while ‡ denote results reproduced by us on their official implemantation.

baselines across almost all evaluation metrics (e.g., at least 0.7dB and 0.5dB PSNR improvement
over state-of-the-art methods in DL3DV-10K and Mip-NeRF 360 datasets, respectively), indicating
that our method reconstructs the highest-quality and most faithful scenes.

Visual comparisons (Figure 3 and Figure 4) more clearly highlight the strengths of our method.
Specifically, 3DGS (Kerbl et al. (2023)) and FSGS (Zhu et al. (2024)) exhibit severe degradation,
with noticeable artifacts persisting in the reconstructed scenes. GenFusion (Wu et al. (2025b)) mit-
igates artifacts by leveraging a fine-tuned video diffusion model, but frequently produces overly
smoothed geometry. Difix3D (Wu et al. (2025a)) achieves improved artifact removal through their
powerful diffusion model as priors, yet struggles to recover fine structural details and introduces
ambiguous results. In contrast, our approach yields sharper reconstructions with significantly fewer
artifacts and more high-frequency structures, highlighting its advantage in preserving high-fidelity
structures from limited viewpoint inputs. For fair comparison, we additionally show visual results
of Difix3D+ (i.e., Difix3D with an extra diffusion enhancement) and our method with the same
procedure in the Appendix. In summary, both quantitative and qualitative comparisons with state-
of-the-art baselines demonstrate the strong potential of our approach to substantially improve the
quality and fidelity of novel view synthesis.
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DL3DV-10K Mip-NeRF 360
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

full model 20.89 0.744 0.270 17.46 0.454 0.390
w/o distillation 20.54 0.734 0.303 17.03 0.446 0.413
w/o APE 20.74 0.735 0.279 17.25 0.446 0.408
Difix3D 20.19 0.713 0.295 16.89 0.439 0.390

Table 3: Ablation study of FixingGS on both datasets. The quantitative results are averaged across 3, 6, and
9 views.

GT full model w/o distillation w/o APE GT full model w/o distillation w/o APE

Mip-NeRF 360 DL3DV-10K

Figure 5: Qualitative ablation results of FixingGS on both datasets. We highlight the most prominent
differences in red bounding boxes.

4.3 ABLATION STUDY

We conduct the ablation experiments with entire scenes and sparse-view conditions to validate the
effectiveness of each component. We present numerical results in Table 3 and visual performance
in Figure 5. We compare our full model with two alternatives: a variant without our distillation
approach (dubbed w/o distillation), and a variant without the adaptive progressive enhancement
(dubbed w/o APE). In addition, we also compare Difix3D to further demonstrate the effectiveness
of APE. Please refer to the Appendix to see the difference between Difix3D and our proposed APE.

Effectiveness of our distillation approach. To analyze the impact of our distillation method, which
serves as the core contribution of this paper, we ablate this design. Without the distillation, FixingGS
shows a notable decline in all metrics. Visual comparisons further demonstrate its effectiveness.
Without the distillation strategy, our method struggles to inpaint the missing regions and fails to
eliminate artifacts in representations. Incorporating this contribution can fully benefit robust pri-
ors from diffusion models, yielding promising artifact-removal and inpainting performance. These
results highlight the necessity and effectiveness of our distillation approach.

Effectiveness of APE. To assess the effectiveness of the proposed enhancement on unreliable view-
points, we perform an ablation by disabling this component. The full FixingGS consistently out-
performs the ablated variant across all evaluation metrics. For further validation, we also compare
with Difix3D. By further adaptively targeting unreliable viewpoints and leveraging multiple refer-
ences, APE achieves substantial improvements. Visual comparisons in Figure 5 further highlight the
benefit: without the enhancement strategy, the model struggles to recover fine details and produces
blurrier renderings, whereas our full method yields cleaner results with fewer artifacts.

5 CONCLUSION

We present FixingGS, a novel framework for enhancing sparse-view 3D reconstruction. Unlike pre-
vious approaches that rely on training increasingly powerful diffusion models, our key insight is to
fully exploit the capabilities of existing pre-trained diffusion models. At the core of FixingGS is a
score distillation strategy that effectively mitigates the long-standing issue of multi-view inconsis-
tency in previous reconstruction enhancement works with diffusion priors, leading to substantial im-
provements in reconstruction quality. In addition, we propose an adaptive progressive enhancement
around unreliable viewpoints that further refines reconstruction in under-constrained regions. We
conduct extensive experiments, demonstrating our superior improvement in producing high-quality
and multi-view consistent reconstructions.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our experiments use only publicly available datasets
that do not contain personally identifiable or sensitive information. We provide full implementation
details to support transparency and reproducibility. The proposed method, FixingGS, is intended to
improve sparse-view 3D reconstruction for research and practical applications. While the method
does not directly raise privacy or fairness concerns, any generative approach may be misused to
create synthetic 3D content that could be applied irresponsibly. We encourage responsible use of
this work and emphasize that it should not be applied in harmful contexts.

7 REPRODUCIBILITY STATEMENT

We provide full implementation of our method, including training and evaluation code, as supple-
mentary material, and will release it publicly upon acceptance.
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APPENDIX: FIXINGGS: ENHANCING 3D GAUSSIAN SPLATTING VIA
TRAINING-FREE SCORE DISTILLATION

A LARGE LANGUAGE MODELS (LLMS) USAGE

In preparing this paper, we use a large language model (LLM) solely as a writing assistant to help
polish the clarity and readability of the text. The LLM was not involved in research ideation, exper-
imental design, data analysis, or the development of technical contributions. All scientific content,
methodology, experiments, and results presented in this paper are entirely the work of the authors.
The authors take full responsibility for the contents of the paper.

B MORE DETAILS IN APE

Here we present details on APE. Pseudocode is provided in the main paper. In this method, we
apply Difix as the pre-trained diffusion model. We set the unreliable threshold η = 25 dB; number
of reference M = 3; number of iterations per enhancement Niter = 1000. We define the pose distance
calculator dist(·), PSNR calculator psnr(·) and pose shi f ting(·) as follow:

Definition of Pose Distance Calculator dist(·): Given two camera poses P1 = (R1, t1) and P2 =
(R2, t2), represented as 4×4 transformation matrices with rotation R∈ SO(3) and translation t ∈R3,
the 6-DoF pose distance calculator dist(·, ·) is defined as

dist(P1,P2) = α ∥t1− t2∥2 +β dR(R1,R2),

where α and β are weighting factors for translation and rotation, respectively. Here, we set α = β =
0.5. The rotation distance dR(R1,R2) is computed from the corresponding unit quaternions q1,q2 of
R1,R2 as

dR(R1,R2) = 2arccos
(
|⟨q1,q2⟩|

)
,

with ⟨q1,q2⟩ denoting the dot product of the two quaternions.

Definition of PSNR Calculator PSNR(·): Given a reference image I ∈ RH×W×C and a recon-
structed image Î ∈ RH×W×C, the peak signal-to-noise ratio (PSNR) is defined as

PSNR(I, Î) = 10 · log10

(
MAX2

MSE(I, Î)

)
,

where MAX is the maximum possible pixel value (e.g., MAX = 1 if images are normalized), and

MSE(I, Î) =
1

HWC

H

∑
u=1

W

∑
v=1

C

∑
c=1

(
I(u,v,c)− Î(u,v,c)

)2

is the mean squared error between I and Î.

Definition of Pose Shifting shi f t(·): Given a training pose Ptrain = (Rtrain, ttrain) and a extra pose
Pextra = (Rextra, textra), the pose shifting operator shi f t(Ptrain,Ptest,τ) generates an interpolated pose
based on the current progress τ ∈ [0,1] of the optimization process as

shi f t(Ptrain,Pextra,τ) =
(

R(τ), t(τ)
)
,

where
t(τ) = (1− τ) ttrain + τ textra,

R(τ) = Slerp(Rtrain,Rextra;τ),

with Slerp(·) denoting spherical linear interpolation between two rotations.

C DIFFERENCES BETWEEN DIFIX3D AND OUR PROPOSED APE

In the framework of Difix3D+ (Wu et al. (2025a)), a strategy termed progressive 3D updates is
employed with their pre-trained diffusion model (i.e., Difix). Difix3D is the 3DGS framework that
applies this strategy. Concretely, every 2k iterations, pose perturbations are applied from training
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views toward the target views by a fixed distance. The artifact-prone images rendered from these
perturbed novel views are then repaired using Difix (with the nearest training view as reference) and
subsequently added to the training set.

However, this design exhibits several limitations. We empirically observe that when viewpoints are
too distant or insufficiently constrained by other views, their renderings suffer from severe degra-
dation. In such cases, the corresponding diffusion priors become unreliable, as the diffusion model
may preserve or even hallucinate more of the degradations. Moreover, Difix3D applies pose pertur-
bations to all target views simultaneously, which often introduces misleading guidance. In addition,
this strategy relies on only a single nearest training view as reference, which proves inadequate for
effective reconstruction enhancement.

To address these issues, APE introduces several improvements. (a) We adopt an adaptive scheme:
instead of perturbing poses toward all target views, we selectively shift only those viewpoints iden-
tified as unreliable based on their rendering quality. (b) We incorporate multiple reference views
rather than relying on a single one, providing richer information as the reference for reconstruction.
(c) We further refine the shifting mechanism by making the perturbation distance adaptive to both
the pose distance and the optimization iteration. The comparisons in the Ablation Study (Difix3D
v.s. w/o distillation) also demonstrate that our APE outperforms Difix3D by a significant margin.

D EXPLANATIONS ON PERFORMANCE DROP OF DIFIX3D+

The official GitHub repository for Difix3D+ (Wu et al. (2025a)) is available at https://github.com/nv-
tlabs/Difix3D . As reported in the paper, Difix3D+ includes an additional inference procedure to
further enhance rendering quality, corresponding to ”Difix3D+: With real-time post-rendering” in
the repository. However, the authors do not provide the checkpoint file of their Difix model (i.e.,
model.pkl). By examining their code, we found that they use the model checkpoint available on
HuggingFace (https://huggingface.co/nvidia/difix ref ) during the training of Difix3D (i.e., the Pro-
gressive 3D update in the repository). We adopt the same HuggingFace checkpoint for the additional
inference procedure to repair renderings in our experimental setup. Nevertheless, our results show a
numerical drop in both datasets, contrary to the claims reported in their paper.

We analyze this unexpected phenomenon in detail. The Difix3D+ paper does not specify the exact
training conditions (e.g., sparse-view or dense-view) on the DL3DV-10K dataset, making Table 2 in
their paper difficult to reproduce. Our work focuses on sparse-view 3DGS reconstruction, and we
adopt a sparse-view setting for fair comparison with all baselines. Under these conditions, artifacts
and missing content persist more prominently in under-constrained regions. While the additional
inference step in Difix3D+ can remove minor artifacts, it also amplifies ambiguous regions and
over-sharpens the images, leading to larger deviations from the ground truth and poorer numerical
performance. Extensive per-scene visual comparisons (Figure 7 and Figure 6) further support these
observations.

E LIMITATIONS AND FUTURE WORKS

The performance of FixingGS still inherently depends on the effectiveness of pre-trained diffusion
models used for 3D reconstruction enhancement. In this work, we validate FixingGS primarily
with Difix, and exploring integration with stronger or domain-specific diffusion priors represents an
exciting avenue for future research. Moreover, our distillation introduces a moderate training-time
overhead compared with Difix3D+ (Wu et al. (2025a)) as reported in Appendix F. Designing more
efficient distillation techniques to mitigate this cost will be an important direction moving forward.

F TRADE-OFF BETWEEN TRAINING EFFICIENCY AND EFFECTIVENESS

As noted in the limitations, our distillation approach incurs some training-time overhead. To quantify
this, we evaluate our method and baseline approaches with diffusion priors in terms of training time
and GPU memory usage. As shown in Table 4, FixingGS introduces only modest overhead while
delivering substantial improvements in 3DGS reconstruction and novel view synthesis quality.
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Methods PSNR↑ SSIM↑ LPIPS ↓ Training Time↓ Memory Usage (GiB)↓
Difix3D+ 16.46 0.392 0.433 ∼ 20 min 12.14

GenFusion 16.93 0.437 0.517 ∼ 28 min 23.69
Ours 17.46 0.454 0.390 ∼ 29 min 11.95

Table 4: Evaluations of training efficiency (presented in Training Time and Memory Usage) and novel view
synthesis quality (presented in PSNR, SSIM, and LPIPS) on the Mip-NeRF 360 dataset.

G EVALUATION ON MULTI-VIEW CONSISTENCY

We evaluate FixingGS using the Thresholded Symmetric Epipolar Distance (TSED) metric (Yu et al.
(2023)), which measures the consistency of frame pairs within a sequence. As shown in Table 5, our
method achieves higher TSED values than the baselines, indicating stronger multi-view consistency.

3DGS Difix3D Ours
3 views 0.4286 0.4408 0.4673
6 views 0.4286 0.4367 0.4551
9 views 0.4347 0.4367 0.4551

Table 5: Multi-view consistency evaluations on the DL3DV dataset. Higher TSED values indicate better multi-
view consistency performance.

H ADDITIONAL VISUAL COMPARISONS

Note that our proposed FixingGS does not apply the additional diffusion inference. For fair compar-
ison, we also provide visual results of Difix3D+ and Ours+ (i.e., FixingGS with the same additional
inference procedure). We present extensive per-scene visual results in Figure 6 and Figure 7.
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Figure 6: More visual comparisons on the Mip-NeRF 360 dataset (Barron et al. (2022)).
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Figure 7: More visual comparisons on the DL3DV-10K dataset (Ling et al. (2024)).
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