Combinative Matching for Geometric Shape Assembly

Supplementary Material

In this supplementary material, we present additional infor-
mation and analyses not included in the main paper. In Sec-
tion A, we provide further analysis of Combinative Match-
ing using a toy dataset as well as extended experimental re-
sults and analyses, including further analysis on learned de-
scriptors and orientations, as well as additional experimen-
tal results. In Section B, we detail the network architecture,
including equivariant feature extractor, orientation hypothe-
sizer, invariant feature computation, matching modules, and
training objectives. In Section C, we describe additional de-
tails on the training and evaluation recipes, including hyper-
parameter settings and the evaluation details for multi-part
assembly.

A. Additional Experimental Results
A.l. Results on Vanilla Breaking Bad Dataset

Since all our experiments were conducted on the volume-
constrained version of the Breaking Bad dataset [13],
we additionally provide a quantitative comparison on the
vanilla version of the Breaking Bad dataset for a fair com-
parison with prior methods.
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(Ours) 46.0 143 52.6 9.8

Table Al. Multi-part assembly results on vanilla Breaking Bad
dataset [13]. Numbers in bold indicate the best performance and
underlined ones are the second best.

Table A1 shows that ours consistently achieves accurate
assembly, outperforming previous state-of-the-art methods.
The robustness of our approach is particularly evident
in cross-subset evaluation (everyday — artifact),
where the performance remains stable despite substantial
variations in object categories and fragment characteristics.

A.2. Further Analysis on Combinative Matching

In this section, we provide deep, but intuitive analyses of
our combinative matching, highlighting the necessity of ex-
plicit occupancy learning for robust shape assembly. To
illustrate its significance, we build a synthetic dataset that
highlights the critical role of occupancy learning, particu-
larly in scenarios with ambiguous geometric patterns, e.g.,
visual resemblance shown in Fig. Al.

A.2.1. Toy dataset with local ambiguity
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Figure Al. Example of potential failure assemblies caused by vi-
sual ambiguity within matching.

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6
Figure A2. Six types of ambiguity pattern for toy dataset. 2D

polygons are further extruded to 3D meshes.

Ambiguity patterns. The synthetic dataset consists of six
carefully designed patterns, as shown in Fig. A2. These pat-
terns were deliberately crafted to ensure that correct assem-
bly depends primarily on recognizing occupancy and direc-
tionality rather than visual resemblance. We use pattern 1~3
for training, enabling the model to learn occupancy rela-
tionships and effectively mitigate visual ambiguities explic-
itly. Then patterns 4~6 are used to validate our assumption:
if the model successfully learns occupancy-based comple-
mentary relationships from the train set, it should inherently
generalize well to the visually analogous but structurally
different test patterns.

We generate 200 random objects of each pattern {1, 2,
3} for training, 50 objects of each for validation, and 50



objects of each pattern {4, 5, 6} for testing. Although each
pattern retains its pattern structure, small shape variations
are introduced randomly.

A.2.2. Experiments
CRD]| CDJ| RMSER)) RMSE()]
Method | (152 103 () (10-2)
Jigsaw [7] 17.64 6.95 84.98 24.81
PMTR [5] 16.01 6.01 70.13 15.70
Ours 9.24 2.07 55.29 13.40

Table A2. Pairwise shape assembly results on toy dataset.

Shape Occupancy | CRD] CDJ] RMSER)] RMSE()|

Matching ~ Matching | (1072) (107%) (©) (1072)
v 11.95 3.92 66.90 17.06
v v 9.24 2.07 55.29 13.40

Table A3. Ablation study on matching strategy.

Table A2 compares our method against recent state-of-
the-art methods, e.g., Jigsaw [7] and PMTR [5], on the syn-
thetic dataset. In particular, both Jigsaw [7] and PMTR [5]
show limited performance when tackling parts that exhibit
visually similar but occupancy-opposed surfaces. By con-
trast, our method enforces a direct contrast in volume occu-
pancy alongside shape similarity, thereby achieving robust,
interlocking matches and significantly improving alignment
accuracy across all metrics.

Ablation Study. In addition to comparing against exist-
ing methods, we validate the effect of explicit occupancy
matching by ablating our framework. Table A3 reports the
performance when removing the occupancy branch and re-
lying solely on shape-based similarity. This confirms that
identifying visually similar surfaces alone is not sufficient:
opposite volume occupancy must also be enforced to pre-
vent misleading matches arising from superficially alike
shapes.

Pattern 5 Pattern 4
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Jigsaw Ours Ours
(primal-dual)  (w/o volume occupancy
matching)

Figure A3. Visualization of top-k matches (k = 128). Positive
matches are colored in green, while negative matches are colored
in red.

it segments mating surfaces or not, the improvements over
a naive approach remain marginal. In several cases, primal-
dual matching even underperforms single matching, indi-
cating that the method struggles to capture a genuine com-
plementary relationship (i.e., opposing occupancy). We ad-
ditionally provide ground-truth surface masks (GT) as a fur-
ther upper bound, yet still see little gain from dual learning.
Visualization result of top-k matches in Fig. A3 corroborate
this: the two-stream descriptor alone does not robustly re-
ject visually deceptive matches, confirming that an explicit
“identical shape + opposite occupancy” objectives are key
to resolving ambiguous interfaces.
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Segmentation Type (1072)  (1073) ©) (1072) Matcher Matcher | (107%) (107°) ©) (107°)
single 1724 748 87.84 21.84 PMT - 1580 555 71.91 14.31
primal-dual | 17.80  6.74 87.47 23.17 PMT PMT 16.01 6.01 70.13 15.70
v single 17.19 7.29 89.06 21.68
primal-dual | 17.64  6.95 84.98 24.81 Table AS. Ablation study on the feature matcher in PMTR [5].
or single 12.88  4.63 71.10 10.89
primal-dual | 13.04  5.63 72.04 11.98

Table A4. Ablation study on surface segmentation and primal-dual
matching modules in Jigsaw [7].

Discussion on Jigsaw [7]. Jigsaw [7] applies a primal-
dual descriptor specifically to the predicted mating surfaces,
aiming to distinguish convex regions from concave ones.
However, Table A4 shows that whether Jigsaw uses single-
descriptor or primal-dual streams, and regardless of whether

Discussion on PMTR [5]. As shown in Tab. A5, whether
PMTR employs only a coarse matcher (PMT) or includes
an additional fine matcher, both settings still struggle to
address patterns demanding explicit occupancy opposition.
While fine matching often helps localize small-scale inter-
faces in standard registration tasks, here it does not sub-
stantially alleviate the core limitation of PMTR’s design:
maximizing only identical surface shape similarity. With-
out negatively enforcing “occupancy,” the method remains
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Figure A4. Additional visualization of correlation distribution.
A green dot (e) on the left point cloud marks the source’s i-th
point, with corresponding true match points marked with green
dots and arrows. Point colors represent correlation score magni-
tudes for the ¢-th point’s similarity to each target point, with red
and blue indicating high and low correlation scores, respectively.

prone to errors on visually alike yet geometrically mis-
matched parts.

A.3. Additional orientation analysis

As discussed in our main paper (Fig. 4 in Sec. 4.3), the
learned orientations, Fg and FdQ, exhibit several notable
patterns that enable the model to effectively align mating
surface along with high interpretability. To further analyze
these learned patterns across various examples, we provide
additional visualizations of learned orientation under the
same experimental setups described in Sec. 4.3.

Figure A5 presents the results for six distinct objects,
again showcasing consistent patterns: (1) parallel align-
ment of source and target orientations (x; and y;), (2) x;
directed toward the center of mating surfaces, (3) parallel
alignment of x; with 2D plane of mating surfaces, (4) out-

ward/inward directed y; based on convexity/concavity, and
(5) correlation between magnitudes of y; and surface curva-
ture. These patterns highlight the robustness and adaptabil-
ity of our method in learning valid orientations that respect
the geometry and complementarity of mating surfaces with-
out any explicit supervision, verifying both the effectiveness
and interpretability of the proposed combinative matching.

A.4. Additional correlation heatmap analysis

As in Fig. 5 of Sec. 4.3, we compare the correlation matri-
ces for shape Cs, occupancy C,, and combined correlation
C of additional examples to further validate the efficacy of
the proposed combinative matching approach over the con-
ventional matching. Following the same experimental setup
described Sec. 4.3 of the main paper, Fig. A4 illustrates the
comparison, where we observe similar phenomena to those
presented in the main paper.

When relying solely on the shape distribution (Cj);, the
best target match for the i-th source point is distributed
over multiple regions due to local ambiguity of visual re-
semblance. The occupancy distribution (C,); reveals rel-
atively uniform scores across the surface, with a slightly
higher concentration near the true match, offering comple-
mentary information but lacking precise localization. In-
tegrating shape and occupancy information effectively re-
solves both local ambiguity and match confidence uncer-
tainty, highlighting the importance of task-oriented multiple
representation learning in combinative matching.

A.5. Additional qualitative results

We provide additional qualitative comparisons against re-
cent state-of-the-art methods [5, 7, 9, 18] on the Breaking
Bad dataset. Figures A9 and A10 illustrate the compari-
son results in pairwise and multi-part settings, respectively.
From the baselines, several notable patterns emerge: (1)
Failure in localizing mating surfaces: The baselines lack
an understanding of local orientations and occupancy on
the mating surfaces. This results in incorrect placement of
parts, which are often located in the air rather than at the in-
terfaces of their corresponding parts. Examples of this fail-
ure include (a,c,d,e,f,h,i,j,k,n)-Wu et al. [18], (c,d,f,g,h,i,k)-
Jigsaw [7], and (d,g)-PMTR [5] as shown in Fig. A10.

(2) Failure in establishing correct correspondence:
While some methods perform decent localization of mating
surfaces in pairwise assembly, they often fail to establish ac-
curate correspondences due to local ambiguities, thus lead-
ing to incorrect assembly configurations such as reversed
or overlapping parts. Specific examples of this issue are
(d,g,h,k)-GeoTr [9], (b,i,m)-Jigsaw [7], and (a,c,e,f,h,j,k)-
PMTR [5], as observed in Fig. A9. These observations
highlight critical challenges faced by existing methods in
both accurate interface localization and resolving ambigui-
ties during assembly. By addressing these issues, we show
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Figure AS5. Additional visualization of learned orientations. We visualize learned orientations (in R®) of {x; }iez (left, red arrows) and
{yi}iez (middle, green arrows). The assembly results are shown on the right.

that the proposed combinative matching demonstrates supe-
rior quantitative and qualitative results in both pairwise and
multi-part scenarios.

B. Additional Network Details

In this section, we provide the details of the network com-
ponents that were omitted in the main paper for brevity.

B.1. Equivariant feature extractor

For our backbone network fynn, we adopt Vector Neuron
Network (VNN) [2], which represents neurons as 3D vec-
tors, i.e., (Feqv)ﬁ j € R3 for all 4, j. This representation en-
ables the network to handle SO(3) transformations directly,
preserving consistent local feature orientations. Specifi-
cally, for any given input feature F, each i-th layer fiyy of
the network satisfies the following property: finn(FR) =
Jinn(F)R where R € SO(3) [2]. To enhance the gen-
eral context learning capabilities of the network, we modify
the original VN-DGCNN [2, 15] architecture to broaden the
receptive field of the features Feqy by redesigning the net-
work into a U-shaped architecture, as illustrated in Fig. A6.
For downsampling and upsampling of the features in the
process, we utilize the TransitionDown and TransitionUp
modules, similar to the approach in [19]. This modification
allows for an efficient contextual feature extraction while

preserving the rotational equivariance property.

B.2. Orientation hypothesizer

The backbone output Feq, € RE*P>3 is processed through
an orientation hypothesizer fuy, to provide orientations such
that fuyp(Feqv) = Fa € RE*3%3. The hypothesizer con-
tains a VN-Linear [2] layer that reduces the channel di-
mension of the input features from D to 2, producing two
vectors of size RE*2%3 where these two vectors, for each
point, represent candidate orientations for the x-axis and y-
axis, respectively. To ensure these vectors form a valid ori-
entation basis, we apply the Gram-Schmidt process: First,
we compute the 2D plane spanned by the two vectors and
adjust the y-axis vector to ensure it is orthogonal to the other
x-axis vector within this plane. Next, we calculate a third
vector orthogonal to the 2D plane, resulting in a complete
orthonormal basis. Finally, we apply L2 normalization to
these vectors, ensuring that each (Fy); € SO(3) for all i,
representing a valid 3D rotation matrix for each point. Note
that this Gram-Schmidt process is rotation-equivariant, i.e.,
foyp(FeqwR) = foyp(Feqv)R for any R € SO(3), as dis-
cussed by Luo et al. [8].
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Figure A6. Overall framework of our U-shaped equivariant feature extractor.
B.3. Invariant feature computation Layer ‘ Shape Matcher Occupancy Matcher
Given the equivariant network fynn which satisfies . C;’HVID(I;I)B 75?21)2) CIOH"lD(lIgB —(2521)2)
. nstanceNorm nstanceNorm
fVNI\{(XR) = fVNN(X)II}X gor any rot.atlons R € SQ(3) LeakyReLU LeakyReLU
and input points X € R , along with the hypothesizer
fnyp» We aim to define a function f;,, that provides invariant ConviD(512 = 512)  ConvID(312 = 512)
hyp- KX 3D Sy b . 2 InstanceNorm(512) InstanceNorm(512)
features F,, € R™*°", satisfying the following property: LeakyReLU LeakyReLU
) _r Y ConvlD(512 — 512) ConvlD(512 — 512)
Jiny (X) =/ ‘“V(XR) = Finy, ey 3 InstanceNorm(512) InstanceNorm(512)
LeakyReLU Tanh

for any rotation matrix R. To achieve this, we define finy
as the dot product between the equivariant features and the
hypothesized orientations:

finv(Xi) = (Feqv)i : (Fd);ra (2)

foralli € {1,..., K}, where (Feqy); represents the equiv-
ariant features output by fynn and (Fy); represents the hy-
pothesized orientations output by fyp. The invariance prop-
erty of fi,y can be verified through the following proof:

fin(XiR) = funn(XR) - (fgp (An(XiR)) T (3)
= (fynn(Xo)R) - (fgp (foan(X))R) T
= funn(X)RRT (fuyp (Fyn(X2))) T
= JFunn (X5) (figp (Fonn(Xi))) T
= (Fqu)i : (Fd)iT
= finn(Xi)-

Thus, finy is provably invariant to rotations, making Fi,,
suitable for the subsequent tasks requiring rotational invari-
ance, such as shape and occupancy matching.

B.4. Shape and occupancy matcher

In Tab. A6, we tabularize the components of each layer
for shape and occupancy matchers. Each matcher consists
of a three-layer MLP, where each layer includes a linear
transformation followed by normalization and activation.
The key difference between shape and occupancy match-
ers lies in the activation function used in the final layer:
LeakyReL U is used for the shape matcher to allow the shape
correlation matrix C; to have a wider range of values, cap-
turing large variations in shape similarity. In contrast, Tanh

Table A6. Components of the shape and occupancy matchers.

is employed for the occupancy descriptors to constrain ex-
treme activations, ensuring that the occupancy correlation
matrix C, avoids overemphasizing noisy or outlier regions,
particularly those unrelated to occupancy learning, such as
non-mating surfaces.

Empirical observations, as shown in Fig. A4, indicate
that outliers occur more frequently in occupancy correla-
tions compared to shape correlations, with large occupancy
scores being more uniformly distributed across surfaces,
whereas shape scores are more localized and structured. Al-
lowing large variations in Cg, therefore, ensures that dom-
inant shape features are captured (introducing local ambi-
guity), while controlling C, prevents outliers or irrelevant
regions from skewing the overall correlation (resolving the
ambiguity), resulting in more reliable correlations C.
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Figure A7. Pipeline for soft-attention generation.

When generating shape and occupancy descriptors, we
dynamically adjust the importance of feature channels us-
ing soft-channel attention, inspired by SENet [3]. As il-
lustrated in Fig. A7, we first concatenate the pair of invari-



ant features along the spatial dimension and apply average-
pooling and max-pooling. The pooled outputs are passed
to two shared MLPs followed by a sigmoid activation to
compute channel-wise statistics, which serve as the soft-
attention values for the shape and occupancy descriptors.
The output A is divided by two along the channel dimen-
sion to produce A and A,, the soft attention weights for
the shape and occupancy descriptors, respectively, each of
which weights the feature channels to enhance relevant in-
formation for each descriptor as in [3].

B.S. Details on training objectives

Circle loss [14]. In the definition of circle loss provided in
the main paper, we omit hyperparameter ~y used in the origi-
nal circle loss formulation, for brevity in our demonstration.
The definition of Lje is formulated as

3 eV (Ba—e™h)?

ke&n(i)

(oM —a,)?
Z_MNEI log Z e »
J€&(@)

4)

where y scales the sharpness of the exponential terms, am-
plifying or reducing the emphasis on outliers and enabling
more stable training and ¢* computes similarity or dissim-
ilarity between a pair of given features.

Point matching loss [10]. We now detail the point match-
ing loss £, which is jointly used alongside the combina-
tive matching objectives. The point matching loss is a neg-
ative log-likelihood loss on predicted match probabilities
Z € RINHDX(M+1) " the dual-normalized assignment ma-
trix with dustbin, the output from the Optimal Transport
layer [10]. Given a set of ground-truth correspondences
C, and the sets of unmatched points, (ZF) = {z : = €
[N]Ax ¢ ZP} and (Z9) = {x : x € [M] Az ¢ T?} where

[K] ={1,..., K}, the point matching loss is defined as
Z IOg Zi,j
(i,5)eC
— > logZinsr— Y, logZnii,  (5)
1€(ZP) JE(ZQ)

which enforces the predicted match probabilities to align
closely with the ground-truth matches, ensuring accurate
point-to-point correspondence.

C. Details on Training and Evaluation Setup

C.1. Hyperparameter setup

To determine positive matches between mating surfaces, the
distance threshold was set to 7 = 0.018. For the circle
loss [14], we used margin hyperparameters A, = 0.1 and
A,, = 1.4, along with a scale factor v = 24. The channel

sizes for the equivariant feature embedding, shape descrip-
tor, and occupancy descriptor are setto D = 341, dy = 512,
and d, = 512, respectively. We use the normalization con-
stant Z = /512 to construct the cost matrix C.

C.2. Multi-part assembly details

Following the approach of Lee et al. [5], we extend our pair-
wise matching framework to handle multi-part assembly in
a consistent manner. Specifically, our method first learns
local pairwise compatibilities between part pairs through
pairwise matching, and then estimates globally consistent
poses via pose graph optimization.

Learning Pairwise Compatibility. = We construct 2-
part training pairs from all objects in the Breaking Bad
dataset [13], where each object consists of 2 to 20 parts.
Specifically, for each training sample, we randomly select a
source part and choose as its farget part the one that shares
the largest ground-truth mating surface area with it. We
train the network for 350 epochs on the everyday subset
and 300 epochs on the artifact subset, using the same
model configurations (e.g., hyperparameters) as in the pair-
wise setup. This training is intended to allow the model to
learn local pairwise compatibilities, which are subsequently
utilized during global optimization in the multi-part setting.

Inference & Pose-Graph Optimization. Given an N-part
object at the inference time, we first predict relative poses
for all (N ) part pairs to construct a fully Connected pose
graph, as illustrated in Fig. A8. y

In the pose graph, each part P; , /""\ —
(with ¢ = 1,...,N) becomes a node, f, -
and each weighted edge carries a pair- A -

wise relative pose T;; = {Ry;,t;;} % 7 ’ b

along with its information matrix I;; = Figure A8.

T Pose graph

P; | Pj| (i5) grap
(Z‘ | Z 21 exp(Zp,q )) - Ig, where example.

Z(9) ¢ RIPIXIPi] denotes the soft assignment matrix be-
tween parts F; and P;, obtained via Optimal Transport [10].

To reduce noise and eliminate unreliable matches, we
prune all outgoing edges except the one with the highest
matchability score for each node. We then recover global
poses (R, t;) via Shonan Averaging [1], with the largest
part set as an anchor, similar to [5, 7].
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