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ABSTRACT

Extending the success of text-to-image (T2I) synthesis to text-to-video (T2V) syn-
thesis is a promising direction for visual generative Al. Popular training-free sam-
pling algorithms currently generate high-fidelity images within the Stable Diffu-
sion family. However, when applied to video diffusion models (VDMs), these
techniques result in limited diversity and quality due to the low-quality data in
video datasets. We focus on inference to mitigate this issue, and then we propose
a training-free paradigm that optimizes the initial Gaussian noise by introduc-
ing a targeted semantic prior bias into the sampling process from a smoothing
perspective. The paradigm significantly improves both the fidelity and semantic
faithfulness of the synthesized videos. Guided by theoretical analysis using ran-
dom smoothing and differential equations, our resulting method Smogth4nit can
be understood as approximately incorporating third-order derivatives into gradient
descent, which contributes to be better convergence in learning semantic informa-
tion. A more efficient version, Fa<i*s qooth&nit , is proposed to achieve better
experimental results by leveraging a momentum mechanism. Both SMOOTHINIT
and FAST-SMOOTHINIT demonstrate promising empirical results across various
benchmarks, including UCF-101/MSR-VTT-related FVD, Chronomagic-bench,
and T2V-Compbench, setting a new standard for noise initialization in VDMs.

1 INTRODUCTION

Text-to-video (T2V) synthesis (Ho et al., 2022; Singer et al., 2022; Bao et al., 2024; Blattmann
et al., 2023) is a promising topic in artificial intelligence-generated content (AIGC). In contrast to
text-to-image (T2I) synthesis (Rombach et al., 2022; Esser et al., 2024; Peebles & Xie, 2023), which
benefits from a large, well-curated dataset such as LAION-5B (Schuhmann et al., 2022) of image-
text pairs to train powerful diffusion models for generating diverse and high-quality images, T2V
generation methods often produce suboptimal results due to the cluttered, watermarked nature and
small scale of existing training datasets (Bain et al., 2021; Soomro, 2012). Compared to retraining a
desired video diffusion model (VDM), one of the most straightforward and inexpensive solutions is
to develop ideal plug-and-play algorithms to enhance the fidelity and diversity of composite videos.
Unfortunately, the training-free sampling algorithms (Song et al., 2023a; Lu et al., 2022¢; Bao et al.,
2022) that perform well in T2I synthesis often struggle to meet expectations in T2V generation'.
Given this, while recent approaches (Wu et al., 2023; Qiu et al., 2024; Chen et al., 2024b; Jeong
et al., 2024) leverage the sampling characteristic of VDMs to enhance the quality of video by en-
suring temporal consistency and semantic faithfulness, there remains a lack of genuine attempts to
comprehend and explore the training-free sampling paradigm from the perspective of initial noise.

In this paper, we aim to answer the question: “To what extent can just optimizing the initial Gaussian
noise improve the generation ability of VDMs?”. Sufficient empirical results (Qi et al., 2024; Ban
et al., 2024; Mao et al., 2023; Shirakawa & Uchida, 2024) consistently demonstrate that the syn-
thesized image is highly sensitive to the initial Gaussian noise, particularly when sampling through
ordinary differential equation-based (ODE-based) sampling algorithms (Lu et al., 2022b; Song et al.,
2023a). Even injecting a slight perturbation into the initial noise can significantly alter the generated
object’s color, position, and morphology. These observations suggest that there may exist a special

"We provide an obvious example in Appendix E.1 to demonstrate this statement.



Under review as a conference paper at ICLR 2025

" Reverse Sampling - Forward Sampling

( @, | @ & | @,
< ‘ ( @

Y. >-Ste) Y. >-Ste, S
[ . One-Step \ One-Step + Momentum Mechanism ]

A

DDPM  DDIM/DPM-Solver Freelnit SmoothInit Fast-SmoothInit

Figure 1: Illustration of SMOOTHINIT and FAST-SMOOTHINIT. Compared with other sampling algorithms, our

proposed SMOOTHINIT and FAST-SMOOTHINIT only require optimizing the initial noise, which significantly
improves the performance of VDMs.

initial noise in high-dimensional space where the quality of images or videos synthesized from this
noise is significantly higher than that of other counterparts. To this end, this work aims to design
a novel algorithm to identify the optimal initial noise in the more challenging T2V synthesis task,
approaching the problem from the smoothing perspective (Cohen et al., 2019).

Identifying smoothing as the primary tool for optimizing the initial noise is crucial, as VDMs are
built on stochastic processes (Song et al., 2023b), and the randomness inherent in smoothing (Cohen
et al., 2019) can be effectively combined with stochastic differential equations (SDEs). Thus, it is
natural for us to provide a theoretical chain of analysis, combined with empirical visualizations, to
elucidate how smoothing enhances the quality of synthesized videos. Leveraging the blessing of
smoothing, we propose a rudimentary algorithm, Smogth4nit , along with a more advanced ver-
sion, Fast*Smooth4nit . Specifically, SMOOTHINIT first adds a perturbation to the initial Gaussian
noise, then injects semantic information related to the perturbation through the combined action of
DDIM (Song et al., 2023a) and DDIM-Inversion (Mokady et al., 2023), and finally computes the
expectation of the noise with semantics, conditioned on the perturbation, as the optimized noise.
The Corollary 3.4 in this paper proves that SMOOTHINIT is analogous to introducing an additional
third-order term on top of gradient descent, leading to more robust convergence. Further, FAST-
SMOOTHINIT introduces a momentum mechanism on top of SMOOTHINIT to dynamically update
the initial noise before injecting semantic information. This approach not only accelerates conver-
gence but also reduces truncation error with theoretical guarantees (i.e., Theorem 3.5).

We conduct extensive experiments in Sec. 4 on various VDMs, including ANIMATEDIFF (Guo et al.,
2023), MODELSCOPE-T2V (Wang et al., 2023), and LATTE (Ma et al., 2024), where the experi-
ments show a consistent and substantial improvement over the widely used baselines (e.g., DDIM)
under several popular benchmarks, including UCF-101/MSR-VTT-related FVD (Soomro, 2012),
Chronomagic-Bench-150 (Yuan et al., 2024), Chronomagic-Bench-1652 (Yuan et al., 2024), and
T2V-Compbench (Sun et al., 2024). Moreover, FAST-SMOOTHINIT outperforms FREEINIT (Wu
et al., 2023) and UNICTRL (Chen et al., 2024b) in almost all metrics under the premise of treating
the backbone (Ho et al., 2020; Peebles & Xie, 2023) as a black box and only modifying the initial
noise, effectively substantiating that SMOOTHNESS is compatible with VDMs.

2 BACKGROUND

We present preliminaries on VDMs, DDIM & DDIM-Inversion, the classifier-free guidance and
smoothing in this section and discuss other related work in detail in Appendix D.

Video Diffusion models. VDMs (Blattmann et al., 2023) contain a forward and a reverse process.
Denote xo a D-dimensional random variable from a video data distribution go(xg). The (discrete)
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forward process progressively corrupts “clean video™” by interpolating Gaussian noise x7 ~ N(0, I)
with xo: x; = a:Xg + oyxp, where t € {0,1,--- ,T} and «; as well as o; are pre-defined noise
schedule. For the convenience of the derivation in this paper, we define ¢ € (0, 1] for the (continuous)
diffusion process, and xr is changed to x;. Then the (continuous) forward process can be defined
as the following stochastic differential equation (SDE):

dx; = f(t)xidt + g(t)w, (D
where f(t) = 4282 and ¢2(t) = —4a _ 4loBat(] _ ) in the “continuous DDPM” (i.e., VP-

SDE (Song et al., 2023b)). w; is a standard Wiener process. Every forward process has an equivalent
Teverse process:

2
dx; = {f(t)xt - [1 +2A

where V log g;(x) denotes the score function Vy, log p(x:), and @; is a standard Wiener process
in backward time. The parameter A is a balancing factor that controls whether the reverse process
converges to a SDE (i.e., 1 > A > 0) oran ODE (i.e., A = 0). Since Vx log ¢;(x) is unknown during

Ee(xf t)

] POV log ()] di + Ag(t)@, )

with the noise esti-
RBXCXTXHXW

the reverse process, it needs to be replaced by a linear transformation

mation model €g. Compared with image data xo € REXC*HXW yideo data Xg €

includes an additional dimension T to represent frames, where B, C, H and W denote the batch size,
the number of channels, the height and the width, respectively. This leads to the general treatment
of VDMs by using 3D convolutions (e.g., MODELSCOPE-T2V (Wang et al., 2023)), increasing the
number of tokens (e.g., LATTE (Ma et al., 2024)), or merging the T dimension into the batch size
(e.g., ANIMATEDIFF (Guo et al., 2023)).

DDIM & DDIM-Inversion. DDIM (Song et al., 2023a) is an efficient ODE-based sampler that
progressively refines the initial Gaussian noise x7, eventually producing a “clean” video x that
follows the data distribution po(xg). A key feature of DDIM is its deterministic sampling, which
ensures that the synthesized video is uniquely determined by the initial noise x7 and the text prompt
c. DDIM produces the synthesized data as

Xs — 05€9(Xs, S)

= DDIM(x,) = ay ( ) + or€p(Xs, 8), 3)

o

where s and ¢ represent timesteps, where ¢ < s. Using DDIM instead of applying Eq. 1 to add noise

under the constraint ¢ > s is referred to as DDIM-Inversion. In this paper, we define the operator as
= DDIM-Inversion(x,).

Classifier-free Guidance. Classifier-free guidance (CFG) (Ho & Salimans, 2021) has become a
fundamental tool for improving the quality of synthesized data in modern text-guided generation
using diffusion models. This technique enhances text conditional guidance through linear trans-
formations of the unconditional score function V log ¢;(x|@) and the conditional score function
Vi« log g:(x]|c), ¢ and w stand for the text prompt and the CFG scale, respectively:

14\
2

dxs = [f(t)xt — { } gQ(t) [(w+ 1)Vxlog ¢:(x|c) — wVx log g:(x|@)]| dt + Ag(t)w:, (&)

Smoothing. The essence of smoothing is to enhance the stability of the algorithm, with applica-
tions such as adversarial attacks and sharpness-aware minimization (SAM). Specifically, consider a
classifier f : [0,1]” — K that takes an input x, and predicts target class probability over K differ-
ent classes. Random smoothing (Cohen et al., 2019; Yang et al., 2020; Chen et al., 2024a), defined

as g(xg)y = P (arg MaXye(o1,... K} f(xo + osm - e)gzy) is a theoretical tool to establish a lower
bound on robustness against adversarial examples, where € ~ N(0, I) is a Gaussian noise and oy, is

the noise level. Then, the lower bound p 4 and the upper bound g of g(xo), are estimated using the
Clopper-Pearson lemma. Subsequently, random smoothing guarantees that x remains categorically

consistent within the certified robust radius Tem (® (pA) 2 (75) , where ® 1! refers to the inverse
function of the standard Gaussian CDF. In addition, SAM (Chen et al., 2022; Foret et al., 2020; Du
et al., 2022) addresses the minimax problem by using the solution of the dual norm, which ensures
a smoother loss landscape and ultimately enhances the model’s generalization ability.
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Figure 2: The visualization of S (i.e., Lipschitz Figure 3: Accuracy curves comparing Gaussian
constant) across different timesteps. noise and optimized noise for classification.

3 METHOD

In this section, we first explain why the initial noise is critical, then introduce the base operator used
to inject semantic information into the initial Gaussian noise, and finally present both Smunth4
and Fa<its nooth4nit , along with their theoretical and empirical justifications.

3.1 WHY INITIAL NOISE IS CRUCIAL?

A slight perturbation in the initial noise leads to drastic changes in the synthesized data. We support
this claim and demonstrate the importance of initial noise in ensuring the sampling quality of VDMs
through Theorem 3.1 and the empirical visualization in Fig. 2.

Theorem 3.1. (the proof in Appendix C.2) Suppose two latents xy and X'y, the synthesized data
xg and x( (H € {k,--- ,T}) obtained from xy and X'y using DDIM (Song et al., 2023a) sam-
pling with the sampling interval is k satisfy |xo — x¢|| = ||(xg — x/y) S||, where the smooth-

ness factor § = [(%3 + Z(0)Ep umif(1,-.. ,H/k) [Még(xm,m)] + O(Z(O)z)} and Z(t) =

Am—kXH

‘/1—042 Qe . . .
1= a%_(t+1)k - Ltk TTHDR and || - || is the Euclidean norm or the Frobenius norm.

AT —tk

As Appendix C.2 proves, the factor Z(t) monotonically decreases as ¢t goes from 7" to 0. Thus,
Z(t) obtains its maximum value at ¢ = 7. Considering a very small time interval in which «;
remains constant (i.e., « = art), the variable Z(0) is given as 0. In practice, for models such as
STABLE DIFFUSION (SD) V1.5, SD XL, MODELSCOPE-T2V, and ANIMATEDIFF, Z(0) can be
computed as 0.126. In these cases where Z(0)™ < 1 (n > 2), we can ignore the high-order term
O(Z(0)?) in S. Since a; € [0, 1] decreases monotonically as ¢ increases, the zero-order term must
be significantly larger than 1, while the first-order term is unknown because €y(-, -) is a black-box
function. We can conclude that the smoothing factor S decreases as H goes from 7" to k.

To support this theoretical analysis, we present S estimates across different timesteps on ANIMATE-
DIFF in Fig. 2, visualizing the dynamic curves for five different prompts along with their average.
Each point on the curves represents the effect of the perturbation at the current timestep on the final
synthesized video. It is obvious that the initial noise (i.e., H = T) has the greatest impact on the
sampling output, and this effect decays dramatically as H decrease from 7" to k. Accordingly, our
work focuses on optimizing the initial noise to enhance the generative ability of VDMs, leading to
strong performance from both our proposed methods SMOOTHINIT and FAST-SMOOTHINIT.

3.2 How TO OPTIMIZE INITIAL NOISE? FUTURE INFORMATION IS A GOOD REMEDY

How can a desirable perturbation be injected into the initial noise to actively enhance the fidelity
of the synthesized data during the reverse process? We address this by selecting a simple yet ef-
fective operator that attaches semantic information, which we refer to as FORWARD-INVERSION.
This operator can be described as x’» = f,(x7) = DDIM-Inversion(DDIM(xr)), where the sam-
pling path is Xy — xr_ar — X1 s.t., AT > 0. The key idea is that fs(-) injects semantic
information by leveraging the inconsistency in classifier-free guidance (CFG) between DDIM(-)
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Table 1: Comparison on UCF-101. Note that UNICTRL (Chen et al., 2024b) does not provide an implementa-
tion of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) and is tightly coupled to the attention module of
the noise estimation model, so it uses the default ANIMATEDIFF (SD V1.5, MOTION ADAPTER V1).

METHOD FVD (}) FVD (1) TIME SPENT (1)  NO NEED TO ACCEss NOISE  NO NEED TO ACCESS NOISE
y (UCE-101, STYLEGAN)  (UCE-101, VIDEOGPT)  (S/PER VIDEO) ESTIMATION MODEL? SAMPLING PROCESS?

ORIGIN 815.08 819.93 21.82 4 v

FORWARD-INVERSION 797.87 801.43 22.65 v 4

FREEINIT 805.33 807.04 44.66 v

UNICTRL 1757.20 1671.43 49.10

SMOOTHINIT?® (Ours) 802.48 805.64 46.72 v v

FAST-SMOOTHINIT!® (Ours) 795.83 799.27 30.12 v v

FAST-SMOOTHINIT?*® (Ours) 717.86 721.47 46.72 v v

Table 2: Quantitative comparison with popular T2V methods on Chronomagic-Bench-150 (Yuan et al., 2024).

MODEL METHOD wi tw2 UMT-FVD (]) UMTSCORE (T) GPT40-MTSCORE (1) MEAN RANK ({)
ORIGIN N/A 275.18 2.82 2.83 4.00
FORWARD-INVERSION 7.5:1 267.83 2.96 2.86 4.00

AFs‘g‘gf";FF FREEINIT N/A 268.31 2.82 259 5.67
s 30 . .

MOTION ADAPTER V3)  SMOOINIT (Oulros) 7.5:1 259.85 3.08 2.93 2.00

FAST-SMOOINIT™ (Ours) 7.5:1 253.96 3.03 3.23 2.00

FAST-SMOOINIT®* (Ours) ~ 7.5:1 248.61 3.04 3.00 1.67

ORIGIN N/A 241.61 2.66 2.96 5.33

FORWARD-INVERSION 7.5:1 234.92 293 3.02 4.33

FREEINIT N/A 220.96 3.01 3.09 3.00

MODELSCOPE-T2V g\ 60INIT*0 (Ours) 7.5:1 233.50 273 2.94 5.00

FAST-SMOOINIT!® (Ours)  7.5:1 219.72 3.06 3.19 1.00

FAST-SMOOINIT®® (OQurs) ~ 7.5:1 219.73 3.02 3.13 2.00

ORIGIN N/A 264.95 2.54 3.19 4.00

FORWARD-INVERSION 7.5:1 268.38 245 3.20 5.00

FREEINIT N/A 256.87 2.69 3.06 333

(SA[’)“%T%DEI?; SMOOINIT® (Ours) 7575 284.22 251 3.14 633

- 4 30
SMOOINIT?® (Ours) 7.5:1 257.76 2.69 3.19 2.67
FAST-SMOOINIT!® (Ours) ~ 7.5:1 270.76 2.57 332 3.33
FAST-SMOOINIT®* (Ours)  7.5:1 255.94 2.52 3.28 2.67

Table 3: Quantitative comparison with popular T2V methods on Chronomagic-Bench-1649 (Yuan et al., 2024).

MODEL METHOD wy:wz UMT-FVD (l) UMTSCORE (1) CHSCORE (1) MEAN RANK ()
ORIGIN N/A 219.29 3.08 11.25 4.67
ANIMATEDIFF FORWARD-INVERSION 7.5:1 222.55 3.08 11.52 4.33
(SD V1.5, SMOOINIT?® (Ours) 7.5:1 219.49 3.10 11.51 3.67
MOTION ADAPTER V3)  FAsT-SMOOINIT! (Ours) 7.5:1 215.73 3.12 12.40 1.67
FAST-SMOOINIT?® (Ours)  7.5:1 21145 3.11 12.48 1.33

Table 4: Quantitative comparison with popular T2V methods on T2V-Compbench (Sun et al., 2024). CA refers
to the CONSIST-ATTR metric and all wy : w2 is setas 7.5 : 1.

METHOD ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) MODELSCOPE-T2V

CA (1) ACTION (1) INTERACTION (1) NUMERACY (1) AVG (1) CA (1) ACTION (1) NUMERACY (1) AVG (1)
ORIGIN 6558 4159 7700 2725 5286 5525 4525 1891 3980
FORWARD-INVERSION 6645 4719 7600 2647 5403 5500 4699 .1828 4009
SMOOTHINIT?® (Ours) 6350 4679 7425 2659 5278 5225 4759 2084 4022
FAST-SMOOTHINIT!® (Ours) 6938 4539 1975 2785 5559 5937 4579 .1897 4138
FAST-SMOOTHINIT® (Ours) ~ .6758 4505 .7800 .3209 .5568 5813 4530 12250 4198

and DDIM-Inversion(-). We denote the CFG sclae in DDIM(+) and DDIM-Inversion(-) as w; and
wa, respectively. By setting w1 > wo, we can naturally stabilize the process and reliably achieve
semantic information attachment. To confirm that the optimized noise =/ indeed contains semantic
information, we select the first five prompts (Ge et al., 2023) of UCF-101 in alphabetical order, gen-
erate 100 videos with wy : wy = 7.5 : 1 for each, and split the dataset into a 7:3 ratio for training and
testing in classification experiments. The empirical results in Fig. 3 illustrate that /. (i.e., “Inverted
Noise” in Fig. 3) contains semantic information compared to the initial Gaussian noise zr, thereby
increasing the probability of correctly classifying the UCF-101 prompts.

The method of injecting semantic information is not limited to FORWARD-INVERSION. An alter-
native approach is to directly obtain 1 + (w + 1)V log ¢1 (x|¢c) — wVx log ¢1 (x|2) from zr and
treat it as the new initial noise. However, this form of gain is neither intuitive nor significant in our
exploratory experiments on the image diffusion model (e.g., SD XL), which we attribute to the ab-
sence of any introduction of “future” knowledge. By employing a Taylor expansion of the minimum
truncation error at ¢ = 1 — 2, we provide evidence for this assertion in Theorem 3.2:
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Figure 4: Ablation Studies on hyperparameter the noise level osm and the iteration number K. Both UMT-
FVD and UMTSCORE obtain optimal solutions when osm, (i.e., 0.03 and 0.03) is small and K (i.e., 74.45 and
68.99) is large. More experiments about wy : wo = 7.5 : 7.5 can be found in Appendix E.7.

Theorem 3.2. (the proof in Appendix C.4) Given the initial noise xy ~ N(0,1) and the oper-
ators DDIM-Inversion(-) and DDIM(-), and let the FORWARD-INVERSION operator as fs(-) =
DDIM-Inversion(DDIM(-)), we can obtain that

9*(1-13)

X = fo(xr) = dx=— 5

[(wl — w3) Vi log g1 (clx) + O(g) at, (5

where ¢ and n refer to the text prompt and DDIM’s single sampling step, respectively.

We discover that fs(-) at t = 1 (w.rt., in the continuous scenario) stabilizes and successfully in-
troduces semantic information about the future time point ¢ = 1 — . It follows that we utilize
FORWARD-INVERSION as the base operator in smoothing initialization.

3.3 BLESSING OF SMOOTH INITIALIZATION

Relying solely on Forward-Inversion to inject “future” semantic information in our experiments
(w.r.t., Sec. 4) is insufficient. Therefore, we propose SMOOTHINIT, which we outline in Fig. 1, and
it can be formulated as follows:

1

9(x17) = Econ0,02, plfs (X1 + €)] = d(x0) = =55, o [fs(Xr + oame)],

K (6)

in theory in practice

where oy, and K denote the noise level and the iteration number, respectively. The expectation
form is used for theoretical derivation, whereas the summation form is applied for practical re-
verse sampling. The essence of SMOOTHINIT is to enhance the stability of FORWARD-INVERSION
through sufficiently small perturbations, akin to random smoothing for achieving certified robust-
ness. We leverage Theorem 3.3 to prove that when the Euclidean distance between x and y in
high-dimensional space is below a threshold R, g(x) and g(y) tend to converge to the same €*.

Theorem 3.3. (a special case of Cohen et al. (2019, Theorem 1) and proof in Appendix C.5) Given
the definitions of FORWARD-INVERSION operator fs(-) and SMOOTHINIT operator g(-), 3 v and
e satisfy: P(L[||f(x+¢€) — €| <Al =1) > p1 > po > P(L[|| f(x+¢€) — €| <~] =0), where
p1 € [0,1] and Do € [0,1]. 1[] denotes the indicator function. Then 1[||[g(x + ) — *|| <] =1
for all ||6]] < R, where R = Z5=(®~(p1) — &~ (py)).

Although Theorem 3.3 does not establish that €* is indeed preferable for x, it clearly shows that
Z = g(x) is the unique solution to E(y ¢)~ 0,1y ming [|| fs(Xx + osme) — Z||]. This also ensures
that SMOOTHINIT adheres to the consistency principle, where any two initial Gaussian noises within
a distance of Zg=(®~*(py) — ®~!(pg)) tend to result in consistent optimized noise.

Leveraging the properties of SDEs and smoothing, we can gain a deeper understanding of SMOOTH-
INIT through the optimization theory (Pierre, 1986). To be specific, by eliminating the first-order

terms of g(+) using Taylor expansion and utilizing the fact that %‘MK)
0
transformation of V log ¢:(x), we arrive at Corollary 3.4:

can be derived via a linear
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=0.05. yn=0.05

Table 5: Ablation studies between uniform noise and Gaussian
noise for initialization. Additional comparisons between trun-
cated Gaussian noise and standard Gaussian noise are provided
in Appendix E.4.

UMTScore

ITERATION NUMBER K NOISE TYPE  Osm UMT-FVD (]) UMTSCORE (1)

Uniform 0.100 27192 268.70 2.98 2.95
Uniform 0.075 26631  269.73 2.93 2.92
Uniform 0.050 26792  273.54 2.87 2.94
Uniform 0.025 = 264.62  259.85 293 3.08 T s

Gaussian 0.100 = 262.14  264.09 2.98 3.02 003 001 005 0% 007 008 009 010
Gaussian 0.075 27478  267.15 2.89 3.00
Gaussian 0.050  265.16  266.80 3.00 297

(w1t w2) N/A N/A  (1.5:75) (7.5:1) (7.5:77.5) (7.5:1)
Gaussian 0.100  270.91 272.53 2.93 2.96
Gaussian 0.075 27676 267.45 2.93 3.07
Gaussian 0.050  269.28  271.40 291 2.98 o
30 Gaussian 0.025  267.29  266.55 2.94 3.02 g
£

10 Gaussian 0025 26873 26520 293 297 Figure 5: Ablation  studies
Uniform  0.100 27192 26637 298  2.92 of Oem and Y within FAST-
Uniform 0075 26630 26614  2.93 3.03
Uniform 0050 267.41 26192  2.87 3.05 SMOOTHINIT. ~ Due to space
Uniform 0.025 264.62  263.05 2.93 3.07 constraint, more experiments are

provided in Appendix E.5.

Corollary 3.4. (the proof in Appendix C.5) Given the definition and conclusion in Theorem 3.2,

d|—logq,_n(x)
)[Toz] and g(xr) = fs(x1) —

or-L ar_jor—aror_i
then fy(xz) = xp — =4 armira

" (w1 — we
(w1 — ws)tr M +0 (0" [~ log a3 (x)] /0x}).

ol o 1
smTT—5 Ar_ 107 —QToT—1

4o, ar—1

1
2

This Corollary demonstrates that f4(-) is approximately performing gradient descent to optimize a
log likelihood, and g(+) introduces the higher-order term for more accurate gradient descent. To be

. . op_ _ — _ . . .
specific, if ai i;z ar IU(fT alTUT ! (w1 —ws) is considered as the learning rate ¢, then f,(xr) essen-

tially applies gradient descent to decrease the cross-entropy loss [flog Q-1 (x)] by updating x7,

causing x7 to move in the direction of xg. By contrast, g(x7) complements fs(x7) with an extra
term involving the trace of third-order derivatives, leading to a more precise optimization that helps
prevent x7 from convergent to a suboptimal solution. Additionally, the third-order term corresponds
to the Hessian matrix of the score function V log g;(x). Constraining this term with regularization
helps reduce the sharpness of Vy log ¢;(x) and improve VDMs’ generalization ability.

3.4 FAST SMOOTH INITIALIZATION WITH THE MOMENTUM MECHANISM

In fact, the complete SMOOTHINIT can be described as X/, = gogo- - -og(x), where o denotes com-
position. Compared with vanilla SMOOTHINIT, the complete version requires an excessive number
of executions of the smoothing operator g(-) to ensure convergence of the gradient descent simu-
lation. This results in significant inference overhead, hindering its practical deployment. Besides,
performing g(-) only once would fall into a suboptimal solution. To this end, as shown in Fig. 1, we
propose a more advanced version FAST-SMOOTHINIT, which utilizes the momentum mechanism,
akin to the momentum technique used in MI-FGSM (Dong et al., 2018), DPM-Solver (Lu et al.,
2022c¢), and Adam (Diederik, 2014). We primarily define two pivotal hyperparameters: the momen-
tum 7y, and the noise decay rate gecay, Which control the strength of the initial noise shift and the
degree of noise decay at each iteration relative to the previous one, respectively. As shown in Al-
gorithm 1, the key design of FAST-SMOOTHINIT is to achieve more faster optimization by updating
the input of f4(-) per iteration, thus fully utilizing the optimized noise obtained before that iteration.

When the momentum 7y, in Algorithm 1 is set to 0, it reduces to a special case where the input
xtTmp of the current iteration becomes the output f (XtTmp + 0em (1 — Ydecay)€) from the previous
iteration. In Theorem 3.5, we conclude that this case can be transformed into an ODE, which differs

from traditional diffusion processes such as the Ornstein—Uhlenbeck process.
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Algorithm 1 FAST-SMOOTHINIT (@)

Require: The FORWARD-INVERSION operator fs(-); the noise level ogy; the iteration number K; the initial
Gaussian noise x7; the momentum ., ; the noise decay rate Ydecay-
1: Inmitialize: The previous noise is set as mg <— x7; the noise from two steps ago as m; <— x7; and the
noise from three steps ago as mo <— Xr7.

2: fori =0to K do

3: x;fnp +— (1= ym)mo + (1 — Ym)ymmi + 2 my. » Obtain the input of f(-)
4: X e o (X + Tam (1 — Ydecay ) €), Where € ~ N(0, ). » Inject semantic information
5: ms < mj; mj < mg; Mo xtTmp. » Update ms, m; and my
6: end for

7: Return: The optimized noise mg.
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Figure 6: Visualization of 2D sampling trajectories in MODELSCOPE-T2V. The prompt is “Spiderman is
surfing”. Each subgraph visualizes 500 sampling trajectories. More visualization can be found in Appendix E.2.

Theorem 3.5. (the proof in Appendix C.6) Based on the conclusion of Theorem 3.2, FAST-
SMOOTHINIT can be reformulated as an ODE:
Or-L ar_107 —aror_1

dx = |— (w1 —wa) +

1 2 21 \V4
1- eca; ' x]- dtv 7
At ar_1 2/ tgsm( Yd y) 0g qt (X) (7N

where At = % In particular, we can substantiate that FAST-SMOOTHINIT and DPM-Solver share
similarities in reducing truncation errors. To be specific, by calculating the analytic solution of Eq. 7
over a single sampling interval and approximating it using a Taylor expansion (Lu et al., 2022c¢),
the process eventually becomes FAST-SMOOTHINIT with a momentum mechanism. Unlike DPM-
Solver, which determines the optimal hyperparameters theoretically. Motivated by Zheng et al.

(2023), FAST-SMOOTHINIT relies on a heuristic grid search to find the optimal v, and “ygecay-

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

To assess the effectiveness of SMOOTHINIT and FAST-SMOOTHINIT in improving fidelity, inter-
frame consistency, alignment between the synthesized video and the text prompt, and diversity, we
apply our proposed methods to four publicly available diffusion-based T2V VDMs: ANIMATE-
DIFF (SD V1.5, MOTION ADAPTER V3) (Guo et al., 2023), ANIMATEDIFF (SD XL, MOTION
ADAPTER BETA) (Guo et al., 2023), MODELSCOPE-T2V (Wang et al., 2023), and LATTE (Ma
et al., 2024). For traditional video metrics, we follow Wu et al. (2023) and Ge et al. (2023),
which assess sampling performance (i.e., Fréchet Video Distance, FVD (Unterthiner et al., 2019))
using prompts from the UCF-101 (Soomro, 2012) and MSR-VTT (Xu et al., 2016) datasets. Ad-
ditionally, we evaluate several new benchmarks that are popular on the AIGC community, includ-
ing Chronomagic-Bench-150 (Yuan et al., 2024), Chronomagic-Bench-1649 (Yuan et al., 2024),
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and T2V-Compbench (Sun et al., 2024). Specifically, Chronomagic-Bench-150 and Chronomagic-
Bench-1649 include five metrics: UMT-FVD (|), MTSCORE (1), UMTSCORE (1), CHSCORE
(1), and GPT40-MTSCORE (7). These metrics assess various aspects: visual quality, frame-to-
frame variation, alignment between the synthesized video and the text prompt, temporal coherence,
as well as both metamorphic amplitude and temporal coherence, respectively. T2V-Compbench is
a compositional benchmark that primarily focuses on consistent attribute binding (i.e., CONSIST-
ATTR (7)), action binding (i.e., ACTION (7)), object interaction (i.e., INTERACTION (7)), and gen-
erative numeracy (i.e., NUMERACY (1)). We provide a detailed description of the benchmarks and
VDMs in Appendix A.1 and Appendix A.2. The limitations can be found in Appendix B.

In our experiments, we apply three different hyperparameter settings to implement SMOOTH-
INIT and FAST-SMOOTHINIT: SMOOTHINIT3?, FAST-SMOOTHINIT!?, and FAST-SMOOTHINIT3Y.
These settings are derived from ablation studies discussed later, where the superscript "™Pet] jndi-
cates the number of iterations K. For the exact settings, please refer to Appendix A.3.

4.2 QUANTITATIVE COMPARISON

Traditional Bench. We compare SMOOTHINIT and FAST-SMOOTHINIT to the standard DDIM
process, the FORWARD-INVERSION operator, FREEINIT, and UNICTRL across various VDMs and
benchmarks. We evaluate the inference performance of these algorithms on the UCF-101 and MSR-
VTT datasets, using Open-Sora-Plan’s (Lab & etc., 2024) implementation of FVD (Unterthiner
etal., 2019). The results for UCF-101 and MSR-VTT are shown in Table 1 and Fig.7’s Bottom-Right,
respectively. As indicated in Tablel, our proposed methods consistently outperform FREEINIT and
UNICTRL without requiring access to €gy(-, -) or the standard reverse process, achieving state-of-the-
art (SOTA) performance. Notably, FAST-SMOOTHINIT?? surpasses standard DDIM sampling by
approximately 100 points. Similarly, both SMOOTHINIT?? and FAST-SMOOTHINIT?? significantly
enhance the sampling performance of MODELSCOPE-T2V on MSR-VTT-related FVD.

Chronomagi-Bench-150 & Chronomagi-Bench-1649. As shown in Table 2, SMOOTHINIT??,
FAST-SMOOTHINIT!?, and FAST-SMOOTHINIT?® achieve the best performance across all met-
rics on Chronomagi-Bench-150, particularly excelling in UMTSCORE (w.rxt., the semantic faith-
fulness) and GPT40-SCORE (w.rt., the metamorphic amplitude and temporal coherence), signifi-
cantly surpassing the previous SOTA method, FREEINIT. Similarly, as presented in Table 3, FAST-
SMOOTHINIT!? and FAST-SMOOTHINIT?® also secured both the winner and runner-up across all
metrics on Chronomagi-Bench-1649.

T2V-Compbench. We also evaluate the generative capability of our proposed method on the
widely-used compositional T2V benchmark. As shown in Table 4, our methods achieve the strongest
performance across three metrics: CONSIST-ATTR, INTERACTION, and NUMERACY. Notably, as
illustrated in Fig. 7, SMOOTHINIT and FAST-SMOOTHINIT significantly outperform the standard
DDIM process in NUMERACY when applied to the text prompt, “Two cats chase - - - sunny garden.”

4.3 ABLATION STUDY

We demonstrate in Fig. 4 that the optimal settings for o, and K in SMOOTHINIT vary depending
on the metric. A clear pattern emerges: UMT-FVD and UMTSCORE improve with larger /X and
smaller og,,, while GPT40-SCORE performs better with smaller K and larger og,,,. Considering
computational overhead, we adopt K = 30 and the corresponding oy, as the default SMOOTHINIT
configuration. Furthermore, we investigate the effect of ;, and 7gecay On video quality using grid
search. As shown in Fig. 5 and Appendix E.5, FAST-SMOOTHINIT consistently outperforms the
vanilla sampling method across nearly all settings. The optimal parameters are vy, = 0.05, Ydecay =
0.05 for FAST-SMOOTHINIT!'Y and 4y, = 0.01, Ygecay = 0.25 for FAST-SMOOTHINIT?". Finally,

inspired by Xie et al. (2021), we attempt to use uniform noise from &/ [,\/g’ \/§] instead of Gaussian
noise to achieve more stable optimization. As shown in Table 5, this approach slightly reduces UMT-
FVD. However, it degrades the performance of FAST-SMOOTHINIT, so we apply the technique
exclusively to SMOOTHINIT. Due to space constraints, we present and discuss additional ablation
experiments, including but not limit to the combination of our methods with DPM-Solver++, the
additional computational cost, and experiments on the LATTE (w.rt., DiT), in Appendix E.
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Figure 7: Visualization of SMOOTHINIT, FAST-SMOOTHINIT and the standard DDIM on ANIMATEDIFF.
Bottom-Right: Comparison on the MSR-VTT (Xu et al., 2016) dataset with MODELSCOPE-T2V.

4.4 VISUALIZATION

Sampling Trajectory. We visualize the sampling trajectories of different processes initiated by
various types of noise, including Origin, FORWARD-INVERSION, SMOOTHINIT??, and FAST-

SMOOTHINIT??. The top of Fig. 6 shows the cosine similarity curve % at each
time step ¢. At the start of the sampling process (timestep = 0 in Fig. 6), the similarity for FAST-
SMOOTHINIT?C is higher than that of SMOOTHINIT?? and the other methods, indicating that the
sampling trajectory of FAST-SMOOTHINIT?? is the most straight (Liu et al., 2022). This suggests
that the video synthesized by FAST-SMOOTHINIT?® is closer to the real data distribution (Villani
et al., 2009). Moreover, the bottom of Fig. 6 presents the curve showing the distance of x; from the
mean E[x;]. We observe that FAST-SMOOTHINIT behaves significantly differently from the other
three methods. Specifically, at the endpoint of the sampling process (timestep = 1 in Fig.6), the video
generated by FAST-SMOOTHINIT tends to be more uniformly distributed within a sphere, whereas
SMOOTHINIT, FORWARD-INVERSION, and Origin tend to be distributed along a spherical shell.

Synthesized Video. Fig. 7 presents the synthesized videos from different noise using ANIMATED-
IFF and the combination of ANIMATEDIFF with CONTROLNET (Zhang et al., 2023). Across various
prompts, both SMOOTHINIT and FAST-SMOOTHINIT significantly enhance the fidelity and seman-
tic faithfulness of the synthesized videos compared to Origin. For example, our proposed methods
effectively render the prompt “A young boy - - - flying akite - - - 7, whereas pure Gaussian noise with
standard DDIM sampling fails to do so. More visualization can be found in Appendix F.

5 CONCLUSION

In this paper, we extensively explore initial noise optimization to improve the quality and fidelity of
synthesized videos from a smoothing perspective. Through empirical investigations and theoretical
analysis, we confirm the significant sensitivity of the final video to the initial noise and demonstrate
the FORWARD-INVERSION operator’s ability to consistently optimize this noise by injecting seman-
tic information. Building on these insights, we propose a basic algorithm, SMOOTHINIT, which
improves optimization by accounting for bias introduced by intra-closed ball perturbations, thereby
enhancing VDM generation quality. We further design an advanced version, FAST-SMOOTHINIT,
which achieves better performance and faster convergence by dynamically updating the input to the
FORWARD-INVERSION operator during iterations. We hope that our exploration of smoothing in
VDMs inspires future research on more efficient noise initialization techniques, contributing to the
AIGC community.

10
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Ethics Statement. We introduce Sqooth4nit and Fasits %nit , two approaches aimed at
improving the semantic accuracy and visual quality of video generated by Video Diffusion Mod-
els. While our methods do not directly involve human participants, we remain dedicated to ensur-
ing their responsible use, prioritizing respect for user autonomy and fostering positive outcomes.
In line with data protection standards, we emphasize the privacy and security of any synthesized
videos and prompts involved in our work. Recognizing the commercial potential of Smonth4
and Fasi®s %nit , we are committed to their ethical deployment, with a focus on maximizing
societal benefits and minimizing potential risks.
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A ADDITIONAL INPLEMENTATION DETAILS

A.1 BENCHMARKS

Here we present the relevant metrics and benchmarks used for comparison in the main paper.

UCF-101-related FVD. The UCF-101 dataset is an action recognition dataset consisting of 101
categories. All videos are sourced from YouTube, with a fixed frame rate of 25 frames per second
(FPS) and a resolution of 320x240. Several previous works (Blattmann et al., 2023; Wu et al., 2023;
Chen et al., 2024b) validate the generation performance of VDMs on the UCF-101 dataset using
FVD (Unterthiner et al., 2019). However, a comprehensive evaluation benchmark for UCF-101
remains unavailable. Consequently, we follow FREEINIT, using the prompts listed in Ge et al. (2023)
to synthesize videos and evaluate inference performance with FVD. Specifically, we synthesize 5
videos for each of the 101 prompts provided by Ge et al. (2023), resulting in 505 synthesized videos.
We then compute the FVD between these 505 synthesized videos and 505 videos randomly sampled
from the UCF-101 dataset (5 per class) by Open-Sora-Plan’s” built-in FVD evaluation code.

MSR-VTT-related FVD. The MSR-VTT dataset (Xu et al., 2016) is a large-scale dataset for
open-domain video captioning, consisting of 10,000 video clips from 20 categories. The standard
split includes 6,513 clips for training, 497 clips for validation, and 2,990 clips for testing. We used
all 497 validation videos for our measurement. First, we generate a total of 1,491 videos based on
the prompts from the 497 validation videos, with each prompt generating three different videos to
ensure evaluation stability. We finally use Open-Sora-Plan’s” built-in FVD evaluation code to assess
the results.

Chronomagic-Bench-150. Chronomagic-Bench-150, proposed in (Yuan et al., 2024), is a com-
prehensive benchmark with a primary focus on the metamorphic evaluation of timelapse T2V syn-
thesis. This benchmark includes four major categories of time-lapse videos: biological, human-
created, meteorological, and physical, and extends these into 75 subcategories. Each subcategory
contains two hard prompts, resulting in a total of 150 prompts. Chronomagic-Bench-150 com-
prises four metrics: UMT-FVD (]), MTSCORE (1), UMTSCORE (1), and GPT40-MTSCORE
(1), each used to evaluate different aspects. More specifically, UMT-FVD ({) (Liu et al., 2024b)
uses the UMT (Li et al., 2023) feature space to compute FVD and evaluate the visual quality of
the synthesized video. MTSCORE (1) measures metamorphic amplitude, reflecting the degree of
change across frames. UMTSCORE (7) employs the UMT (Li et al., 2023) feature space to com-
pute CLIPScore (Hessel et al., 2021), assessing the text relevance of the synthesized video. Finally,
GPT40-MTSCORE (1) is a fine-grained metric that uses GPT-40 (Achiam et al., 2023) as an evalu-
ator, aligning with human perception to accurately reflect the metamorphic amplitude and temporal
coherence of T2V models. In this paper, we use metrics UMT-FVD (), UMTSCORE (1), and
GPT40-MTSCORE (1) because we find that MTSCORE (7) exhibits a peculiar phenomenon: per-
formance decreases as the number of sampling steps increases (from 30 to 50), which may introduce
ambiguity.

Chronomagic-Bench-1649. Chronomagic-Bench-1649, proposed in (Yuan et al., 2024), is a com-
prehensive benchmark with a primary focus on the metamorphic evaluation of timelapse T2V syn-
thesis. This benchmark has 75 subcategories like Chronomagic-Bench-150 but has 1649 prompts,
which is more comprehensive compared to the lightweight benchmark Chronomagic-Bench-150.
Chronomagic-Bench-1649 comprises four metrics: UMT-FVD (]), MTSCORE (1), UMTSCORE
(1), and CHSCORE (1), each used to evaluate different aspects. More specifically, UMT-FVD
(1) (Liu et al., 2024b) uses the UMT (Li et al., 2023) feature space to compute FVD and evaluate
the visual quality of the synthesized video. MTSCORE () measures metamorphic amplitude, re-
flecting the degree of change across frames. UMTSCORE (1) employs the UMT (Li et al., 2023)
feature space to compute CLIPScore (Hessel et al., 2021), assessing the text relevance of the syn-
thesized video. Finally, CHSCORE (7) evaluates temporal coherence, ensuring that the generated
videos maintain logical progression and continuity. Similar to Chronomagic-Bench-150, we ignore
the metric MTScore (1) in our experiments.

Mttps://github.com/PKU-YuanGroup/Open-Sora—Plan
3https ://github.com/PKU-YuanGroup/Open—-Sora—Plan
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T2V-Compbench. TV2-Compbench (Sun et al., 2024) is a benchmark specifically designed for
compositional text-to-video (T2V) synthesis. It covers various aspects of compositionality, includ-
ing consistent attribute binding, dynamic attribute binding, spatial relationships, motion binding,
action binding, object interactions, and generative numeracy. TV2-Compbench includes seven dis-
tinct metrics, with each metric consisting of 100 prompts. In this paper, we focus on four metrics:
CONSIST-ATTR (), ACTION (7), INTERACTION (1), and NUMERACY (7). Specifically, CONSIST-
ATTR (7T) evaluates the consistent attribute binding ability of VDMs, assessed by LLAVA-34b (Liu
et al., 2024a); ACTION (7) evaluates the action binding ability of VDMs, also assessed by LLAVA-
34b (Liu et al., 2024a); INTERACTION (7) evaluates the object interaction ability of VDMs, again
assessed by LLAVA-34b (Liu et al., 2024a); and NUMERACY (1) assesses the generative numeracy
ability of VDMs, evaluated by GroundingSAM (Ren et al., 2024).

A.2 VIDEO DIFFUSION MODELS

We describe the VDMs utilized in this work. Specifically, we employ three VDMs with distinct
architectures: MODELSCOPE-T2V (Wang et al., 2023), ANIMATEDIFF (Guo et al., 2023), and
LATTE (Ma et al., 2024):

Modelscope-T2V. MODELSCOPE-T2V incorporates spatio-temporal blocks to ensure consistent
frame generation and smooth motion transitions. Its most critical features include the use of 3D
convolution, training from scratch. The input video size is 3 x 16 x 256 x 256, where 3 represents the
number of channels, 16 is the number of frames, and 256 x 256 refers to the resolution.

Animatediff. ANIMATEDIFF does not require training from scratch. It only needs fine-tuning on
existing image diffusion models. ANIMATEDIFF’s motion adapter is a plug-and-play module that
converts most community text-to-image models into animation generators. In this paper, we use two
different versions, ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) and ANIMATEDIFF (SD XL,
BETA). The former was fine-tuned from SD V1.5, while the latter was fine-tuned from SD XL.
The input video size of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) is 3x16x512x512,
where 3 represents the number of channels, 16 is the number of frames, and 512 x 512 refers to the
resolution. The input video size of ANIMATEDIFF (SD XL, BETA) is 3 x 16 x 1024 x 1024, where
3 represents the number of channels, 16 is the number of frames, and 1024 x 1024 refers to the
resolution.

Latte. LATTE is a scratch-trained VDM built on the diffusion transformer (DiT). Unlike
MODELSCOPE-T2V and ANIMATEDIFF, both the VAE Encoder and VAE Decoder of LATTE are
retrained specifically for T2V synthesis. The input video size is 3! x!16!x!512!x1512, where 3 rep-
resents the number of channels, 16 is the number of frames, and 512! x!512 refers to the resolution.

A.3 HYPERPARAMETER SETTINGS

For all VDMs, we use the default sampling steps, CFG scale, and sampler from their respective
papers or demos. To be specific, for MODELSCOPE-T2V, the sampling steps, CFG scale (i.e., w1),
and sampler are set to 50, 7.5, and DDIM(-), respectively. Similarly, for ANIMATEDIFF (SD V1.5,
MOTION ADAPTER V3), these parameters are also set to 50, 7.5, and DDIM(-). For ANIMATEDIFF
(SD XL, BETA), the sampling steps, CFG scale (i.e., wj), and sampler are set to 20, 7.5, and
DDIM(-). Lastly, for LATTE, the sampling steps, CFG scale (i.e., wy), and sampler are set to 50,
7.5, and DDIM(-).

For SMOOTHINIT, the noise level ogy,, the number of iterations K, and the noise type are set to
0.025, 30, and uniform noise U [—\/g, \/ﬂ , respectively. For FAST-SMOOTHINIT!?, the noise level
Osm, the number of iterations K, and the noise type are set to 0.05, 10, and Gaussian noise N (0, I),
respectively. Specifically, ¥y and Ygecay are both set to 0.05. For FAST-SMOOTHINIT??, the noise
level o4, the number of iterations K, and the noise type are set to 0.1, 30, and Gaussian noise
N(0,1), respectively. Specifically, vy, and Ygecay are set to 0.01 and 0.25, respectively.

We found that on LATTE, both FAST-SMOOTHINIT!'® and FAST-SMOOTHINIT?® are prone to neg-
ative optimization under the hyperparameter settings mentioned above. Upon analysis, we deter-
mined that this is because LATTE is significantly less tolerant of the effective range of the initial
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noise x7. To address this issue, we increased 7y, to 0.95 in both FAST-SMOOTHINIT!? and FAST-
SMOOTHINIT??, ensuring stability and eventually achieving the desired optimization.

B LIMITATION

Although SMOOTHINIT and FAST-SMOOTHINIT significantly enhance the performance of the final
synthesized video in VDM, they generally introduce additional inference overhead. This overhead
is less substantial compared to FREEINIT and UNICTRL, but it still presents deployment challenges
relative to standard DDIM sampling. Additionally, the conditions under which SMOOTHINIT and
FAST-SMOOTHINIT may negatively impact certain metrics remain unexplored. Finally, while our
exploratory experiments indicate that FAST-SMOOTHINIT performs well on image synthesis tasks,
whether the algorithm can be extended to 3D rendering and graph generation remains an open ques-
tion.

C THEORETICAL ANALYSIS

C.1 ASSUMPTIONS

Throughout this section, we adopt the regularity assumptions from Lu et al. (2022a, Assumption
A.1) and Nie et al. (2024, Assumption D.1). These technical assumptions guarantee the existence
of a solution for smooth initialization in diffusion sampling and ensure the validity of integration by
parts and the Fokker-Planck equations. For completeness, we list these assumptions in this section.

Assumption C.1. We make two assumptions from Lu et al. (2022a, Assumption A.1) and Nie et al.
(2024, Assumption D.1), and we include them here only for completeness:

1. 3C > 0,Ya,y € R? : [|Vilog g:(x) — Velog ar(y)2 < Cllz — y2.
2.9t € [0,T],3k > 0 : q(z) = O(eI2I3), pSPE(z) = O(e~l=lz), pOPE(z) =
O(e= 1212 as |||y — oc.
C.2 THE IMPORTANCE OF INITIAL NOISE
Here, we provide a theoretical proof of Theorem 3.1 from an error analysis perspective. Addition-
ally, we demonstrate that Theorem 3.1 holds for the remaining models in the stable diffusion family,
except for stable diffusion (SD) V3, along with an in-depth corresponding interpretation. Finally,

we present the process of transforming the entropy of p;(x) into the counterpart of po(x) using the
Fokker-Planck equation.

Proof. The widely adopted DDIM sampler can be denoted as

s 1- 2 Sy
x; = DDIM(x,) = a; (X V1 - aven(x S)> 10 /1— a2 — o2eh(xs,8) + 0@y, (8)

A

where s and ¢ represent timesteps with ¢ < s and w is a standard Gaussian noise independent of x.
The term oy = 11/(1 — a?)/(1 — a2)y/1 — a2/a? controls the form of the differential equation
during the backward sampling process, determining whether it is an SDE or an ODE. When 7 is set
to 0, DDIM Sampler reduces to the deterministic sampling method used by default in this paper.

Suppose two Gaussian noise (vectors) xp and x/. used for the initialization of reverse sampling,
where X/, = xp + Axp, Axr is introduced to determine the scaling of the error during sampling.
Given this, we can further obtain the following derivation:

DDIM(x}.) — DDIM(x7')
AXT

Qi
= —+
ar

)
J1—a? - VlaTo‘To“] €o(x7., T). 9)
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Assume that the DDIM Sampler need to sample IV steps in practical application and the interval
between two neighbouring steps is k, i.e., Nk = T. In this case, the relative error at the T — k
moment can be expressed as

A /1=
‘ Xk o V1= Oy — aTaT k} o (x7,T) (10
AXT
Similarly, we can obtain the iterative equation for the timestep t € {k, 2k,--- ,T}:
Axyy, Oét—k 1 V51— ooy 1- Oét O f | . 11
AXt - at k Xt, ( )

Through the recursive method we can get the relative error at xg:

N-1 /1
ar_(; 1k aTﬂkaT (i+1)k . .
H 4< s \/ “(i+1)k eG(XT%k7T_Zk)

L [0% 27> Tk
=0

AXQ
AXT

12)

XT_(i+1)k
Tk

is always greater than 1 for i € {0,1,---, N —1}. The first term [} ' 2-0the — <2 of the

ATk
polynomial on the right-hand side of Eq. 13 is always greater than 0. For the remaining unknown

VI—aZ_, o . . .
term (1 /1 — aQTi(iH)k — aT;;’“_‘:: ¢ +1)k> €o(xX1—ir, + Ax1_i1,, T—ik), which contributes to the
. . . . . V/1-aZ e
final expansion polynomial, we primarily prove that its factor , /1 — aQT_(i +k T aT_“c(,lT Lo

AT—ik

reaches its maximum value at i = 0. In practice, /1 — a? in DDPM and DDIM can be regarded

as a monotonically increasing function as ¢ approaches 1, satisfying /1 — a? < 0 ("~ denotes the
second-order derivative with respect to ¢). Thus, the aforementioned factor can be rewritten as

\/ aTﬂkaT4l+1
\/ —aj., i+ 1)k

Tk

As a differentiable function, o, increases monotonically as ¢ approaches 0. Consequently,

(13)

“(i+1)k \/1 ) /Ot

(1 -a
- k\/l a7 z+1)k\/1 i, . ., s.t., kis small.

.

The factors \/ 1—af Gy \/ 1— 02, 20rtmartiene) ang L gl have the desirable

characteristic of decreasing monotonically as ¢ approaches 0. Therefore, ,/1 — a%_

2
v 1_aTO:;’f :7("“)'“ must take its maximum value when ¢ = 0. Through a simple calculation us-
ing the most popular noise schedule widely applied in the Stable Diffusion family, we obtain this
value as 0.126. Since the noise estimation model €y (-, -) is differentiable, the power-of-1 error of
0.126 can be further analyzed using a first-order Taylor expansion:

€o(xrip + Axqpyp, T —ik)

(i+1)k

869(XT#1€,T—Z']€) (14)

= €g(X7oik, T —ik) + Axp_ip, + O(A*x7_i).

OXT1oik
We abbreviate the first-order partial derivatives of €y (x, t) with respect to x as €(x, t), and eventu-
ally Eq. 13 can be transformed into:

«@ Qo O,
o =51 = [Axr [ 22 + ZOE o ) |2 Siatt)| + 0202 | 019
ar Qq_j
1/ —a? ar_(t
where Z(t) = /1 — a2, (1) ! TQ’T‘Z: rDk
Of course, we can also derive the relative error from noises at any timestep H:
— x| = [ Axp |22 4 Z(0)E, vmir. A (om, 0Z0))|],
0 =51 =[x [ 22 4 2000ty | 22 2y + OO
(16)
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Remarks. The factor Z(0) = /1 — a2, — 7@3‘“” in SD V1.5 (Rombach et al., 2022),

SD V2.1 (Rombach et al., 2022), SD XL (Podell et al.), Modelscope-T2V (Wang et al., 2023),
Animatediff (Guo et al., 2023), and Latte (Ma et al., 2024) can be calculated as 0.126, which is
smaller than 1. This means that Theorem 3.1 can be applied to those diffusion models, but it does not
apply to several specialized models like SD V3 (Esser et al., 2024), which uses Rectified flow (Liu
et al., 2022) and velocity estimation models. In such cases, the factors 3—; and Z in Eq. 15 directly

’
e e |

degenerate to 1, preventing the conclusion that exceeds 1. O

B

C.3 ENTROPY SHIFTS DURING REVERSE SAMPLING

This subsection further elaborates on Theorem 3.1. We utilize the Fokker-Planck equations to an-
alyze the entropy shift during the sampling process of diffusion models. We also introduce the
definition of the reverse ODE from Song et al. (2023b):

1
dx; = {f(xt, t) — 5g2(t)vx log g; (X):| , # Continuous Reverse ODE (17)

dx; = auXg + opwy, # Adding Noise

where f(-,t) : RY — R% is a vector-valued function called the drift coefficient of x;, and g(-) :
R — R is a scalar function known as the diffusion coefficient of x;. Note that we use ¢;(x) instead
of p(x;) for simplicity. w; is the standard Wiener process. Then, the entropy shift from ¢;(x) to
go(x) can be defined as

/qo (x) log go(x)dx — /ql(x) log g1 (x)dx. (18)

Continuing the derivation yields the following result:

/ / O % [9:(x) log ¢, (x)] dtdx
/1 [6% g 0) + 370 | dix

// h(xt,t)qr(x))(log g+ (x) + 1)] dtdx # Fokker-Planck equations

= //1 [(log ar(x) + 1) (h(x, t)Qt(X))] dtdx # Assumption 2

0
dlog « do dlog «
= // [(log a(x)+1)7T < d%f bxi— = {d: -2 dgt tof] Vx log qt(x))] dtdx

do dlog o O rdloga
/ /*— {t— d&: t"?] Vxloth(X)dth+/l / dgt “x¢ log q;(z)dxdt

dlog a5 Egmqo ) [XE] /Odlogozt ) 1 /0 do? _dlogay , 9
dt dt — = —t 1 dt.

+/1 ar 2 Y Tea D) G a, Ot | log ()]
(19)

Substitute oy, = exp (—fat? — 1bt) and oy = \/1 — exp(—3at? — bt) with a = 19.9 and b =
0.1 (Liu et al., 2022; Shao et al., 2024), we can obtain that

/0 dlogay oEx;ngo(x) [x3] dt
ar 2

1

0 (20)

Exo~go (x) [Xg]~
1

Obviously, the above result is a negative value. In contrast, when the noise schedule is Rectified

x2
flow (Liu et al., 2022) (applied in Stable Diffusion V3), the upper value f | d bg 2 q? E"ON""Q(")[ ol g
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1 (— _ ﬁ _ ﬁ IExo'“‘lo(x)[xg] — Exoquo(X)[xg] . .
is (—(0—%)+(1—-%)) y o . Thus, from a noise schedule perspective,

Rectified flow through sampling causes a relative increase in entropy, but DDPM/DDIM causes a
relative decrease in entropy.

C.4 INTRINSIC PRINCIPLES OF ONE STEP FORWARD-INVERSION

In this subsection, we present the proof of Theorem 3.2:

Proof. One step forward-inversion represents one additional step forward sampling and one step
reverse sampling against the initial Gaussian noise, which can be denoted as

xr = fs(x7) = DDIM-Inversion(DDIM (xr)), 21

where DDIM-Inversion(-) refers to the sampling algorithm in Eq. 8 satisfy ¢ > s. We can rewrite
it in forms of differential equations:

1 (g1 2(1 -
X7 = X1 — 5/ [g 2( )Vx log ¢1(x) — %mvx log qln(X)] dt, (22)
1

where 1 — 7 denotes the next sampling moment when the timestep is 1. Adopting the classifier-free
guidance paradigm (Ho & Salimans, 2021), Eq. 21 is rewritten as

1 17 rg?(1 2(1
X/T =X7r — 5/ |:g 2( )(wl + l)Vx logq1(X|C) _ g é )wlvx IOg(h(x)
1
_ 92(1 B 77) (
2
where ¢, w; and ws refer to the text prompt (i.e., condition), the CFG scale at the timestep 1 and the

CFG scale at the timestep 1 — n, respectively. Given that 1 and 1 — 7 are very close and Assumption
2, we can use their midpoint to perform a Taylor expansion, thereby reducing the truncation error:

(23)

2
1 _
wa + 1)V log ¢1_, (x]c) + Mu@vx log g1, (x)|dt,

, 11— g) Ui
Xp =X — —/ — {(wl —w2)Vxlogqy_n(x|c) — (w1 — w2)Vxloggy n(x) + (9(5)] dt,
1

7
2
g* (1 -3

= dx=— 5 ) {(wl —w2)Vxlog g, n(clx) + O(g)} dt.

(24)
With Eq. 24, it is possible to inject semantic information within the future timestep (i.e., t = 1—n/2)

into the initial Gaussian noise (i.e., t = 1) when there is a gap between w; and wo.

O

C.5 THEORETICAL ANALYSIS OF SMOOTHING INITIALIZATION

How Smooth Initialization Ensures Smoothness? Here we present the theoretical proof of Theo-
rem 3.3. The proof closely follows the structure of Cohen et al. (2019)’s proof of Cohen et al. (2019,
Theorem 1), with specific modifications to align with the smoothing initialization framework.

Proof. We begin the derivation by recapitulating one crucial lemma:

Lemma C.2. (copy from Cohen et al. (2019, Lemma 4), Neyman-Pearson for Gaussians with differ-
ent means) Let X ~ N(z,0%1) and Y ~ N (z + §,0°1). Let h : R — {0, 1} be any deterministic
or random function. Then:

1IfS ={z € R : 6Tz < B} for some B and P(h(X) = 1) > P(X € S), then P(h(Y) = 1) >
P(Y € 5).

2.IfS ={z € R?: 6Tz > 3} for some Band P(h(X) = 1) < P(X € 5), then P(h(Y) = 1) <
P(Y € 9).
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The contribution of this lemma is to demonstrate that the inputs will maintain consistent classifica-
tion results across a range of perturbations. Unlike Cohen et al. (2019, Theorem 1), which directly
focuses on the classification task, the robustness proof for SMOOTHINIT requires transforming the
continuous regression task (i.e., generative a better initial noise) into a discrete classification task.
Thus, we define a deterministic function:

h(z) = 1[I fs(x) = €[ <] (25)

We additionally declare that ¢* € R% and v € R are always existed in this case. Specifically, when
€* is closen as f,(x), then h(z) = 1. Conversely, when €* = fs(x) + 7 + 1, then h(z) = 0. Given
the two conditions above and the fact that the norm || f (x) — €*|| is first-order derivable with respect
to €*, the pair (e*, y) satisfying the constraints must exist.

The next step is to solve a constraint on § such that 1 [||[g(x + 6) — €*|| <] = 1 holds. A more
intuitive goal is

PA[Ifs(x+e+0) - €| <Al =1) 2 P(L[[[fs(x+e+0) —€"[[<2]=0).  (26)

We can use Lemma C.2 by defining two special half-spaces:

o) e

— A = {Z : 5T(Z — X) S Usm|‘5||q)71(&)}

27
zZ—X
(52
Jsm
— B={z:6"(z—x) > 0oum|d]|® (o)}
Then we can obtain
P(L[||fs(x+e+0)—€]|<y]=1)>P(x+e+d€A) (28)
>Px+e+deB)>P(L[|fs(x+e+0) — €| <o]=0).
The derivation of the above two equations leads to
)
o <<I>1(pl) - 0”> =P(x+e+de A
)
= P(x+e+dcA)= <I>(<I>’1(p71) — l—”)
(29)
)
d <<I>1(po) + ”> =P(x+e+d€B)
1)
= P(x+e+0€B) :@(@*1(170)+(|j|_ ||)
In order to ensure that Eq. 28 holds, it is necessary to ensure that:
_ o 1 )
a(@ ) - 1) > g0 () + 10,
Uasnl Osm (30)
= 18] < 2 [8 () — )]
The proof is complete. ]
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The Nature of Smooth Initialization.

Proof. In this section, we derive Corollary 3.4 by transforming the ordinary differential equation
(Eq. 24) into its discrete form:

9 —loqug(X)}
w1 — wa) ,

Or-L ar_j07 — OZTUTfl(
aT_% aT_q 8X0

€1y

where x1 and xg denote the Gaussian noise and the “clean” video. This theoretical conclusion can
be directly obtained from the definitions of DDIM and DDIM-Inversion. It is important to note that

. . . . dlogq;_ 5 (x)
Eq. 31 also includes the transformation of the vanilla score function V4 log ¢; _ 2 (x) = il did

6ac17%

. 1 Ologgqy_n(x) . . .
into —————>5_—*—. This is done with the following lemma:

1-7 0
Lemma C.3.

Dlogpixlg) _ Olzen(l) g x aeplxt)
0xg N 0% - o? N ot ’
llx¢ — o xol
_ Olog p(x¢|xo) _ dlog eXp(tTtZto) | X — uXo €o(x4,t)  (32)

Vi logg; (X) = %, 0%, = O'% = - o ,
9 log p(x¢|xo)

Th
en %o

s = —a;Vxlog Qt(x)'
For ease of derivation, we first adopt the FORWARD-INVERSION operator in the smoothing function
as fs(-), then

Eeon (0,02, 1) [fs(x + €)]

sm

1
= Eeon(0,02,1)fs(X) + Eenr(0,02. 1€ T Vi fs(x) + BN (0,02, [e] "H[e] + O(€”)

sm sm sm

2 (33)
= fu(3) + “5"Eeuno [ "HIE

2
= fo(x) + %1T><A®H><1,

where H, 1, x and ® stand for the Hessian matrix, the unit vector, the matrix multiplication and the
Hadamard product, respectively. A is a matrix whose nondiagonal elements obey a unit Gaussian
distribution N (0, I) and whose diagonal elements obey a chi-square distribution with E[Ay] = 1.
Given this, we can further get

2
fs(x) + UZmITxA(DHxl

2

= fu(x) + Uijtr(A ® H) + Coong (34)
Tom

= .fS (X) + Ttr(H) + Cconsh

Substituting Eq. 31 into the above equation, we can obtain

Or—1 ar_107 —aror_1 0 |:_ logQ1—%(x):|
fs(x7) = %1 — (w1 —w2) ;
Qp_1 or—1 0%
; (35)
O-gmo'T—% aT_10T7 — Q70T ( 0 [— log fh—g(ﬂ?)]

w1 — wo)tr
404T_% ar_q ) 8X%

g(XT) :fs(XT) -
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The proof is complete. O

C.6 THEORETICAL ANALYSIS OF FAST-SMOOTH INITIALIZATION

Proof. This subsection clarifies why FAST-SMOOTHINIT converges to the optimal initial noise by
being transformed into the form of differential equations. First, we give the following iterative form:

xp = fo(Xp—1+ afn:lek_l), where 1 ~ N(0,I) and k € {1,--- , K}. (36)

This form is consistent with Algorithm 1 as outlined in the main paper. For the convenience of
substitution, we modify Eq. 36 while keeping the logic of the algorithm consistent as follows
X = fs(xk,l, 0'552616,2)7 s.t. €p—9o ~~ N(O7I) and k € {2, te ,K}

- - 37)

= yi = [s(Yr-1) + 0o €k—1, St Yt =Xk + 05y €x—1 and k € {1,--- | K}.
In the limit as K — oo, the Markov chain {yk}f:l becomes a continuous stochastic process
{y(k)}}_o- Similarly, {c% }X | becomes a function {ogn(k)}i_, and {ex}5_ | becomes a func-
tion {e(k)};_o, where we now use the continuous time variable k£ € [0,1] for indexing, rather

than the integer £k € {1,2,--- ,K}. Let Ak = %, we can rewrite Eq. 37 as follows with
kZ{O,%»%w" 1)

y(k+ Ak) = fo(y(k)) + osm(k)e(k)

— Ykt AR) — y(k) = [—Alkyu«) n Alkfxy(k))} Ak i (VB

1
o1 = )| Ty oy (y () + | ()] i,
(38)

Or—-1 ar_jo7 — OéTUTA(

- dy:_|: Ak‘ aT_1

where wy, is a standard Gaussian noise independent of y (k). However, because the score function
is Vy log g1 n (y(k)) rather than Vy log gi(y (k)), the Fokker-Planck-Kolmogorov (FPK) equation
does not transform the stochastic differential equation into an ordinary differential equation in an
elegant manner. Unfortunately, Vy log g (y(k)) cannot be estimated since there is no corresponding
optimization objective during training, so we directly use Vy log q; _n (y(k)) to implement FAST-
SMOOTHINIT. Given this, Eq. 38 can be rewritten as

Or_L ap_107 — Qp0T_1 1
=— 2 - 1 — o,
dy [ AL p— (w1 — we)| Vy log qi(y(k))dk + [mabm(k)] dwy,
. _O'T—% ar_107 — QTo0T_1 . 1 2
= dy = { Ak po— (w1 —wa) + AR Usm(k):| Vy log qi(y(k))dk.

(39)

Substituting the notation in Algorithm 1, we can obtain the following differential equation:

dx = |— —
X |: At ar_q 2At

Or_1 ap_i0p — - 1 i
T T ) — o) + a§m<1—vdccay>2l] Vi log gi(x)dt. (40)

The proof is complete. ]

The ordinary differential equation in Eq. 39 can be solved analytically for & within a specified in-
terval. The best approximation to reduce truncation error is then achieved using a Taylor expansion,
similar to several popular ODE solvers (Lu et al., 2022c;b; Zhang & Chen, 2022). are essentially
momentum-based, meaning they are implemented by making the new x;_; in Eq. 36 a weighted
average of xj_1, X;—o and x;_3. Then the algorithm can be transferred to
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Il'lpllt: X0, fs(')a Yo, Y1, V2, {Ofm f:i()1

mg < Xq

mi < Xg

ms < Xq

k<« 0

While £ < K
do

m 41
X;@ P yomg +y1m; + yomy

Xpp1 < fs(x0 + ok )
ms < 1My
m; < 1my
mo < Xg41
done
Output: xg,

where v, 71 and 7» are weighted averages satisfying a sum of 1. Moreover, the pipeline in Eq. 41
is essentially the same as the algorithm presented in Algorithm 1. Motivated by Zheng et al. (2023)
that analytical solutions may not be optimal in practical applications, we decided to treat g, 1 and
72 as tunable parameters.

Thus, FAST-SMOOTHINIT is an algorithm similar to DPM-Solver (Lu et al., 2022c) and DPM-
Solver++ (Lu et al., 2022b) which indeed reduces truncation errors through the momentum mecha-
nism. The proof is complete.

D RELATED WORK

In this section, we discuss a series of plug-and-play algorithms focused on VDMSs, including
FREEINIT (Wu et al., 2023), FREENOISE (Qiu et al., 2024), UNICTRL (Chen et al., 2024b), and
I4VGEN (Guo et al., 2024). FREEINIT primarily uses DDIM (Song et al., 2023a) and the diffu-
sion forward process to generate new noise and reinitialize the noise by blending low-frequency
components with high-frequency noise using a spatio-temporal filter, ultimately synthesizing the
“clean” video through DDIM sampling. FREENOISE is a training-free approach for synthesizing
longer videos, ensuring both high video quality and computational efficiency. UNICTRL maintains
semantic consistency across frames using cross-frame self-attention control, while simultaneously
enhancing motion quality and spatiotemporal consistency through motion injection and spatiotem-
poral synchronization. [4VGEN first generates high-quality images using a T2I diffusion model,
then transforms them into Gaussian noise with preserved semantic information through a standard
diffusion forward process. Next, it incorporates the VDM’s temporal information using the score
distillation sampling (SDS) algorithm, and finally samples from the standard DDIM. Since the offi-
cial implementation* of 14 VGEN lacked the necessary packages and code as of press time, it is not
compared in this paper.

E ADDITIONAL EXPERIMENTS

Here, we present a series of additional experiments to further validate some important insights out-
lined in the main paper.

E.1 IMAGE SYNTHESIS VS. VIDEO SYNTHESIS WITH DPM-SOLVER

We provide an example to illustrate the phenomenon “several significant training-free sampling
methods in video synthesis do not perform as well as in image synthesis;” outlined in Sec. 1, using

4https ://github.com/xiefan-guo/id4vgen
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DPM-Solver in Image Synthesis DPM-Solver in Video Synthesis (Random Frame)

Figure 8: The example of “DPM-Solver (NFE=5) performs less effectively in video synthesis compared to
image synthesis”.

The sampling trajectory of Origin ‘The sampling trajectory of Forward-Inversion ‘The sampling trajectory of SmoothInit>® The sampling trajectory of Fast-SmoothInit>®

©

‘The sampling trajectory of SmoothInit>®

()

Figure 9: Visualization of sampling trajectories in MODELSCOPE-T2V. The prompts for (a), (b), (c), and (d)
are “A cat wearing sunglasses and working as a lifeguard at a pool”, and for (e), (f), (g), and (h) are “Spiderman
is surfing”. Each subgraph visualizes 500 sampling trajectories.

DPM-Solver with the number of function evaluations (NFE) set to 5. The visualization outcomes are
presented in Fig. 8. We observe that the quality of image frames generated by ANIMATEDIFF (Guo
et al., 2023) is worse compared to those generated by SD XL (Podell et al.), due to unnatural dy-
namics and the use of low-quality datasets for open-source video model training.

E.2 3D SAMPLING TRAJECTORY VISUALIZATION

We present the 3D sampling trajectory of two prompts “A cat wearing sunglasses and working as a
lifeguard at a pool” and “Spiderman is surfing” in Fig. 9. Different from the 2D sampling trajectory
presented in the main paper, this part of the visualization is relatively more information-intensive,
and the visualizations obtained from the two prompts are essentially the same.

E.3 SMOOTHING INITIALIZATION MEETS DPM-SOLVER++

We similarly conduct experiments using a different scheduler, DPM-Solver++ (Lu et al., 2022b).
The results in Table 6 show that SMOOTHINIT and FAST-SMOOTHINIT continue to perform well,
with significant improvements across all metrics except for the metric GPT40-SCORE. We hy-
pothesize that the decrease in GPT40-Score may be due to SMOOTHINIT and FAST-SMOOTHINIT
reducing the temporal variability of the synthesized video with DPM-Solver++.

25



Under review as a conference paper at ICLR 2025

Table 6: Quantitative comparison after replacing DDIM with DPM-Solver++. The experiments were performed
on ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) and sampled 15 steps.

METHOD UMT-FVD (]) MTSCORE () UMTSCORE (1) GPT40-MTSCORE (1)
ORIGIN 244.84 0.4759 273 2.84
FORWARD-INVERSION 245.49 0.4670 2.77 2.82
SMOOTHING?? 243.84 0.4761 2.80 2.82
FAST-SMOOTHING!® 243.83 0.4788 275 2.56
FAST-SMOOTHING>® 241.41 0.4850 2.90 2.68

E.4 ADDITIONAL EXPERIMENTS OF TRUNCATED GAUSSIAN NOISE VS. STANDARD
GAUSSIAN NOISE

In Table 5 presented in the main paper, we substantiate that uniform noise performs better than
Gaussian noise. However, a remaining question is whether this improvement arises from the re-
moval of some outliers of Gaussian noise from the mean. To investigate this, we further compare
the performance of truncated Gaussian noise and standard Gaussian noise on SMOOTHINIT. The
results in Table 7 demonstrate that truncated Gaussian noise performs worse than standard Gaussian
noise. Therefore, the superior effectiveness of uniform noise can be attributed to the properties of
its probability density function.

Table 7: Ablation studies between Gaussian noise and Truncated Gaussian noise for initialization.

ITERATION NUMBER NOISE TYPE Oom UMT-FVD () UMTSCORE (1)
(w1 : wo) N/A N/A (1575 (1.5:1) (1.575) (7.5:1)
Gaussian 0.100 27091  272.53 2.93 2.96

Gaussian 0.075 27676 267.45 2.93 3.07

Gaussian 0.050  269.28  271.40 291 2.98

Gaussian 0.025 26729  266.55 2.94 3.02

30 Truncated Gaussian  0.100  268.15 26972 2.94  2.92

Truncated Gaussian ~ 0.075 ~ 262.76  262.84 2.90 2.97
Truncated Gaussian ~ 0.050  281.57 = 261.15 2.83 3.05
Truncated Gaussian ~ 0.025 = 266.09  265.85 2.97 3.00

Gaussian 0.100 = 262.14  264.09 2.98 3.02
Gaussian 0.075 27478  267.15 2.89 3.00
Gaussian 0.050  265.16  266.80 3.00 2.97
Gaussian 0.025  268.73  265.20 2.93 2.97

Truncated Gaussian ~ 0.100 268.15 266.37 2.94 2.92
Truncated Gaussian ~ 0.075 262.76  262.84 2.90 2.97
Truncated Gaussian ~ 0.050  281.57 = 261.15 2.83 3.05
Truncated Gaussian ~ 0.025  266.09  265.85 2.97 3.00

E.5 ADDITIONAL EXPERIMENTS OF FAST-SMOOTHINIT

We present the complete results of the ablation studies on “gecay and vy, in Fig. 10. As shown,
FAST-SMOOTHINIT?? generally performs better than FAST-SMOOTHINIT!?, particularly on UMT-
FVD. Additionally, the optimal Ygecay and i, settings differ between FAST-SMOOTHINIT!? and
FAST-SMOOTHINIT®?. The optimal configurations, (Ygecay = 0.05,%m = 0.05) and (Ydecay =
0.25,vm = 0.01) for FAST-SMOOTHINIT!? and FAST-SMOOTHINIT?’, are presented in the main
paper.

E.6 ADDITIONAL EXPERIMENTS OF DIFFUSION TRANSFORMER

We also conduct experiments on LATTE (Ma et al., 2024), a VDM based on the diffusion trans-
former (DiT) architecture. We find that the videos generated by LATTE exhibit less variability
compared to those generated by other VDMs. Specifically, the frames within LATTE’s synthesized
videos remain nearly identical. As shown in Table 8, we also observe that SMOOTHINIT and FAST-
SMOOTHINIT are less effective on LATTE than on other models, likely due to the specificity of the
DiT architecture. However, both methods improve frame-to-frame variability, as demonstrated by
the amplitude-dependent metrics GPT40-MTSCORE and MTSCORE (Yuan et al., 2024).
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~-e- Fast-Smoothlnit® (UMT-FVD) ~ —=— Fast-SmoothlInit*® (UMTScore) -m- Fast-SmoothInit'® (UMT-FVD) ~ —4— Fast-SmoothInit!® (UMTScore)
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Figure 10: Ablation studies of osm and ym within FAST-SMOOTHINIT. We present only the optimal hy-
perparameter settings in the main paper, while the complete ablation experiments with their corresponding
hyperparameter settings are provided here.

Table 8: Quantitative comparison on LATTE (w.rt., DiT). Both FAST-SMOOTHINIT!® and FAST-
SMOOTHINIT?® were performed with v, = 0.95

METHOD UMT-FVD (|) MTSCORE (f) UMTSCORE (1) GPT40-MTSCORE (1)
ORIGIN 213.42 0.3854 2.65 223
BASELINE (V2) 216.59 0.3834 2.59 226
ENSEMBLE (30, 0.025, UNI) 220.00 0.3947 2.54 2.38
FAST-SMOOTHING (10) 220.64 0.3861 2.62 2.39
FAST-SMOOTHING (30) 219.63 0.3948 2.51 231

E.7 ADDITIONAL ABLATION STUDIES OF wy : wg = 7.5: 7.5

We present additional ablation studies on the hyperparameter noise level o, and the iteration num-
ber K for the case where w; : we = 7.5 : 7.5. As established in Theorem 3.2, injecting semantic
information into the initial Gaussian noise is essentially impossible when w; equals ws. This is
further supported by the observation that the best performance in Fig. 11 is inferior to that in Fig. 4.
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UMT-FVD (01:02=7.5:7.5) UMTScore (01:02=7.5:7.5) GPTdo-MTScore (01:02=7.5:7.5)
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Figure 11: Ablation Studies on hyperparameter the noise level os,, and the iteration number K. Compared to
Fig. 4 in the main paper, the regularity in this figure is relatively low. This is because the semantic information
was not successfully injected when using the ratio wy : we = 7.5 : 7.5.

GPU Latency Comparison Across Models
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Figure 12: The GPU latency comparison between our proposed methods and baseline.

E.8 GPU LATENCY ANALYSIS

SMOOTHINIT and FAST-SMOOTHINIT are two training-free algorithms designed to improve com-
posite image quality by optimizing the initial Gaussian noise. However, since the optimization
step requires repeated execution of DDIM-Inversion(DDIM(-)), this inevitably adds computational
overhead. Fig. 12 presents the actual GPU latency on a single RTX 4090. While SMOOTHINIT and
FAST-SMOOTHINIT introduce additional overhead, the need to compute text embeddings and other
auxiliary variables before each reverse process ensures that even SMOOTHINIT?? remains within
acceptable limits.

F SYNTHESIZED VIDEO VISUALIZATION

To reduce the size of the generated pdf, we downsample the video frames and present them here. We
present the synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3)
in Fig. 13-19, the synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER
BETA) in Fig. 20-26 and the synthesized video visualization of MODELSCOPE-T2V in Fig. 27-33.

28



Under review as a conference paper at ICLR 2025

Figure 13: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A knight kneeling in a chapel, his sword laid before him as he prays for strength before a great battle”.

Figure 14: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A futuristic park filled with holographic trees and robotic animals, with children running and playing
under an artificial sky”.

*

Figure 15: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A lone astronaut floating through space, staring at the distant Earth, with stars and galaxies all around”.
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Figure 16: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A bustling futuristic market on an alien planet, with strange creatures selling exotic goods and glowing
alien plants lining the streets”.

Figure 17: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A tranquil waterfall in the middle of a dense forest, with beams of sunlight filtering through the trees
and birds singing in the branches”.

> AP AP AY
Figure 18: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A group of knights charging into battle, their swords raised and banners flying as they face a massive

”

army”.
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Figure 19: The synthesized video visualization of ANIMATEDIFF (SD V1.5, MOTION ADAPTER V3) with
prompt “A serene mountain lake at dawn, with mist rising from the water and the reflection of snow-capped
peaks mirrored on the surface”.

Figure 20 The synthesized video V1suahzat10n of ANIMATEDIFF (SD XL MOTION ADAPTER BETA) with
prompt “A massive skyscraper under construction in a futuristic city, with robotic workers flying between the
steel beams as they assemble the building”.

Figure 21 The synthes1zed v1de0 v1suahzat10n of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A knight kneeling in a chapel, his sword laid before him as he prays for strength before a great battle”.
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Figure 22: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A futuristic park filled with holographic trees and robotic animals, with children running and playing
under an artificial sky”.

Figure 23: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A lone astronaut floating through space, staring at the distant Earth, with stars and galaxies all around”.

Figure 24: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A magical garden filled with glowing flowers, enchanted fountains, and mythical creatures wandering
among the greenery”.
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Figure 25: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with
prompt “A bustling futuristic market on an alien planet, with strange creatures selling exotic goods and glowing
alien plants lining the streets”.

Figure 26: The synthesized video visualization of ANIMATEDIFF (SD XL, MOTION ADAPTER BETA) with

prompt “A tranquil waterfall in the middle of a dense forest, with beams of sunlight filtering through the trees
and birds singing in the branches”.

Figure 27: The synthesized video visualization of MODELSCOPE-T2V with prompt “Spiderman is surfing”.
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Figure 28: The synthesized video visualization of MODELSCOPE-T2V with prompt “Yellow and black tropical
fish dart through the sea”.

Figure 29: The synthesized video visualization of MODELSCOPE-T2V with prompt “An epic tornado attacking
above a glowing city at night”.

Figure 30: The synthesized video visualization of MODELSCOPE-T2V with prompt “Slow pan upward of
blazing oak fire in an indoor fireplace”.
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Figure 31: The synthesized video visualization of MODELSCOPE-T2V with prompt “a cat wearing sunglasses
and working as a lifeguard at pool”.

3 5 aif = I —— =i -

Figure 32: The synthesized video visualization of MODELSCOPE-T2V with prompt “A cybernetic samurai
standing on a mountain peak, with glowing neon armor, facing a setting sun”.

Figure 33: The synthesized video visualization of MODELSCOPE-T2V with prompt “A group of astronauts
playing soccer on Mars, with the Earth visible in the background”.
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