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ABSTRACT

Extending the success of text-to-image (T2I) synthesis to text-to-video (T2V) syn-
thesis is a promising direction for visual generative AI. Popular training-free sam-
pling algorithms currently generate high-fidelity images within the Stable Diffu-
sion family. However, when applied to video diffusion models (VDMs), these
techniques result in limited diversity and quality due to the low-quality data in
video datasets. We focus on inference to mitigate this issue, and then we propose
a training-free paradigm that optimizes the initial Gaussian noise by introduc-
ing a targeted semantic prior bias into the sampling process from a smoothing
perspective. The paradigm significantly improves both the fidelity and semantic
faithfulness of the synthesized videos. Guided by theoretical analysis using ran-
dom smoothing and differential equations, our resulting method can
be understood as approximately incorporating third-order derivatives into gradient
descent, which contributes to be better convergence in learning semantic informa-
tion. A more efficient version, , is proposed to achieve better
experimental results by leveraging a momentum mechanism. Both SMOOTHINIT
and FAST-SMOOTHINIT demonstrate promising empirical results across various
benchmarks, including UCF-101/MSR-VTT-related FVD, Chronomagic-bench,
and T2V-Compbench, setting a new standard for noise initialization in VDMs.

1 INTRODUCTION

Text-to-video (T2V) synthesis (Ho et al., 2022; Singer et al., 2022; Bao et al., 2024; Blattmann
et al., 2023) is a promising topic in artificial intelligence-generated content (AIGC). In contrast to
text-to-image (T2I) synthesis (Rombach et al., 2022; Esser et al., 2024; Peebles & Xie, 2023), which
benefits from a large, well-curated dataset such as LAION-5B (Schuhmann et al., 2022) of image-
text pairs to train powerful diffusion models for generating diverse and high-quality images, T2V
generation methods often produce suboptimal results due to the cluttered, watermarked nature and
small scale of existing training datasets (Bain et al., 2021; Soomro, 2012). Compared to retraining a
desired video diffusion model (VDM), one of the most straightforward and inexpensive solutions is
to develop ideal plug-and-play algorithms to enhance the fidelity and diversity of composite videos.
Unfortunately, the training-free sampling algorithms (Song et al., 2023a; Lu et al., 2022c; Bao et al.,
2022) that perform well in T2I synthesis often struggle to meet expectations in T2V generation1.
Given this, while recent approaches (Wu et al., 2023; Qiu et al., 2024; Chen et al., 2024b; Jeong
et al., 2024) leverage the sampling characteristic of VDMs to enhance the quality of video by en-
suring temporal consistency and semantic faithfulness, there remains a lack of genuine attempts to
comprehend and explore the training-free sampling paradigm from the perspective of initial noise.

In this paper, we aim to answer the question: “To what extent can just optimizing the initial Gaussian
noise improve the generation ability of VDMs?”. Sufficient empirical results (Qi et al., 2024; Ban
et al., 2024; Mao et al., 2023; Shirakawa & Uchida, 2024) consistently demonstrate that the syn-
thesized image is highly sensitive to the initial Gaussian noise, particularly when sampling through
ordinary differential equation-based (ODE-based) sampling algorithms (Lu et al., 2022b; Song et al.,
2023a). Even injecting a slight perturbation into the initial noise can significantly alter the generated
object’s color, position, and morphology. These observations suggest that there may exist a special

1We provide an obvious example in Appendix E.1 to demonstrate this statement.
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Figure 1: Illustration of SMOOTHINIT and FAST-SMOOTHINIT. Compared with other sampling algorithms, our
proposed SMOOTHINIT and FAST-SMOOTHINIT only require optimizing the initial noise, which significantly
improves the performance of VDMs.

initial noise in high-dimensional space where the quality of images or videos synthesized from this
noise is significantly higher than that of other counterparts. To this end, this work aims to design
a novel algorithm to identify the optimal initial noise in the more challenging T2V synthesis task,
approaching the problem from the smoothing perspective (Cohen et al., 2019).

Identifying smoothing as the primary tool for optimizing the initial noise is crucial, as VDMs are
built on stochastic processes (Song et al., 2023b), and the randomness inherent in smoothing (Cohen
et al., 2019) can be effectively combined with stochastic differential equations (SDEs). Thus, it is
natural for us to provide a theoretical chain of analysis, combined with empirical visualizations, to
elucidate how smoothing enhances the quality of synthesized videos. Leveraging the blessing of
smoothing, we propose a rudimentary algorithm, , along with a more advanced ver-
sion, . Specifically, SMOOTHINIT first adds a perturbation to the initial Gaussian
noise, then injects semantic information related to the perturbation through the combined action of
DDIM (Song et al., 2023a) and DDIM-Inversion (Mokady et al., 2023), and finally computes the
expectation of the noise with semantics, conditioned on the perturbation, as the optimized noise.
The Corollary 3.4 in this paper proves that SMOOTHINIT is analogous to introducing an additional
third-order term on top of gradient descent, leading to more robust convergence. Further, FAST-
SMOOTHINIT introduces a momentum mechanism on top of SMOOTHINIT to dynamically update
the initial noise before injecting semantic information. This approach not only accelerates conver-
gence but also reduces truncation error with theoretical guarantees (i.e., Theorem 3.5).

We conduct extensive experiments in Sec. 4 on various VDMs, including ANIMATEDIFF (Guo et al.,
2023), MODELSCOPE-T2V (Wang et al., 2023), and LATTE (Ma et al., 2024), where the experi-
ments show a consistent and substantial improvement over the widely used baselines (e.g., DDIM)
under several popular benchmarks, including UCF-101/MSR-VTT-related FVD (Soomro, 2012),
Chronomagic-Bench-150 (Yuan et al., 2024), Chronomagic-Bench-1652 (Yuan et al., 2024), and
T2V-Compbench (Sun et al., 2024). Moreover, FAST-SMOOTHINIT outperforms FREEINIT (Wu
et al., 2023) and UNICTRL (Chen et al., 2024b) in almost all metrics under the premise of treating
the backbone (Ho et al., 2020; Peebles & Xie, 2023) as a black box and only modifying the initial
noise, effectively substantiating that SMOOTHNESS is compatible with VDMs.

2 BACKGROUND

We present preliminaries on VDMs, DDIM & DDIM-Inversion, the classifier-free guidance and
smoothing in this section and discuss other related work in detail in Appendix D.

Video Diffusion models. VDMs (Blattmann et al., 2023) contain a forward and a reverse process.
Denote x0 a D-dimensional random variable from a video data distribution q0(x0). The (discrete)
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forward process progressively corrupts “clean video” by interpolating Gaussian noise xT ∼ N (0, I)
with x0: xt = αtx0 + σtxT , where t ∈ {0, 1, · · · , T} and αt as well as σt are pre-defined noise
schedule. For the convenience of the derivation in this paper, we define t ∈ (0, 1] for the (continuous)
diffusion process, and xT is changed to x1. Then the (continuous) forward process can be defined
as the following stochastic differential equation (SDE):

dxt = f(t)xtdt+ g(t)ωt, (1)

where f(t) = d logαt

2dt and g2(t) = −dαt

dt −
d logαt

dt (1 − αt) in the “continuous DDPM” (i.e., VP-
SDE (Song et al., 2023b)). ωt is a standard Wiener process. Every forward process has an equivalent
reverse process:

dxt =

[
f(t)xt −

[
1 + λ2

2

]
g2(t)∇x log qt(x)

]
dt+ λg(t)ωt, (2)

where ∇x log qt(x) denotes the score function ∇xt
log p(xt), and ωt is a standard Wiener process

in backward time. The parameter λ is a balancing factor that controls whether the reverse process
converges to a SDE (i.e., 1 ≥ λ > 0) or an ODE (i.e., λ = 0). Since∇x log qt(x) is unknown during
the reverse process, it needs to be replaced by a linear transformation ϵθ(xt,t)

−σt
with the noise esti-

mation model ϵθ. Compared with image data x0 ∈ RB×C×H×W, video data x0 ∈ RB×C×T×H×W

includes an additional dimension T to represent frames, where B, C, H and W denote the batch size,
the number of channels, the height and the width, respectively. This leads to the general treatment
of VDMs by using 3D convolutions (e.g., MODELSCOPE-T2V (Wang et al., 2023)), increasing the
number of tokens (e.g., LATTE (Ma et al., 2024)), or merging the T dimension into the batch size
(e.g., ANIMATEDIFF (Guo et al., 2023)).

DDIM & DDIM-Inversion. DDIM (Song et al., 2023a) is an efficient ODE-based sampler that
progressively refines the initial Gaussian noise xT , eventually producing a “clean” video x0 that
follows the data distribution p0(x0). A key feature of DDIM is its deterministic sampling, which
ensures that the synthesized video is uniquely determined by the initial noise xT and the text prompt
c. DDIM produces the synthesized data as

xt = DDIM(xs) = αt

(
xs − σsϵθ(xs, s)

αs

)
+ σtϵθ(xs, s), (3)

where s and t represent timesteps, where t ≤ s. Using DDIM instead of applying Eq. 1 to add noise
under the constraint t ≥ s is referred to as DDIM-Inversion. In this paper, we define the operator as
xt = DDIM-Inversion(xs).

Classifier-free Guidance. Classifier-free guidance (CFG) (Ho & Salimans, 2021) has become a
fundamental tool for improving the quality of synthesized data in modern text-guided generation
using diffusion models. This technique enhances text conditional guidance through linear trans-
formations of the unconditional score function ∇x log qt(x|∅) and the conditional score function
∇x log qt(x|c), c and ω stand for the text prompt and the CFG scale, respectively:

dxt=

[
f(t)xt −

[
1 + λ2

2

]
g2(t) [(ω + 1)∇x log qt(x|c)− ω∇x log qt(x|∅)]

]
dt+ λg(t)ωt, (4)

Smoothing. The essence of smoothing is to enhance the stability of the algorithm, with applica-
tions such as adversarial attacks and sharpness-aware minimization (SAM). Specifically, consider a
classifier f : [0, 1]D → K that takes an input x0 and predicts target class probability over K differ-
ent classes. Random smoothing (Cohen et al., 2019; Yang et al., 2020; Chen et al., 2024a), defined
as g(x0)y = P

(
argmaxŷ∈{0,1,··· ,K} f(x0 + σsm · ϵ)ŷ=y

)
is a theoretical tool to establish a lower

bound on robustness against adversarial examples, where ϵ ∼ N (0, I) is a Gaussian noise and σsm is
the noise level. Then, the lower bound pA and the upper bound pB of g(x0)y are estimated using the
Clopper-Pearson lemma. Subsequently, random smoothing guarantees that x0 remains categorically

consistent within the certified robust radius
σsm(Φ−1(pA)−Φ−1(pB))

2 , where Φ−1 refers to the inverse
function of the standard Gaussian CDF. In addition, SAM (Chen et al., 2022; Foret et al., 2020; Du
et al., 2022) addresses the minimax problem by using the solution of the dual norm, which ensures
a smoother loss landscape and ultimately enhances the model’s generalization ability.
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Figure 2: The visualization of S (i.e., Lipschitz
constant) across different timesteps.
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Figure 3: Accuracy curves comparing Gaussian
noise and optimized noise for classification.

3 METHOD

In this section, we first explain why the initial noise is critical, then introduce the base operator used
to inject semantic information into the initial Gaussian noise, and finally present both
and , along with their theoretical and empirical justifications.

3.1 WHY INITIAL NOISE IS CRUCIAL?

A slight perturbation in the initial noise leads to drastic changes in the synthesized data. We support
this claim and demonstrate the importance of initial noise in ensuring the sampling quality of VDMs
through Theorem 3.1 and the empirical visualization in Fig. 2.

Theorem 3.1. (the proof in Appendix C.2) Suppose two latents xH and x′
H , the synthesized data

x0 and x′
0 (H ∈ {k, · · · , T}) obtained from xH and x′

H using DDIM (Song et al., 2023a) sam-
pling with the sampling interval is k satisfy ∥x0 − x′

0∥ = ∥(xH − x′
H)S∥, where the smooth-

ness factor S =
[

α0

αH
+ Z(0)Em∼Unif(1,··· ,H/k)

[
α0αm

αm−kαH
ϵ̇θ(xm,m)

]
+O(Z(0)2)

]
and Z(t) =√

1− α2
T−(t+1)k −

√
1−α2

T−tkαT−(t+1)k

αT−tk
and ∥ · ∥ is the Euclidean norm or the Frobenius norm.

As Appendix C.2 proves, the factor Z(t) monotonically decreases as t goes from T to 0. Thus,
Z(t) obtains its maximum value at t = T . Considering a very small time interval in which αt

remains constant (i.e., αT = αT−k), the variable Z(0) is given as 0. In practice, for models such as
STABLE DIFFUSION (SD) V1.5, SD XL, MODELSCOPE-T2V, and ANIMATEDIFF, Z(0) can be
computed as 0.126. In these cases where Z(0)n ≪ 1 (n ≥ 2), we can ignore the high-order term
O(Z(0)2) in S. Since αt ∈ [0, 1] decreases monotonically as t increases, the zero-order term must
be significantly larger than 1, while the first-order term is unknown because ϵθ(·, ·) is a black-box
function. We can conclude that the smoothing factor S decreases as H goes from T to k.

To support this theoretical analysis, we present S estimates across different timesteps on ANIMATE-
DIFF in Fig. 2, visualizing the dynamic curves for five different prompts along with their average.
Each point on the curves represents the effect of the perturbation at the current timestep on the final
synthesized video. It is obvious that the initial noise (i.e., H = T ) has the greatest impact on the
sampling output, and this effect decays dramatically as H decrease from T to k. Accordingly, our
work focuses on optimizing the initial noise to enhance the generative ability of VDMs, leading to
strong performance from both our proposed methods SMOOTHINIT and FAST-SMOOTHINIT.

3.2 HOW TO OPTIMIZE INITIAL NOISE? FUTURE INFORMATION IS A GOOD REMEDY

How can a desirable perturbation be injected into the initial noise to actively enhance the fidelity
of the synthesized data during the reverse process? We address this by selecting a simple yet ef-
fective operator that attaches semantic information, which we refer to as FORWARD-INVERSION.
This operator can be described as x′

T = fs(xT ) = DDIM-Inversion(DDIM(xT )), where the sam-
pling path is xT → xT−∆T → xT s.t.,∆T > 0. The key idea is that fs(·) injects semantic
information by leveraging the inconsistency in classifier-free guidance (CFG) between DDIM(·)
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Table 1: Comparison on UCF-101. Note that UNICTRL (Chen et al., 2024b) does not provide an implementa-
tion of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) and is tightly coupled to the attention module of
the noise estimation model, so it uses the default ANIMATEDIFF (SD V1.5, MOTION ADAPTER V1).

METHOD
FVD (↓)

(UCF-101, STYLEGAN)
FVD (↓)

(UCF-101, VIDEOGPT)
TIME SPENT (↓)
(S/PER VIDEO)

NO NEED TO ACCESS NOISE
ESTIMATION MODEL?

NO NEED TO ACCESS NOISE
SAMPLING PROCESS?

ORIGIN 815.08 819.93 21.82 ✓ ✓
FORWARD-INVERSION 797.87 801.43 22.65 ✓ ✓
FREEINIT 805.33 807.04 44.66 ✓ ✗
UNICTRL 1757.20 1671.43 49.10 ✗ ✗
SMOOTHINIT30 (Ours) 802.48 805.64 46.72 ✓ ✓
FAST-SMOOTHINIT10 (Ours) 795.83 799.27 30.12 ✓ ✓
FAST-SMOOTHINIT30 (Ours) 717.86 721.47 46.72 ✓ ✓

Table 2: Quantitative comparison with popular T2V methods on Chronomagic-Bench-150 (Yuan et al., 2024).

MODEL METHOD ω1 : ω2 UMT-FVD (↓) UMTSCORE (↑) GPT4O-MTSCORE (↑) MEAN RANK (↓)

ANIMATEDIFF
(SD V1.5,

MOTION ADAPTER V3)

ORIGIN N/A 275.18 2.82 2.83 4.00
FORWARD-INVERSION 7.5:1 267.83 2.96 2.86 4.00
FREEINIT N/A 268.31 2.82 2.59 5.67
SMOOINIT30 (Ours) 7.5:1 259.85 3.08 2.93 2.00
FAST-SMOOINIT10 (Ours) 7.5:1 253.96 3.03 3.23 2.00
FAST-SMOOINIT30 (Ours) 7.5:1 248.61 3.04 3.00 1.67

MODELSCOPE-T2V

ORIGIN N/A 241.61 2.66 2.96 5.33
FORWARD-INVERSION 7.5:1 234.92 2.93 3.02 4.33
FREEINIT N/A 220.96 3.01 3.09 3.00
SMOOINIT30 (Ours) 7.5:1 233.50 2.73 2.94 5.00
FAST-SMOOINIT10 (Ours) 7.5:1 219.72 3.06 3.19 1.00
FAST-SMOOINIT30 (Ours) 7.5:1 219.73 3.02 3.13 2.00

ANIMATEDIFF
(SD-XL, BETA)

ORIGIN N/A 264.95 2.54 3.19 4.00
FORWARD-INVERSION 7.5:1 268.38 2.45 3.20 5.00
FREEINIT N/A 256.87 2.69 3.06 3.33
SMOOINIT30 (Ours) 7.5:7.5 284.22 2.51 3.14 6.33
SMOOINIT30 (Ours) 7.5:1 257.76 2.69 3.19 2.67
FAST-SMOOINIT10 (Ours) 7.5:1 270.76 2.57 3.32 3.33
FAST-SMOOINIT30 (Ours) 7.5:1 255.94 2.52 3.28 2.67

Table 3: Quantitative comparison with popular T2V methods on Chronomagic-Bench-1649 (Yuan et al., 2024).

MODEL METHOD ω1 : ω2 UMT-FVD (↓) UMTSCORE (↑) CHSCORE (↑) MEAN RANK (↓)

ANIMATEDIFF
(SD V1.5,

MOTION ADAPTER V3)

ORIGIN N/A 219.29 3.08 11.25 4.67
FORWARD-INVERSION 7.5:1 222.55 3.08 11.52 4.33
SMOOINIT30 (Ours) 7.5:1 219.49 3.10 11.51 3.67
FAST-SMOOINIT10 (Ours) 7.5:1 215.73 3.12 12.40 1.67
FAST-SMOOINIT30 (Ours) 7.5:1 211.45 3.11 12.48 1.33

Table 4: Quantitative comparison with popular T2V methods on T2V-Compbench (Sun et al., 2024). CA refers
to the CONSIST-ATTR metric and all ω1 : ω2 is set as 7.5 : 1.

METHOD
ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) MODELSCOPE-T2V

CA (↑) ACTION (↑) INTERACTION (↑) NUMERACY (↑) AVG (↑) CA (↑) ACTION (↑) NUMERACY (↑) AVG (↑)

ORIGIN .6558 .4159 .7700 .2725 .5286 .5525 .4525 .1891 .3980
FORWARD-INVERSION .6645 .4719 .7600 .2647 .5403 .5500 .4699 .1828 .4009
SMOOTHINIT30 (Ours) .6350 .4679 .7425 .2659 .5278 .5225 .4759 .2084 .4022
FAST-SMOOTHINIT10 (Ours) .6938 .4539 .7975 .2785 .5559 .5937 .4579 .1897 .4138
FAST-SMOOTHINIT30 (Ours) .6758 .4505 .7800 .3209 .5568 .5813 .4530 .2250 .4198

and DDIM-Inversion(·). We denote the CFG sclae in DDIM(·) and DDIM-Inversion(·) as ω1 and
ω2, respectively. By setting ω1 > ω2, we can naturally stabilize the process and reliably achieve
semantic information attachment. To confirm that the optimized noise x′

T indeed contains semantic
information, we select the first five prompts (Ge et al., 2023) of UCF-101 in alphabetical order, gen-
erate 100 videos with ω1 : ω2 = 7.5 : 1 for each, and split the dataset into a 7:3 ratio for training and
testing in classification experiments. The empirical results in Fig. 3 illustrate that x′

T (i.e., “Inverted
Noise” in Fig. 3) contains semantic information compared to the initial Gaussian noise xT , thereby
increasing the probability of correctly classifying the UCF-101 prompts.

The method of injecting semantic information is not limited to FORWARD-INVERSION. An alter-
native approach is to directly obtain xT + (ω + 1)∇x log q1(x|c)− ω∇x log q1(x|∅) from xT and
treat it as the new initial noise. However, this form of gain is neither intuitive nor significant in our
exploratory experiments on the image diffusion model (e.g., SD XL), which we attribute to the ab-
sence of any introduction of “future” knowledge. By employing a Taylor expansion of the minimum
truncation error at t = 1− η

2 , we provide evidence for this assertion in Theorem 3.2:

5
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Figure 4: Ablation Studies on hyperparameter the noise level σsm and the iteration number K. Both UMT-
FVD and UMTSCORE obtain optimal solutions when σsm (i.e., 0.03 and 0.03) is small and K (i.e., 74.45 and
68.99) is large. More experiments about ω1 : ω2 = 7.5 : 7.5 can be found in Appendix E.7.

Theorem 3.2. (the proof in Appendix C.4) Given the initial noise xT ∼ N (0, I) and the oper-
ators DDIM-Inversion(·) and DDIM(·), and let the FORWARD-INVERSION operator as fs(·) =
DDIM-Inversion(DDIM(·)), we can obtain that

x′
T = fs(xT ) =⇒ dx = −

g2(1− η
2 )

2

[
(ω1 − ω2)∇x log q1− η

2
(c|x) +O(η

2
)
]
dt, (5)

where c and η refer to the text prompt and DDIM’s single sampling step, respectively.

We discover that fs(·) at t = 1 (w.r.t., in the continuous scenario) stabilizes and successfully in-
troduces semantic information about the future time point t = 1 − η

2 . It follows that we utilize
FORWARD-INVERSION as the base operator in smoothing initialization.

3.3 BLESSING OF SMOOTH INITIALIZATION

Relying solely on Forward-Inversion to inject “future” semantic information in our experiments
(w.r.t., Sec. 4) is insufficient. Therefore, we propose SMOOTHINIT, which we outline in Fig. 1, and
it can be formulated as follows:

g(xT ) = Eϵ∼N (0,σ2
smI)[fs(xT + ϵ)]︸ ︷︷ ︸
in theory

=⇒ g̃(xT ) =
1

K
ΣK

i=1,ϵ∼N (0,I)[fs(xT + σsmϵ)]︸ ︷︷ ︸
in practice

,
(6)

where σsm and K denote the noise level and the iteration number, respectively. The expectation
form is used for theoretical derivation, whereas the summation form is applied for practical re-
verse sampling. The essence of SMOOTHINIT is to enhance the stability of FORWARD-INVERSION
through sufficiently small perturbations, akin to random smoothing for achieving certified robust-
ness. We leverage Theorem 3.3 to prove that when the Euclidean distance between x and y in
high-dimensional space is below a threshold R, g(x) and g(y) tend to converge to the same ϵ∗.

Theorem 3.3. (a special case of Cohen et al. (2019, Theorem 1) and proof in Appendix C.5) Given
the definitions of FORWARD-INVERSION operator fs(·) and SMOOTHINIT operator g(·), ∃ γ and
ϵ∗ satisfy: P(1 [∥f(x+ ϵ)− ϵ∗∥ ≤ γ] = 1) ≥ p1 ≥ p0 ≥ P(1 [∥f(x+ ϵ)− ϵ∗∥ ≤ γ] = 0), where
p1 ∈ [0, 1] and p0 ∈ [0, 1]. 1[·] denotes the indicator function. Then 1 [∥[g(x+ δ)− ϵ∗∥ ≤ γ] = 1

for all ∥δ∥ < R, where R = σsm

2 (Φ−1(p1)− Φ−1(p0)).

Although Theorem 3.3 does not establish that ϵ∗ is indeed preferable for x, it clearly shows that
Z = g(x) is the unique solution to E(x,ϵ)∼N (0,I) minZ [∥fs(x+ σsmϵ)− Z∥]. This also ensures
that SMOOTHINIT adheres to the consistency principle, where any two initial Gaussian noises within
a distance of σsm

2 (Φ−1(p1)− Φ−1(p0)) tend to result in consistent optimized noise.

Leveraging the properties of SDEs and smoothing, we can gain a deeper understanding of SMOOTH-
INIT through the optimization theory (Pierre, 1986). To be specific, by eliminating the first-order
terms of g(·) using Taylor expansion and utilizing the fact that ∂ log qt(x)

∂x0
can be derived via a linear

transformation of∇x log qt(x), we arrive at Corollary 3.4:

6
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Table 5: Ablation studies between uniform noise and Gaussian
noise for initialization. Additional comparisons between trun-
cated Gaussian noise and standard Gaussian noise are provided
in Appendix E.4.

ITERATION NUMBER K NOISE TYPE σsm UMT-FVD (↓) UMTSCORE (↑)

(ω1 : ω2) N/A N/A (7.5:7.5) (7.5:1) (7.5:7.5) (7.5:1)

30

Gaussian 0.100 270.91 272.53 2.93 2.96
Gaussian 0.075 276.76 267.45 2.93 3.07
Gaussian 0.050 269.28 271.40 2.91 2.98
Gaussian 0.025 267.29 266.55 2.94 3.02
Uniform 0.100 271.92 268.70 2.98 2.95
Uniform 0.075 266.31 269.73 2.93 2.92
Uniform 0.050 267.92 273.54 2.87 2.94
Uniform 0.025 264.62 259.85 2.93 3.08

10

Gaussian 0.100 262.14 264.09 2.98 3.02
Gaussian 0.075 274.78 267.15 2.89 3.00
Gaussian 0.050 265.16 266.80 3.00 2.97
Gaussian 0.025 268.73 265.20 2.93 2.97
Uniform 0.100 271.92 266.37 2.98 2.92
Uniform 0.075 266.30 266.14 2.93 3.03
Uniform 0.050 267.41 261.92 2.87 3.05
Uniform 0.025 264.62 263.05 2.93 3.07
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Figure 5: Ablation studies
of σsm and γm within FAST-
SMOOTHINIT. Due to space
constraint, more experiments are
provided in Appendix E.5.

Corollary 3.4. (the proof in Appendix C.5) Given the definition and conclusion in Theorem 3.2,

then fs(xT ) = xT −
σ
T− 1

2

α
T− 1

2

αT−1σT−αTσT−1

αT−1
(ω1 − ω2)

∂
[
− log q1− η

2
(x)

]
∂x0

and g(xT ) = fs(xT ) −

σ2
smσ

T− 1
2

4α
T− 1

2

αT−1σT−αTσT−1

αT−1
(ω1 − ω2)tr

(
∂3

[
− log q1− η

2
(x)

]
∂x3

0

)
+O

(
∂4
[
− log q1− η

2
(x)
]
/∂x4

0

)
.

This Corollary demonstrates that fs(·) is approximately performing gradient descent to optimize a
log likelihood, and g(·) introduces the higher-order term for more accurate gradient descent. To be
specific, if σT−1/2

αT−1/2

αT−1σT−αTσT−1

αT−1
(ω1−ω2) is considered as the learning rate ζ, then fs(xT ) essen-

tially applies gradient descent to decrease the cross-entropy loss
[
−log q1− η

2
(x)
]

by updating xT ,
causing xT to move in the direction of x0. By contrast, g(xT ) complements fs(xT ) with an extra
term involving the trace of third-order derivatives, leading to a more precise optimization that helps
prevent xT from convergent to a suboptimal solution. Additionally, the third-order term corresponds
to the Hessian matrix of the score function ∇x log qt(x). Constraining this term with regularization
helps reduce the sharpness of∇x log qt(x) and improve VDMs’ generalization ability.

3.4 FAST SMOOTH INITIALIZATION WITH THE MOMENTUM MECHANISM

In fact, the complete SMOOTHINIT can be described as x′
T = g◦g◦· · ·◦g(xT ), where ◦ denotes com-

position. Compared with vanilla SMOOTHINIT, the complete version requires an excessive number
of executions of the smoothing operator g(·) to ensure convergence of the gradient descent simu-
lation. This results in significant inference overhead, hindering its practical deployment. Besides,
performing g(·) only once would fall into a suboptimal solution. To this end, as shown in Fig. 1, we
propose a more advanced version FAST-SMOOTHINIT, which utilizes the momentum mechanism,
akin to the momentum technique used in MI-FGSM (Dong et al., 2018), DPM-Solver (Lu et al.,
2022c), and Adam (Diederik, 2014). We primarily define two pivotal hyperparameters: the momen-
tum γm and the noise decay rate γdecay, which control the strength of the initial noise shift and the
degree of noise decay at each iteration relative to the previous one, respectively. As shown in Al-
gorithm 1, the key design of FAST-SMOOTHINIT is to achieve more faster optimization by updating
the input of fs(·) per iteration, thus fully utilizing the optimized noise obtained before that iteration.

When the momentum γm in Algorithm 1 is set to 0, it reduces to a special case where the input
xtmp
T of the current iteration becomes the output fs(x

tmp
T + σsm(1 − γdecay)

iϵ) from the previous
iteration. In Theorem 3.5, we conclude that this case can be transformed into an ODE, which differs
from traditional diffusion processes such as the Ornstein–Uhlenbeck process.
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Algorithm 1 FAST-SMOOTHINIT ( )

Require: The FORWARD-INVERSION operator fs(·); the noise level σsm; the iteration number K; the initial
Gaussian noise xT ; the momentum γm; the noise decay rate γdecay.

1: Initialize: The previous noise is set as m0 ← xT ; the noise from two steps ago as m1 ← xT ; and the
noise from three steps ago as m2 ← xT .

2: for i = 0 to K do
3: xtmp

T ← (1− γm)m0 + (1− γm)γmm1 + γ2
mm2. ▶ Obtain the input of fs(·)

4: xtmp
T ← fs(x

tmp
T + σsm(1− γdecay)

iϵ), where ϵ ∼ N (0, I). ▶ Inject semantic information
5: m2 ←m1; m1 ←m0; m0 ← xtmp

T . ▶ Update m2, m1 and m0

6: end for
7: Return: The optimized noise m0.
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Figure 6: Visualization of 2D sampling trajectories in MODELSCOPE-T2V. The prompt is “Spiderman is
surfing”. Each subgraph visualizes 500 sampling trajectories. More visualization can be found in Appendix E.2.
Theorem 3.5. (the proof in Appendix C.6) Based on the conclusion of Theorem 3.2, FAST-
SMOOTHINIT can be reformulated as an ODE:

dx =

[
−
σT− 1

2

∆t

αT−1σT − αTσT−1

αT−1
(ω1 − ω2) +

1

2∆t
σ2
sm(1− γdecay)

2i

]
∇x log qt(x)dt, (7)

where ∆t = 1
K . In particular, we can substantiate that FAST-SMOOTHINIT and DPM-Solver share

similarities in reducing truncation errors. To be specific, by calculating the analytic solution of Eq. 7
over a single sampling interval and approximating it using a Taylor expansion (Lu et al., 2022c),
the process eventually becomes FAST-SMOOTHINIT with a momentum mechanism. Unlike DPM-
Solver, which determines the optimal hyperparameters theoretically. Motivated by Zheng et al.
(2023), FAST-SMOOTHINIT relies on a heuristic grid search to find the optimal γm and γdecay.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

To assess the effectiveness of SMOOTHINIT and FAST-SMOOTHINIT in improving fidelity, inter-
frame consistency, alignment between the synthesized video and the text prompt, and diversity, we
apply our proposed methods to four publicly available diffusion-based T2V VDMs: ANIMATE-
DIFF (SD V1.5, MOTION ADAPTER V3) (Guo et al., 2023), ANIMATEDIFF (SD XL, MOTION
ADAPTER BETA) (Guo et al., 2023), MODELSCOPE-T2V (Wang et al., 2023), and LATTE (Ma
et al., 2024). For traditional video metrics, we follow Wu et al. (2023) and Ge et al. (2023),
which assess sampling performance (i.e., Fréchet Video Distance, FVD (Unterthiner et al., 2019))
using prompts from the UCF-101 (Soomro, 2012) and MSR-VTT (Xu et al., 2016) datasets. Ad-
ditionally, we evaluate several new benchmarks that are popular on the AIGC community, includ-
ing Chronomagic-Bench-150 (Yuan et al., 2024), Chronomagic-Bench-1649 (Yuan et al., 2024),
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and T2V-Compbench (Sun et al., 2024). Specifically, Chronomagic-Bench-150 and Chronomagic-
Bench-1649 include five metrics: UMT-FVD (↓), MTSCORE (↑), UMTSCORE (↑), CHSCORE
(↑), and GPT4O-MTSCORE (↑). These metrics assess various aspects: visual quality, frame-to-
frame variation, alignment between the synthesized video and the text prompt, temporal coherence,
as well as both metamorphic amplitude and temporal coherence, respectively. T2V-Compbench is
a compositional benchmark that primarily focuses on consistent attribute binding (i.e., CONSIST-
ATTR (↑)), action binding (i.e., ACTION (↑)), object interaction (i.e., INTERACTION (↑)), and gen-
erative numeracy (i.e., NUMERACY (↑)). We provide a detailed description of the benchmarks and
VDMs in Appendix A.1 and Appendix A.2. The limitations can be found in Appendix B.

In our experiments, we apply three different hyperparameter settings to implement SMOOTH-
INIT and FAST-SMOOTHINIT: SMOOTHINIT30, FAST-SMOOTHINIT10, and FAST-SMOOTHINIT30.
These settings are derived from ablation studies discussed later, where the superscript [number] indi-
cates the number of iterations K. For the exact settings, please refer to Appendix A.3.

4.2 QUANTITATIVE COMPARISON

Traditional Bench. We compare SMOOTHINIT and FAST-SMOOTHINIT to the standard DDIM
process, the FORWARD-INVERSION operator, FREEINIT, and UNICTRL across various VDMs and
benchmarks. We evaluate the inference performance of these algorithms on the UCF-101 and MSR-
VTT datasets, using Open-Sora-Plan’s (Lab & etc., 2024) implementation of FVD (Unterthiner
et al., 2019). The results for UCF-101 and MSR-VTT are shown in Table 1 and Fig.7’s Bottom-Right,
respectively. As indicated in Table1, our proposed methods consistently outperform FREEINIT and
UNICTRL without requiring access to ϵθ(·, ·) or the standard reverse process, achieving state-of-the-
art (SOTA) performance. Notably, FAST-SMOOTHINIT30 surpasses standard DDIM sampling by
approximately 100 points. Similarly, both SMOOTHINIT30 and FAST-SMOOTHINIT30 significantly
enhance the sampling performance of MODELSCOPE-T2V on MSR-VTT-related FVD.

Chronomagi-Bench-150 & Chronomagi-Bench-1649. As shown in Table 2, SMOOTHINIT30,
FAST-SMOOTHINIT10, and FAST-SMOOTHINIT30 achieve the best performance across all met-
rics on Chronomagi-Bench-150, particularly excelling in UMTSCORE (w.r.t., the semantic faith-
fulness) and GPT4O-SCORE (w.r.t., the metamorphic amplitude and temporal coherence), signifi-
cantly surpassing the previous SOTA method, FREEINIT. Similarly, as presented in Table 3, FAST-
SMOOTHINIT10 and FAST-SMOOTHINIT30 also secured both the winner and runner-up across all
metrics on Chronomagi-Bench-1649.

T2V-Compbench. We also evaluate the generative capability of our proposed method on the
widely-used compositional T2V benchmark. As shown in Table 4, our methods achieve the strongest
performance across three metrics: CONSIST-ATTR, INTERACTION, and NUMERACY. Notably, as
illustrated in Fig. 7, SMOOTHINIT and FAST-SMOOTHINIT significantly outperform the standard
DDIM process in NUMERACY when applied to the text prompt, “Two cats chase · · · sunny garden.”

4.3 ABLATION STUDY

We demonstrate in Fig. 4 that the optimal settings for σsm and K in SMOOTHINIT vary depending
on the metric. A clear pattern emerges: UMT-FVD and UMTSCORE improve with larger K and
smaller σsm, while GPT4O-SCORE performs better with smaller K and larger σsm. Considering
computational overhead, we adopt K = 30 and the corresponding σsm as the default SMOOTHINIT
configuration. Furthermore, we investigate the effect of γm and γdecay on video quality using grid
search. As shown in Fig. 5 and Appendix E.5, FAST-SMOOTHINIT consistently outperforms the
vanilla sampling method across nearly all settings. The optimal parameters are γm = 0.05, γdecay =
0.05 for FAST-SMOOTHINIT10 and γm = 0.01, γdecay = 0.25 for FAST-SMOOTHINIT30. Finally,
inspired by Xie et al. (2021), we attempt to use uniform noise from U [−

√
3,
√
3] instead of Gaussian

noise to achieve more stable optimization. As shown in Table 5, this approach slightly reduces UMT-
FVD. However, it degrades the performance of FAST-SMOOTHINIT, so we apply the technique
exclusively to SMOOTHINIT. Due to space constraints, we present and discuss additional ablation
experiments, including but not limit to the combination of our methods with DPM-Solver++, the
additional computational cost, and experiments on the LATTE (w.r.t., DiT), in Appendix E.
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Bottom-Right:
Comparison on MSR-VTT with Modelscope-T2V.

Figure 7: Visualization of SMOOTHINIT, FAST-SMOOTHINIT and the standard DDIM on ANIMATEDIFF.
Bottom-Right: Comparison on the MSR-VTT (Xu et al., 2016) dataset with MODELSCOPE-T2V.

4.4 VISUALIZATION

Sampling Trajectory. We visualize the sampling trajectories of different processes initiated by
various types of noise, including Origin, FORWARD-INVERSION, SMOOTHINIT30, and FAST-
SMOOTHINIT30. The top of Fig. 6 shows the cosine similarity curve ⟨xt−xT ,x0−xT ⟩

∥xt−xT ∥·∥x0−xT ∥ at each
time step t. At the start of the sampling process (timestep = 0 in Fig. 6), the similarity for FAST-
SMOOTHINIT30 is higher than that of SMOOTHINIT30 and the other methods, indicating that the
sampling trajectory of FAST-SMOOTHINIT30 is the most straight (Liu et al., 2022). This suggests
that the video synthesized by FAST-SMOOTHINIT30 is closer to the real data distribution (Villani
et al., 2009). Moreover, the bottom of Fig. 6 presents the curve showing the distance of xt from the
mean E[xt]. We observe that FAST-SMOOTHINIT behaves significantly differently from the other
three methods. Specifically, at the endpoint of the sampling process (timestep = 1 in Fig.6), the video
generated by FAST-SMOOTHINIT tends to be more uniformly distributed within a sphere, whereas
SMOOTHINIT, FORWARD-INVERSION, and Origin tend to be distributed along a spherical shell.

Synthesized Video. Fig. 7 presents the synthesized videos from different noise using ANIMATED-
IFF and the combination of ANIMATEDIFF with CONTROLNET (Zhang et al., 2023). Across various
prompts, both SMOOTHINIT and FAST-SMOOTHINIT significantly enhance the fidelity and seman-
tic faithfulness of the synthesized videos compared to Origin. For example, our proposed methods
effectively render the prompt “A young boy · · · flying a kite · · · ”, whereas pure Gaussian noise with
standard DDIM sampling fails to do so. More visualization can be found in Appendix F.

5 CONCLUSION

In this paper, we extensively explore initial noise optimization to improve the quality and fidelity of
synthesized videos from a smoothing perspective. Through empirical investigations and theoretical
analysis, we confirm the significant sensitivity of the final video to the initial noise and demonstrate
the FORWARD-INVERSION operator’s ability to consistently optimize this noise by injecting seman-
tic information. Building on these insights, we propose a basic algorithm, SMOOTHINIT, which
improves optimization by accounting for bias introduced by intra-closed ball perturbations, thereby
enhancing VDM generation quality. We further design an advanced version, FAST-SMOOTHINIT,
which achieves better performance and faster convergence by dynamically updating the input to the
FORWARD-INVERSION operator during iterations. We hope that our exploration of smoothing in
VDMs inspires future research on more efficient noise initialization techniques, contributing to the
AIGC community.
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Ethics Statement. We introduce and , two approaches aimed at
improving the semantic accuracy and visual quality of video generated by Video Diffusion Mod-
els. While our methods do not directly involve human participants, we remain dedicated to ensur-
ing their responsible use, prioritizing respect for user autonomy and fostering positive outcomes.
In line with data protection standards, we emphasize the privacy and security of any synthesized
videos and prompts involved in our work. Recognizing the commercial potential of
and , we are committed to their ethical deployment, with a focus on maximizing
societal benefits and minimizing potential risks.
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A ADDITIONAL INPLEMENTATION DETAILS

A.1 BENCHMARKS

Here we present the relevant metrics and benchmarks used for comparison in the main paper.

UCF-101-related FVD. The UCF-101 dataset is an action recognition dataset consisting of 101
categories. All videos are sourced from YouTube, with a fixed frame rate of 25 frames per second
(FPS) and a resolution of 320×240. Several previous works (Blattmann et al., 2023; Wu et al., 2023;
Chen et al., 2024b) validate the generation performance of VDMs on the UCF-101 dataset using
FVD (Unterthiner et al., 2019). However, a comprehensive evaluation benchmark for UCF-101
remains unavailable. Consequently, we follow FREEINIT, using the prompts listed in Ge et al. (2023)
to synthesize videos and evaluate inference performance with FVD. Specifically, we synthesize 5
videos for each of the 101 prompts provided by Ge et al. (2023), resulting in 505 synthesized videos.
We then compute the FVD between these 505 synthesized videos and 505 videos randomly sampled
from the UCF-101 dataset (5 per class) by Open-Sora-Plan’s2 built-in FVD evaluation code.

MSR-VTT-related FVD. The MSR-VTT dataset (Xu et al., 2016) is a large-scale dataset for
open-domain video captioning, consisting of 10,000 video clips from 20 categories. The standard
split includes 6,513 clips for training, 497 clips for validation, and 2,990 clips for testing. We used
all 497 validation videos for our measurement. First, we generate a total of 1,491 videos based on
the prompts from the 497 validation videos, with each prompt generating three different videos to
ensure evaluation stability. We finally use Open-Sora-Plan’s3 built-in FVD evaluation code to assess
the results.

Chronomagic-Bench-150. Chronomagic-Bench-150, proposed in (Yuan et al., 2024), is a com-
prehensive benchmark with a primary focus on the metamorphic evaluation of timelapse T2V syn-
thesis. This benchmark includes four major categories of time-lapse videos: biological, human-
created, meteorological, and physical, and extends these into 75 subcategories. Each subcategory
contains two hard prompts, resulting in a total of 150 prompts. Chronomagic-Bench-150 com-
prises four metrics: UMT-FVD (↓), MTSCORE (↑), UMTSCORE (↑), and GPT4O-MTSCORE
(↑), each used to evaluate different aspects. More specifically, UMT-FVD (↓) (Liu et al., 2024b)
uses the UMT (Li et al., 2023) feature space to compute FVD and evaluate the visual quality of
the synthesized video. MTSCORE (↑) measures metamorphic amplitude, reflecting the degree of
change across frames. UMTSCORE (↑) employs the UMT (Li et al., 2023) feature space to com-
pute CLIPScore (Hessel et al., 2021), assessing the text relevance of the synthesized video. Finally,
GPT4O-MTSCORE (↑) is a fine-grained metric that uses GPT-4o (Achiam et al., 2023) as an evalu-
ator, aligning with human perception to accurately reflect the metamorphic amplitude and temporal
coherence of T2V models. In this paper, we use metrics UMT-FVD (↓), UMTSCORE (↑), and
GPT4O-MTSCORE (↑) because we find that MTSCORE (↑) exhibits a peculiar phenomenon: per-
formance decreases as the number of sampling steps increases (from 30 to 50), which may introduce
ambiguity.

Chronomagic-Bench-1649. Chronomagic-Bench-1649, proposed in (Yuan et al., 2024), is a com-
prehensive benchmark with a primary focus on the metamorphic evaluation of timelapse T2V syn-
thesis. This benchmark has 75 subcategories like Chronomagic-Bench-150 but has 1649 prompts,
which is more comprehensive compared to the lightweight benchmark Chronomagic-Bench-150.
Chronomagic-Bench-1649 comprises four metrics: UMT-FVD (↓), MTSCORE (↑), UMTSCORE
(↑), and CHSCORE (↑), each used to evaluate different aspects. More specifically, UMT-FVD
(↓) (Liu et al., 2024b) uses the UMT (Li et al., 2023) feature space to compute FVD and evaluate
the visual quality of the synthesized video. MTSCORE (↑) measures metamorphic amplitude, re-
flecting the degree of change across frames. UMTSCORE (↑) employs the UMT (Li et al., 2023)
feature space to compute CLIPScore (Hessel et al., 2021), assessing the text relevance of the syn-
thesized video. Finally, CHSCORE (↑) evaluates temporal coherence, ensuring that the generated
videos maintain logical progression and continuity. Similar to Chronomagic-Bench-150, we ignore
the metric MTScore (↑) in our experiments.

2https://github.com/PKU-YuanGroup/Open-Sora-Plan
3https://github.com/PKU-YuanGroup/Open-Sora-Plan
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T2V-Compbench. TV2-Compbench (Sun et al., 2024) is a benchmark specifically designed for
compositional text-to-video (T2V) synthesis. It covers various aspects of compositionality, includ-
ing consistent attribute binding, dynamic attribute binding, spatial relationships, motion binding,
action binding, object interactions, and generative numeracy. TV2-Compbench includes seven dis-
tinct metrics, with each metric consisting of 100 prompts. In this paper, we focus on four metrics:
CONSIST-ATTR (↑), ACTION (↑), INTERACTION (↑), and NUMERACY (↑). Specifically, CONSIST-
ATTR (↑) evaluates the consistent attribute binding ability of VDMs, assessed by LLAVA-34b (Liu
et al., 2024a); ACTION (↑) evaluates the action binding ability of VDMs, also assessed by LLAVA-
34b (Liu et al., 2024a); INTERACTION (↑) evaluates the object interaction ability of VDMs, again
assessed by LLAVA-34b (Liu et al., 2024a); and NUMERACY (↑) assesses the generative numeracy
ability of VDMs, evaluated by GroundingSAM (Ren et al., 2024).

A.2 VIDEO DIFFUSION MODELS

We describe the VDMs utilized in this work. Specifically, we employ three VDMs with distinct
architectures: MODELSCOPE-T2V (Wang et al., 2023), ANIMATEDIFF (Guo et al., 2023), and
LATTE (Ma et al., 2024):

Modelscope-T2V. MODELSCOPE-T2V incorporates spatio-temporal blocks to ensure consistent
frame generation and smooth motion transitions. Its most critical features include the use of 3D
convolution, training from scratch. The input video size is 3×16×256×256, where 3 represents the
number of channels, 16 is the number of frames, and 256×256 refers to the resolution.

Animatediff. ANIMATEDIFF does not require training from scratch. It only needs fine-tuning on
existing image diffusion models. ANIMATEDIFF’s motion adapter is a plug-and-play module that
converts most community text-to-image models into animation generators. In this paper, we use two
different versions, ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) and ANIMATEDIFF (SD XL,
BETA). The former was fine-tuned from SD V1.5, while the latter was fine-tuned from SD XL.
The input video size of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) is 3×16×512×512,
where 3 represents the number of channels, 16 is the number of frames, and 512×512 refers to the
resolution. The input video size of ANIMATEDIFF (SD XL, BETA) is 3×16×1024×1024, where
3 represents the number of channels, 16 is the number of frames, and 1024×1024 refers to the
resolution.

Latte. LATTE is a scratch-trained VDM built on the diffusion transformer (DiT). Unlike
MODELSCOPE-T2V and ANIMATEDIFF, both the VAE Encoder and VAE Decoder of LATTE are
retrained specifically for T2V synthesis. The input video size is 3!×!16!×!512!×!512, where 3 rep-
resents the number of channels, 16 is the number of frames, and 512!×!512 refers to the resolution.

A.3 HYPERPARAMETER SETTINGS

For all VDMs, we use the default sampling steps, CFG scale, and sampler from their respective
papers or demos. To be specific, for MODELSCOPE-T2V, the sampling steps, CFG scale (i.e., ω1),
and sampler are set to 50, 7.5, and DDIM(·), respectively. Similarly, for ANIMATEDIFF (SD V1.5,
MOTION ADAPTER V3), these parameters are also set to 50, 7.5, and DDIM(·). For ANIMATEDIFF
(SD XL, BETA), the sampling steps, CFG scale (i.e., ω1), and sampler are set to 20, 7.5, and
DDIM(·). Lastly, for LATTE, the sampling steps, CFG scale (i.e., ω1), and sampler are set to 50,
7.5, and DDIM(·).
For SMOOTHINIT, the noise level σsm, the number of iterations K, and the noise type are set to
0.025, 30, and uniform noise U

[
−
√
3,
√
3
]
, respectively. For FAST-SMOOTHINIT10, the noise level

σsm, the number of iterations K, and the noise type are set to 0.05, 10, and Gaussian noise N (0, I),
respectively. Specifically, γm and γdecay are both set to 0.05. For FAST-SMOOTHINIT30, the noise
level σsm, the number of iterations K, and the noise type are set to 0.1, 30, and Gaussian noise
N (0, I), respectively. Specifically, γm and γdecay are set to 0.01 and 0.25, respectively.

We found that on LATTE, both FAST-SMOOTHINIT10 and FAST-SMOOTHINIT30 are prone to neg-
ative optimization under the hyperparameter settings mentioned above. Upon analysis, we deter-
mined that this is because LATTE is significantly less tolerant of the effective range of the initial
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noise xT . To address this issue, we increased γm to 0.95 in both FAST-SMOOTHINIT10 and FAST-
SMOOTHINIT30, ensuring stability and eventually achieving the desired optimization.

B LIMITATION

Although SMOOTHINIT and FAST-SMOOTHINIT significantly enhance the performance of the final
synthesized video in VDMs, they generally introduce additional inference overhead. This overhead
is less substantial compared to FREEINIT and UNICTRL, but it still presents deployment challenges
relative to standard DDIM sampling. Additionally, the conditions under which SMOOTHINIT and
FAST-SMOOTHINIT may negatively impact certain metrics remain unexplored. Finally, while our
exploratory experiments indicate that FAST-SMOOTHINIT performs well on image synthesis tasks,
whether the algorithm can be extended to 3D rendering and graph generation remains an open ques-
tion.

C THEORETICAL ANALYSIS

C.1 ASSUMPTIONS

Throughout this section, we adopt the regularity assumptions from Lu et al. (2022a, Assumption
A.1) and Nie et al. (2024, Assumption D.1). These technical assumptions guarantee the existence
of a solution for smooth initialization in diffusion sampling and ensure the validity of integration by
parts and the Fokker-Planck equations. For completeness, we list these assumptions in this section.

Assumption C.1. We make two assumptions from Lu et al. (2022a, Assumption A.1) and Nie et al.
(2024, Assumption D.1), and we include them here only for completeness:

1. ∃C > 0,∀x,y ∈ Rd : ∥∇t log qt(x)−∇t log qt(y)∥2 ≤ C∥x− y∥2.

2. ∀t ∈ [0, T ],∃k > 0 : qt(x) = O(e−∥x∥k
2 ), pSDE

t (x) = O(e−∥x∥k
2 ), pODE

t (x) =

O(e−∥x∥k
2 ) as ∥x∥2 →∞.

C.2 THE IMPORTANCE OF INITIAL NOISE

Here, we provide a theoretical proof of Theorem 3.1 from an error analysis perspective. Addition-
ally, we demonstrate that Theorem 3.1 holds for the remaining models in the stable diffusion family,
except for stable diffusion (SD) V3, along with an in-depth corresponding interpretation. Finally,
we present the process of transforming the entropy of pt(x) into the counterpart of p0(x) using the
Fokker-Planck equation.

Proof. The widely adopted DDIM sampler can be denoted as

xt = DDIM(xs) = αt

(
xs −

√
1− α2

sϵθ(xs, s)

αs

)
+
√
1− α2

t − σ2
sϵθ(xs, s) + σsωs, (8)

where s and t represent timesteps with t ≤ s and ωs is a standard Gaussian noise independent of xs.
The term σs = η

√
(1− α2

t )/(1− α2
s)
√

1− α2
s/α

2
t controls the form of the differential equation

during the backward sampling process, determining whether it is an SDE or an ODE. When η is set
to 0, DDIM Sampler reduces to the deterministic sampling method used by default in this paper.

Suppose two Gaussian noise (vectors) xT and x′
T used for the initialization of reverse sampling,

where x′
T = xT +∆xT , ∆xT is introduced to determine the scaling of the error during sampling.

Given this, we can further obtain the following derivation:

DDIM(x′
T )− DDIM(xT )

∆xT
=

αt

αT
+

[√
1− α2

t −
√
1− α2

Tαt

αT

]
ϵ̇θ(xT , T ). (9)
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Assume that the DDIM Sampler need to sample N steps in practical application and the interval
between two neighbouring steps is k, i.e., Nk = T . In this case, the relative error at the T −k
moment can be expressed as∥∥∥∥∆xT−k

∆xT

∥∥∥∥ =

∥∥∥∥∥αT−k

αT
+

[√
1− α2

T−k −
√
1− α2

TαT−k

αT

]
ϵ̇θ(xT , T )

∥∥∥∥∥ . (10)

Similarly, we can obtain the iterative equation for the timestep t ∈ {k, 2k, · · · , T}:∥∥∥∥∆xt−k

∆xt

∥∥∥∥ =

∥∥∥∥∥αt−k

αt
+

[√
1− α2

t−k −
√
1− α2

tαt−k

αt

]
ϵ̇θ(xt, t)

∥∥∥∥∥ . (11)

Through the recursive method we can get the relative error at x0:∥∥∥∥∆x0

∆xT

∥∥∥∥ =

∥∥∥∥∥∥
N−1∏
i=0

αT−(i+1)k

αT−ik
+

√1− α2
T−(i+1)k −

√
1− α2

T−ikαT−(i+1)k

αT−ik

 ϵ̇θ(xT−ik, T−ik)

∥∥∥∥∥∥
(12)

As a differentiable function, αt increases monotonically as t approaches 0. Consequently, αT−(i+1)k

αT−ik

is always greater than 1 for i ∈ {0, 1, · · · , N−1}. The first term
∏N−1

i=0
αT−(i+1)k

αT−ik
= α0

αT
of the

polynomial on the right-hand side of Eq. 13 is always greater than 0. For the remaining unknown

term
(√

1− α2
T−(i+1)k −

√
1−α2

T−ikαT−(i+1)k

αT−ik

)
ϵθ(xT−ik+∆xT−ik, T−ik), which contributes to the

final expansion polynomial, we primarily prove that its factor
√

1− α2
T−(i+1)k−

√
1−α2

T−ikαT−(i+1)k

αT−ik

reaches its maximum value at i = 0. In practice,
√
1− α2

t in DDPM and DDIM can be regarded

as a monotonically increasing function as t approaches 1, satisfying ¨√
1− α2

t < 0 ( ¨ denotes the
second-order derivative with respect to t). Thus, the aforementioned factor can be rewritten as√

1− α2
T−(i+1)k −

√
1− α2

T−ikαT−(i+1)k

αT−ik

= k
√
1− α2

T−(i+1)k

√
1− α2

T−ik

∂(
√
1− α2

T−(i+1)k −
√
1− α2

T−ik)/∂t

αT−ik
, s.t., k is small.

(13)

The factors
√

1− α2
T−(i+1)k,

√
1− α2

T−ik, ∂(αT−ik−αT−(i+1)k)

∂t , and 1
αT−ik

all have the desirable

characteristic of decreasing monotonically as t approaches 0. Therefore,
√

1− α2
T−(i+1)k −√

1−α2
T−ikαT−(i+1)k

αT−ik
must take its maximum value when i = 0. Through a simple calculation us-

ing the most popular noise schedule widely applied in the Stable Diffusion family, we obtain this
value as 0.126. Since the noise estimation model ϵθ(·, ·) is differentiable, the power-of-1 error of
0.126 can be further analyzed using a first-order Taylor expansion:

ϵθ(xT−ik +∆xT−ik, T−ik)

= ϵθ(xT−ik, T−ik) + ∆xT−ik
∂ϵθ(xT−ik, T−ik)

∂xT−ik
+O(∆2xT−ik).

(14)

We abbreviate the first-order partial derivatives of ϵθ(x, t) with respect to x as ϵ̇θ(x, t), and eventu-
ally Eq. 13 can be transformed into:

∥x0 − x′
0∥ =

∥∥∥∥∆xT

[
α0

αT
+ Z(0)Et∼Unif(0,k,··· ,N)

[
α0

αt−k

αt

αT
ϵ̇θ(xt, t)

]
+O(Z(0)2)

]∥∥∥∥ , (15)

where Z(t) =
√

1− α2
T−(t+1)k −

√
1−α2

T−tkαT−(t+1)k

αT−tk
.

Of course, we can also derive the relative error from noises at any timestep H:

∥x0 − x′
0∥ =

∥∥∥∥∆xH

[
α0

αH
+ Z(0)Em∼Unif(1,··· ,H/k)

[
α0

αm−k

αm

αH
ϵ̇θ(xm,m)

]
+O(Z(0)2)

]∥∥∥∥ ,
(16)
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Remarks. The factor Z(0) =
√
1− α2

T−k −
√

1−α2
TαT−k

αT
in SD V1.5 (Rombach et al., 2022),

SD V2.1 (Rombach et al., 2022), SD XL (Podell et al.), Modelscope-T2V (Wang et al., 2023),
Animatediff (Guo et al., 2023), and Latte (Ma et al., 2024) can be calculated as 0.126, which is
smaller than 1. This means that Theorem 3.1 can be applied to those diffusion models, but it does not
apply to several specialized models like SD V3 (Esser et al., 2024), which uses Rectified flow (Liu
et al., 2022) and velocity estimation models. In such cases, the factors α0

αT
and Z in Eq. 15 directly

degenerate to 1, preventing the conclusion that
Ex0,x′

0
∥x0−x′

0∥
ExT ,x′

T
∥xT−x′

T∥
exceeds 1.

C.3 ENTROPY SHIFTS DURING REVERSE SAMPLING

This subsection further elaborates on Theorem 3.1. We utilize the Fokker-Planck equations to an-
alyze the entropy shift during the sampling process of diffusion models. We also introduce the
definition of the reverse ODE from Song et al. (2023b):

dxt =

[
f(xt, t)−

1

2
g2(t)∇x log qt(x)

]
, # Continuous Reverse ODE

dxt = αtx0 + σtωt, # Adding Noise
(17)

where f(·, t) : Rd → Rd is a vector-valued function called the drift coefficient of xt, and g(·) :
R→ R is a scalar function known as the diffusion coefficient of xt. Note that we use qt(x) instead
of p(xt) for simplicity. ωt is the standard Wiener process. Then, the entropy shift from q1(x) to
q0(x) can be defined as ∫

q0(x) log q0(x)dx−
∫

q1(x) log q1(x)dx. (18)

Continuing the derivation yields the following result:∫ ∫ 0

1

∂

∂t
[qt(x) log qt(x)] dtdx

=

∫ ∫ 0

1

[
∂qt(x)

∂t
log qt(x) +

∂

∂t
qt(x)

]
dtdx

=

∫ ∫ 0

1

[∇x · (h(xt, t)qt(x))(log qt(x) + 1)] dtdx # Fokker-Planck equations

=

∫ ∫ 0

1

[
(log qt(x) + 1)T(h(xt, t)qt(x))

]
dtdx # Assumption 2

=

∫ ∫ 0

1

[
(log qt(x) + 1)T

(
d logαt

dt
xt −

1

2

[
dσ2

t

dt
− 2

d logαt

dt
σ2
t

]
∇x log qt(x)

)]
dtdx

=

∫ 0

1

∫
1

2
−
[
dσ2

t

dt
− 2

d logαt

dt
σ2
t

]
∇x log qt(x)dxdt+

∫ 0

1

∫
d logαt

dt
xt log qt(x)dxdt

+

∫ 0

1

d logαt

dt
α2
t

Ex0∼q0(x)[x
2
0]

2
dt+

∫ 0

1

d logαt

2dt
σ2
t dt−

1

4

∫ 0

1

[
dσ2

t

dt
− 2

d logαt

dt
σ2
t

]
[log qt(x)]

2
dt.

(19)

Substitute αt = exp
(
− 1

4at
2 − 1

2bt
)

and σt =
√

1− exp(− 1
2at

2 − bt) with a = 19.9 and b =

0.1 (Liu et al., 2022; Shao et al., 2024), we can obtain that∫ 0

1

d logαt

dt
α2
t

Ex0∼q0(x)[x
2
0]

2
dt

=

[
−e−

at2

2 −bt

4
+ C

] ∣∣∣∣∣
0

1

Ex0∼q0(x)[x
2
0].

(20)

Obviously, the above result is a negative value. In contrast, when the noise schedule is Rectified

flow (Liu et al., 2022) (applied in Stable Diffusion V3), the upper value
∫ 0

1
d logαt

dt α2
t
Ex0∼q0(x)[x

2
0]

2 dt
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is (−(0 − 02

2 ) + (1 − 12

2 ))
Ex0∼q0(x)[x

2
0]

2 =
Ex0∼q0(x)[x

2
0]

4 . Thus, from a noise schedule perspective,
Rectified flow through sampling causes a relative increase in entropy, but DDPM/DDIM causes a
relative decrease in entropy.

C.4 INTRINSIC PRINCIPLES OF ONE STEP FORWARD-INVERSION

In this subsection, we present the proof of Theorem 3.2:

Proof. One step forward-inversion represents one additional step forward sampling and one step
reverse sampling against the initial Gaussian noise, which can be denoted as

x′
T = fs(xT ) = DDIM-Inversion(DDIM(xT )), (21)

where DDIM-Inversion(·) refers to the sampling algorithm in Eq. 8 satisfy t ≥ s. We can rewrite
it in forms of differential equations:

x′
T = xT −

1

η

∫ 1−η

1

[
g2(1)

2
∇x log q1(x)−

g2(1− η)

2
∇x log q1−η(x)

]
dt, (22)

where 1− η denotes the next sampling moment when the timestep is 1. Adopting the classifier-free
guidance paradigm (Ho & Salimans, 2021), Eq. 21 is rewritten as

x′
T = xT −

1

η

∫ 1−η

1

[g2(1)
2

(ω1 + 1)∇x log q1(x|c)−
g2(1)

2
ω1∇x log q1(x)

− g2(1− η)

2
(ω2 + 1)∇x log q1−η(x|c) +

g2(1− η)

2
ω2∇x log q1−η(x)

]
dt,

(23)

where c, ω1 and ω2 refer to the text prompt (i.e., condition), the CFG scale at the timestep 1 and the
CFG scale at the timestep 1− η, respectively. Given that 1 and 1− η are very close and Assumption
2, we can use their midpoint to perform a Taylor expansion, thereby reducing the truncation error:

x′
T = xT −

1

η

∫ 1−η

1

g2(1− η
2 )

2

[
(ω1 − ω2)∇x log q1− η

2
(x|c)− (ω1 − ω2)∇x log q1− η

2
(x) +O(η

2
)
]
dt,

=⇒ dx = −
g2(1− η

2 )

2

[
(ω1 − ω2)∇x log q1− η

2
(c|x) +O(η

2
)
]
dt.

(24)

With Eq. 24, it is possible to inject semantic information within the future timestep (i.e., t = 1−η/2)
into the initial Gaussian noise (i.e., t = 1) when there is a gap between ω1 and ω2.

C.5 THEORETICAL ANALYSIS OF SMOOTHING INITIALIZATION

How Smooth Initialization Ensures Smoothness? Here we present the theoretical proof of Theo-
rem 3.3. The proof closely follows the structure of Cohen et al. (2019)’s proof of Cohen et al. (2019,
Theorem 1), with specific modifications to align with the smoothing initialization framework.

Proof. We begin the derivation by recapitulating one crucial lemma:

Lemma C.2. (copy from Cohen et al. (2019, Lemma 4), Neyman-Pearson for Gaussians with differ-
ent means) Let X ∼ N (x, σ2I) and Y ∼ N (x+ δ, σ2I). Let h : Rd → {0, 1} be any deterministic
or random function. Then:

1. If S = {z ∈ Rd : δT z ≤ β} for some β and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) = 1) ≥
P(Y ∈ S).

2. If S = {z ∈ Rd : δT z ≥ β} for some β and P(h(X) = 1) ≤ P(X ∈ S), then P(h(Y ) = 1) ≤
P(Y ∈ S).
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The contribution of this lemma is to demonstrate that the inputs will maintain consistent classifica-
tion results across a range of perturbations. Unlike Cohen et al. (2019, Theorem 1), which directly
focuses on the classification task, the robustness proof for SMOOTHINIT requires transforming the
continuous regression task (i.e., generative a better initial noise) into a discrete classification task.
Thus, we define a deterministic function:

h(x) = 1 [∥fs(x)− ϵ∗∥ ≤ γ] . (25)

We additionally declare that ϵ∗ ∈ Rd and γ ∈ R+ are always existed in this case. Specifically, when
ϵ∗ is closen as fs(x), then h(x) ≡ 1. Conversely, when ϵ∗ = fs(x) + γ + 1, then h(x) ≡ 0. Given
the two conditions above and the fact that the norm ∥fs(x)− ϵ∗∥ is first-order derivable with respect
to ϵ∗, the pair (ϵ∗, γ) satisfying the constraints must exist.

The next step is to solve a constraint on δ such that 1 [∥[g(x+ δ)− ϵ∗∥ ≤ γ] = 1 holds. A more
intuitive goal is

P(1 [∥fs(x+ ϵ+ δ)− ϵ∗∥ ≤ γ] = 1) ≥ P(1 [∥fs(x+ ϵ+ δ)− ϵ∗∥ ≤ γ] = 0). (26)

We can use Lemma C.2 by defining two special half-spaces:

Φ

(
(z− x)

σsm

)
= p1

=⇒ A = {z : δT (z− x) ≤ σsm∥δ∥Φ−1(p1)}

Φ

(
(z− x)

σsm

)
= p0

=⇒ B = {z : δT (z− x) ≥ σsm∥δ∥Φ−1(p0)}

(27)

Then we can obtain

P(1 [∥fs(x+ ϵ+ δ)− ϵ∗∥ ≤ γ] = 1) ≥ P(x+ ϵ+ δ ∈ A)

> P(x+ ϵ+ δ ∈ B) ≥ P(1 [∥fs(x+ ϵ+ δ)− ϵ∗∥ ≤ γ] = 0).
(28)

The derivation of the above two equations leads to

Φ

(
Φ−1(p1)−

∥δ∥
σsm

)
= P(x+ ϵ+ δ ∈ A)

=⇒ P(x+ ϵ+ δ ∈ A) = Φ(Φ−1(p1)−
∥δ∥
σsm

)

Φ

(
Φ−1(p0) +

∥δ∥
σsm

)
= P(x+ ϵ+ δ ∈ B)

=⇒ P(x+ ϵ+ δ ∈ B) = Φ(Φ−1(p0) +
∥δ∥
σsm

)

(29)

In order to ensure that Eq. 28 holds, it is necessary to ensure that:

Φ(Φ−1(p1)−
∥δ∥
σsm

) ≥ Φ(Φ−1(p0) +
∥δ∥
σsm

)

=⇒ ∥δ∥ ≤ σsm

2

[
Φ−1(p1)− Φ−1(p0)

]
.

(30)

The proof is complete.
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The Nature of Smooth Initialization.

Proof. In this section, we derive Corollary 3.4 by transforming the ordinary differential equation
(Eq. 24) into its discrete form:

fs(xT ) = xT −
σT− 1

2

αT− 1
2

αT−1σT − αTσT−1

αT−1
(ω1 − ω2)

∂
[
− log q1− η

2
(x)
]

∂x0
, (31)

where xT and x0 denote the Gaussian noise and the “clean” video. This theoretical conclusion can
be directly obtained from the definitions of DDIM and DDIM-Inversion. It is important to note that

Eq. 31 also includes the transformation of the vanilla score function∇x log q1− η
2
(x) =

∂ log q1− η
2
(x)

∂x1− η
2

into − 1
α1− η

2

∂ log q1− η
2
(x)

∂x0
. This is done with the following lemma:

Lemma C.3.

∂ log p(xt|x0)

∂x0
=

∂ log exp(∥xt−αtx0∥
2σ2

t
)

∂x0
= −αt

αtx0 − xt

σ2
t

=
αtϵθ(xt, t)

σt
,

∇x log qt(x) =
∂ log p(xt|x0)

∂xt
=

∂ log exp(∥xt−αtx0∥
2σ2

t
)

∂xt
= −xt − αtx0

σ2
t

= −ϵθ(xt, t)

σt
,

Then,
∂ log p(xt|x0)

∂x0
= −αt∇x log qt(x).

(32)

For ease of derivation, we first adopt the FORWARD-INVERSION operator in the smoothing function
as fs(·), then

Eϵ∼N (0,σ2
smI)[fs(x+ ϵ)]

= Eϵ∼N (0,σ2
smI)fs(x) + Eϵ∼N (0,σ2

smI)[ϵ]
T∇xfs(x) +

1

2
Eϵ∼N (0,σ2

smI)[ϵ]
TH[ϵ] +O(ϵ3)

= fs(x) +
σ2
sm

2
Eϵ∼N (0,I)[ϵ]

TH[ϵ]

= fs(x) +
σ2
sm

4
1T×A⊙H×1,

(33)

where H, 1,×and ⊙ stand for the Hessian matrix, the unit vector, the matrix multiplication and the
Hadamard product, respectively. A is a matrix whose nondiagonal elements obey a unit Gaussian
distribution N (0, I) and whose diagonal elements obey a chi-square distribution with E[Aii] = 1.
Given this, we can further get

fs(x) +
σ2
sm

4
1T×A⊙H×1

= fs(x) +
σ2
sm

4
tr(A⊙H) + Cconst

= fs(x) +
σ2
sm

4
tr(H) + Cconst,

(34)

Substituting Eq. 31 into the above equation, we can obtain

fs(xT ) = xT −
σT− 1

2

αT− 1
2

αT−1σT − αTσT−1

αT−1
(ω1 − ω2)

∂
[
− log q1− η

2
(x)
]

∂x0
,

g(xT ) =fs(xT )−
σ2
smσT− 1

2

4αT− 1
2

αT−1σT − αTσT−1

αT−1
(ω1 − ω2)tr

∂3
[
− log q1− η

2
(x)
]

∂x3
0

 .

(35)
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The proof is complete.

C.6 THEORETICAL ANALYSIS OF FAST-SMOOTH INITIALIZATION

Proof. This subsection clarifies why FAST-SMOOTHINIT converges to the optimal initial noise by
being transformed into the form of differential equations. First, we give the following iterative form:

xk = fs(xk−1 + σk−1
sm ϵk−1), where ϵk−1 ∼ N (0, I) and k ∈ {1, · · · ,K}. (36)

This form is consistent with Algorithm 1 as outlined in the main paper. For the convenience of
substitution, we modify Eq. 36 while keeping the logic of the algorithm consistent as follows

xk = fs(xk−1, σ
k−2
sm ϵk−2), s.t. ϵk−2 ∼ N (0, I) and k ∈ {2, · · · ,K}

=⇒ yk = fs(yk−1) + σk−1
sm ϵk−1, s.t. yk = xk + σk−1

sm ϵk−1 and k ∈ {1, · · · ,K}.
(37)

In the limit as K → ∞, the Markov chain {yk}Kk=1 becomes a continuous stochastic process
{y(k)}1k=0. Similarly, {σk

sm}Kk=1 becomes a function {σsm(k)}1k=0 and {ϵk}Kk=1 becomes a func-
tion {ϵ(k)}1k=0, where we now use the continuous time variable k ∈ [0, 1] for indexing, rather
than the integer k ∈ {1, 2, · · · ,K}. Let ∆k = 1

K , we can rewrite Eq. 37 as follows with
k = {0, 1

K , 2
K , · · · , 1}:

y(k +∆k) = fs(y(k)) + σsm(k)ϵ(k)

=⇒ y(k +∆k)− y(k) =

[
− 1

∆k
y(k) +

1

∆k
fs(y(k))

]
∆k +

1√
∆k

σsm(k)
√
∆kϵ(k)

=⇒ dy = −
[
σT− 1

2

∆k

αT−1σT − αTσT−1

αT−1
(ω1 − ω2)

]
∇y log q1− η

2
(y(k))dk +

[
1√
∆k

σsm(k)

]
dωk,

(38)

where ωk is a standard Gaussian noise independent of y(k). However, because the score function
is∇y log q1− η

2
(y(k)) rather than∇y log qk(y(k)), the Fokker-Planck-Kolmogorov (FPK) equation

does not transform the stochastic differential equation into an ordinary differential equation in an
elegant manner. Unfortunately,∇y log qk(y(k)) cannot be estimated since there is no corresponding
optimization objective during training, so we directly use ∇y log q1− η

2
(y(k)) to implement FAST-

SMOOTHINIT. Given this, Eq. 38 can be rewritten as

dy = −
[
σT− 1

2

∆k

αT−1σT − αTσT−1

αT−1
(ω1 − ω2)

]
∇y log qk(y(k))dk +

[
1√
∆k

σsm(k)

]
dωk

=⇒ dy =

[
−
σT− 1

2

∆k

αT−1σT − αTσT−1

αT−1
(ω1 − ω2) +

1

2∆k
σ2
sm(k)

]
∇y log qk(y(k))dk.

(39)

Substituting the notation in Algorithm 1, we can obtain the following differential equation:

dx =

[
−
σT− 1

2

∆t

αT−1σT − αTσT−1

αT−1
(ω1 − ω2) +

1

2∆t
σ2
sm(1− γdecay)

2i

]
∇x log qt(x)dt. (40)

The proof is complete.

The ordinary differential equation in Eq. 39 can be solved analytically for k within a specified in-
terval. The best approximation to reduce truncation error is then achieved using a Taylor expansion,
similar to several popular ODE solvers (Lu et al., 2022c;b; Zhang & Chen, 2022). are essentially
momentum-based, meaning they are implemented by making the new xk−1 in Eq. 36 a weighted
average of xk−1, xk−2 and xk−3. Then the algorithm can be transferred to

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Input: x0, fs(·), γ0, γ1, γ2, {σk
sm}K−1

k=0

m0 ← x0

m1 ← x0

m2 ← x0

k ← 0

While k ≤ K

do

xtmp
k ← γ0m0 + γ1m1 + γ2m2

xk+1 ← fs(x
tmp
k + σk

smϵk)

m2 ←m1

m1 ←m0

m0 ← xk+1

done
Output: xK ,

(41)

where γ0, γ1 and γ2 are weighted averages satisfying a sum of 1. Moreover, the pipeline in Eq. 41
is essentially the same as the algorithm presented in Algorithm 1. Motivated by Zheng et al. (2023)
that analytical solutions may not be optimal in practical applications, we decided to treat γ0, γ1 and
γ2 as tunable parameters.

Thus, FAST-SMOOTHINIT is an algorithm similar to DPM-Solver (Lu et al., 2022c) and DPM-
Solver++ (Lu et al., 2022b) which indeed reduces truncation errors through the momentum mecha-
nism. The proof is complete.

D RELATED WORK

In this section, we discuss a series of plug-and-play algorithms focused on VDMs, including
FREEINIT (Wu et al., 2023), FREENOISE (Qiu et al., 2024), UNICTRL (Chen et al., 2024b), and
I4VGEN (Guo et al., 2024). FREEINIT primarily uses DDIM (Song et al., 2023a) and the diffu-
sion forward process to generate new noise and reinitialize the noise by blending low-frequency
components with high-frequency noise using a spatio-temporal filter, ultimately synthesizing the
“clean” video through DDIM sampling. FREENOISE is a training-free approach for synthesizing
longer videos, ensuring both high video quality and computational efficiency. UNICTRL maintains
semantic consistency across frames using cross-frame self-attention control, while simultaneously
enhancing motion quality and spatiotemporal consistency through motion injection and spatiotem-
poral synchronization. I4VGEN first generates high-quality images using a T2I diffusion model,
then transforms them into Gaussian noise with preserved semantic information through a standard
diffusion forward process. Next, it incorporates the VDM’s temporal information using the score
distillation sampling (SDS) algorithm, and finally samples from the standard DDIM. Since the offi-
cial implementation4 of I4VGEN lacked the necessary packages and code as of press time, it is not
compared in this paper.

E ADDITIONAL EXPERIMENTS

Here, we present a series of additional experiments to further validate some important insights out-
lined in the main paper.

E.1 IMAGE SYNTHESIS VS. VIDEO SYNTHESIS WITH DPM-SOLVER

We provide an example to illustrate the phenomenon “several significant training-free sampling
methods in video synthesis do not perform as well as in image synthesis;’ outlined in Sec. 1, using

4https://github.com/xiefan-guo/i4vgen
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DPM-Solver in Image Synthesis DPM-Solver in Video Synthesis (Random Frame)

Figure 8: The example of “DPM-Solver (NFE=5) performs less effectively in video synthesis compared to
image synthesis”.

(h)

(d)(c)

(g)(f)

(b)(a)

(e)

Figure 9: Visualization of sampling trajectories in MODELSCOPE-T2V. The prompts for (a), (b), (c), and (d)
are “A cat wearing sunglasses and working as a lifeguard at a pool”, and for (e), (f), (g), and (h) are “Spiderman
is surfing”. Each subgraph visualizes 500 sampling trajectories.

DPM-Solver with the number of function evaluations (NFE) set to 5. The visualization outcomes are
presented in Fig. 8. We observe that the quality of image frames generated by ANIMATEDIFF (Guo
et al., 2023) is worse compared to those generated by SD XL (Podell et al.), due to unnatural dy-
namics and the use of low-quality datasets for open-source video model training.

E.2 3D SAMPLING TRAJECTORY VISUALIZATION

We present the 3D sampling trajectory of two prompts “A cat wearing sunglasses and working as a
lifeguard at a pool” and “Spiderman is surfing” in Fig. 9. Different from the 2D sampling trajectory
presented in the main paper, this part of the visualization is relatively more information-intensive,
and the visualizations obtained from the two prompts are essentially the same.

E.3 SMOOTHING INITIALIZATION MEETS DPM-SOLVER++

We similarly conduct experiments using a different scheduler, DPM-Solver++ (Lu et al., 2022b).
The results in Table 6 show that SMOOTHINIT and FAST-SMOOTHINIT continue to perform well,
with significant improvements across all metrics except for the metric GPT4O-SCORE. We hy-
pothesize that the decrease in GPT4o-Score may be due to SMOOTHINIT and FAST-SMOOTHINIT
reducing the temporal variability of the synthesized video with DPM-Solver++.
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Table 6: Quantitative comparison after replacing DDIM with DPM-Solver++. The experiments were performed
on ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) and sampled 15 steps.

METHOD UMT-FVD (↓) MTSCORE (↑) UMTSCORE (↑) GPT4O-MTSCORE (↑)

ORIGIN 244.84 0.4759 2.73 2.84
FORWARD-INVERSION 245.49 0.4670 2.77 2.82
SMOOTHING30 243.84 0.4761 2.80 2.82
FAST-SMOOTHING10 243.83 0.4788 2.75 2.56
FAST-SMOOTHING30 241.41 0.4850 2.90 2.68

E.4 ADDITIONAL EXPERIMENTS OF TRUNCATED GAUSSIAN NOISE VS. STANDARD
GAUSSIAN NOISE

In Table 5 presented in the main paper, we substantiate that uniform noise performs better than
Gaussian noise. However, a remaining question is whether this improvement arises from the re-
moval of some outliers of Gaussian noise from the mean. To investigate this, we further compare
the performance of truncated Gaussian noise and standard Gaussian noise on SMOOTHINIT. The
results in Table 7 demonstrate that truncated Gaussian noise performs worse than standard Gaussian
noise. Therefore, the superior effectiveness of uniform noise can be attributed to the properties of
its probability density function.

Table 7: Ablation studies between Gaussian noise and Truncated Gaussian noise for initialization.

ITERATION NUMBER NOISE TYPE σsm UMT-FVD (↓) UMTSCORE (↑)

(ω1 : ω2) N/A N/A (7.5:7.5) (7.5:1) (7.5:7.5) (7.5:1)

30

Gaussian 0.100 270.91 272.53 2.93 2.96
Gaussian 0.075 276.76 267.45 2.93 3.07
Gaussian 0.050 269.28 271.40 2.91 2.98
Gaussian 0.025 267.29 266.55 2.94 3.02

Truncated Gaussian 0.100 268.15 269.72 2.94 2.92
Truncated Gaussian 0.075 262.76 262.84 2.90 2.97
Truncated Gaussian 0.050 281.57 261.15 2.83 3.05
Truncated Gaussian 0.025 266.09 265.85 2.97 3.00

10

Gaussian 0.100 262.14 264.09 2.98 3.02
Gaussian 0.075 274.78 267.15 2.89 3.00
Gaussian 0.050 265.16 266.80 3.00 2.97
Gaussian 0.025 268.73 265.20 2.93 2.97

Truncated Gaussian 0.100 268.15 266.37 2.94 2.92
Truncated Gaussian 0.075 262.76 262.84 2.90 2.97
Truncated Gaussian 0.050 281.57 261.15 2.83 3.05
Truncated Gaussian 0.025 266.09 265.85 2.97 3.00

E.5 ADDITIONAL EXPERIMENTS OF FAST-SMOOTHINIT

We present the complete results of the ablation studies on γdecay and γm in Fig. 10. As shown,
FAST-SMOOTHINIT30 generally performs better than FAST-SMOOTHINIT10, particularly on UMT-
FVD. Additionally, the optimal γdecay and γm settings differ between FAST-SMOOTHINIT10 and
FAST-SMOOTHINIT30. The optimal configurations, (γdecay = 0.05, γm = 0.05) and (γdecay =
0.25, γm = 0.01) for FAST-SMOOTHINIT10 and FAST-SMOOTHINIT30, are presented in the main
paper.

E.6 ADDITIONAL EXPERIMENTS OF DIFFUSION TRANSFORMER

We also conduct experiments on LATTE (Ma et al., 2024), a VDM based on the diffusion trans-
former (DiT) architecture. We find that the videos generated by LATTE exhibit less variability
compared to those generated by other VDMs. Specifically, the frames within LATTE’s synthesized
videos remain nearly identical. As shown in Table 8, we also observe that SMOOTHINIT and FAST-
SMOOTHINIT are less effective on LATTE than on other models, likely due to the specificity of the
DiT architecture. However, both methods improve frame-to-frame variability, as demonstrated by
the amplitude-dependent metrics GPT4O-MTSCORE and MTSCORE (Yuan et al., 2024).
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Figure 10: Ablation studies of σsm and γm within FAST-SMOOTHINIT. We present only the optimal hy-
perparameter settings in the main paper, while the complete ablation experiments with their corresponding
hyperparameter settings are provided here.

Table 8: Quantitative comparison on LATTE (w.r.t., DiT). Both FAST-SMOOTHINIT10 and FAST-
SMOOTHINIT30 were performed with γm = 0.95

METHOD UMT-FVD (↓) MTSCORE (↑) UMTSCORE (↑) GPT4O-MTSCORE (↑)

ORIGIN 213.42 0.3854 2.65 2.23
BASELINE (V2) 216.59 0.3834 2.59 2.26
ENSEMBLE (30, 0.025, UNI) 220.00 0.3947 2.54 2.38
FAST-SMOOTHING (10) 220.64 0.3861 2.62 2.39
FAST-SMOOTHING (30) 219.63 0.3948 2.51 2.31

E.7 ADDITIONAL ABLATION STUDIES OF ω1 : ω2 = 7.5 : 7.5

We present additional ablation studies on the hyperparameter noise level σsm and the iteration num-
ber K for the case where ω1 : ω2 = 7.5 : 7.5. As established in Theorem 3.2, injecting semantic
information into the initial Gaussian noise is essentially impossible when ω1 equals ω2. This is
further supported by the observation that the best performance in Fig. 11 is inferior to that in Fig. 4.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.020.030.040.050.060.07
0.08

0.09
0.10

sm

20
40

60
80

100
120

140

Iteration Number K

262
264

266

268

270

272

274

276

UMT-FVD ( 1: 2=7.5:7.5)

min (0.10, 10.00, 262.14)

264

266

268

270

272

274

276

0.02 0.03 0.04 0.05 0.06 0.07
0.08

0.09
0.10

sm 20
40

60
80

100
120

140

Ite
rat

ion
 N

um
be

r K

2.80

2.85

2.90

2.95

3.00

3.05

UMTScore ( 1: 2=7.5:7.5)

max (0.07, 51.51, 3.05)

2.80

2.85

2.90

2.95

3.00

3.05

0.02 0.03 0.04 0.05 0.06 0.07
0.08

0.09
0.10

sm 20
40

60
80

100
120

140

Ite
rat

ion
 N

um
be

r K

2.75

2.80

2.85

2.90

2.95

3.00

GPT4o-MTScore ( 1: 2=7.5:7.5)

max (0.07, 140.00, 3.02)

2.75

2.80

2.85

2.90

2.95

3.00

Figure 11: Ablation Studies on hyperparameter the noise level σsm and the iteration number K. Compared to
Fig. 4 in the main paper, the regularity in this figure is relatively low. This is because the semantic information
was not successfully injected when using the ratio ω1 : ω2 = 7.5 : 7.5.
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Figure 12: The GPU latency comparison between our proposed methods and baseline.

E.8 GPU LATENCY ANALYSIS

SMOOTHINIT and FAST-SMOOTHINIT are two training-free algorithms designed to improve com-
posite image quality by optimizing the initial Gaussian noise. However, since the optimization
step requires repeated execution of DDIM-Inversion(DDIM(·)), this inevitably adds computational
overhead. Fig. 12 presents the actual GPU latency on a single RTX 4090. While SMOOTHINIT and
FAST-SMOOTHINIT introduce additional overhead, the need to compute text embeddings and other
auxiliary variables before each reverse process ensures that even SMOOTHINIT30 remains within
acceptable limits.

F SYNTHESIZED VIDEO VISUALIZATION

To reduce the size of the generated pdf, we downsample the video frames and present them here. We
present the synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3)
in Fig. 13-19, the synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER
BETA) in Fig. 20-26 and the synthesized video visualization of MODELSCOPE-T2V in Fig. 27-33.
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Figure 13: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A knight kneeling in a chapel, his sword laid before him as he prays for strength before a great battle”.

Figure 14: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A futuristic park filled with holographic trees and robotic animals, with children running and playing
under an artificial sky”.

Figure 15: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A lone astronaut floating through space, staring at the distant Earth, with stars and galaxies all around”.
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Figure 16: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A bustling futuristic market on an alien planet, with strange creatures selling exotic goods and glowing
alien plants lining the streets”.

Figure 17: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A tranquil waterfall in the middle of a dense forest, with beams of sunlight filtering through the trees
and birds singing in the branches”.

Figure 18: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A group of knights charging into battle, their swords raised and banners flying as they face a massive
army”.
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Figure 19: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A serene mountain lake at dawn, with mist rising from the water and the reflection of snow-capped
peaks mirrored on the surface”.

Figure 20: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A massive skyscraper under construction in a futuristic city, with robotic workers flying between the
steel beams as they assemble the building”.

Figure 21: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A knight kneeling in a chapel, his sword laid before him as he prays for strength before a great battle”.
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Figure 22: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A futuristic park filled with holographic trees and robotic animals, with children running and playing
under an artificial sky”.

Figure 23: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A lone astronaut floating through space, staring at the distant Earth, with stars and galaxies all around”.

Figure 24: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A magical garden filled with glowing flowers, enchanted fountains, and mythical creatures wandering
among the greenery”.
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Figure 25: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A bustling futuristic market on an alien planet, with strange creatures selling exotic goods and glowing
alien plants lining the streets”.

Figure 26: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A tranquil waterfall in the middle of a dense forest, with beams of sunlight filtering through the trees
and birds singing in the branches”.

Figure 27: The synthesized video visualization of MODELSCOPE-T2V with prompt “Spiderman is surfing”.
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Figure 28: The synthesized video visualization of MODELSCOPE-T2V with prompt “Yellow and black tropical
fish dart through the sea”.

Figure 29: The synthesized video visualization of MODELSCOPE-T2V with prompt “An epic tornado attacking
above a glowing city at night”.

Figure 30: The synthesized video visualization of MODELSCOPE-T2V with prompt “Slow pan upward of
blazing oak fire in an indoor fireplace”.
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Figure 31: The synthesized video visualization of MODELSCOPE-T2V with prompt “a cat wearing sunglasses
and working as a lifeguard at pool”.

Figure 32: The synthesized video visualization of MODELSCOPE-T2V with prompt “A cybernetic samurai
standing on a mountain peak, with glowing neon armor, facing a setting sun”.

Figure 33: The synthesized video visualization of MODELSCOPE-T2V with prompt “A group of astronauts
playing soccer on Mars, with the Earth visible in the background”.
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