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Overcoming Spatial-Temporal Catastrophic Forgetting for
Federated Class-Incremental Learning
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ABSTRACT
This paper delves into federated class-incremental learning (FCiL),
where new classes appear continually or even privately to local
clients. However, existing FCiL methods suffer from the problem
of spatial-temporal catastrophic forgetting, i.e., forgetting the pre-
viously learned knowledge over time and the client-specific infor-
mation owned by different clients. Additionally, private class and
knowledge heterogeneity amongst local clients further exacerbate
spatial-temporal forgetting, making FCiL challenging to apply. To
address these issues, we propose Federated Class-specific Binary
Classifier (FedCBC), an innovative approach to transferring and
fusing knowledge across both temporal and spatial perspectives.
FedCBC consists of two novel components: (1) continual person-
alization that distills previous knowledge from a global model to
multiple local models, and (2) selective knowledge fusion that en-
hances knowledge integration of the same class from divergent
clients and shares private knowledge with other clients. Exten-
sive experiments using three newly-formulated metrics (termed
GA, KRS, and KRT) demonstrate the effectiveness of the proposed
approach.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms.

KEYWORDS
Federated Continual Learning, Spatial-Temporal Catastrophic For-
getting

1 INTRODUCTION
Federated Continual Learning (FCL) is a novel yet non-trivial re-
search topic that bridges Federated Learning (FL) and Continual
Learning (CL), aiming at building a federated model to collabo-
ratively learn a sequence (possibly never-ending) of tasks. Most
existing FCL methods aim to integrate CL techniques into FL to
enhance the practicality of FL [3, 11, 34, 36]. However, these meth-
ods suffer from a fundamental challenge, namely, spatial-temporal
catastrophic forgetting. We will expatiate this challenge shortly.

In practice, the data collected by each client is usually different
and heterogeneous [38]. For instance, a federated system of world-
wide zoos would tackle different types of data. A desert wildlife
monitoring station could have data about camels, and an oceanic
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Figure 1: An illustration example of Federated Class-
Incremental Learning in real-world application, where each
client needs to tackle a sequence of tasks, and each client has
access to their private classes. For the pipeline, each client
possesses a subset of private classes specific to itself. After
completing the training on tasks with the same sequence
number, the server will collect local models with knowledge
of different classes and create a more powerful global model.
Subsequently, the clients receive the global model and con-
tinue training on the remaining tasks based on the model
they have received.

monitoring station might have data about whales. We use the term
“private class” to describe the classes that can only be accessed by
one client. For us humans, we can gain indirect experience from
others, acquiring knowledge that we haven’t personally experi-
enced. After learning the appearance of a tiger from the teacher, a
child can easily identify it, even though he has never seen it before.
It is seemingly easy for humans to adopt knowledge from others.
However, it is extremely hard for a deep learning model to fuse
heterogeneous knowledge from different clients training on different
datasets, leading to severe spatial-temporal catastrophic forgetting
[13, 27, 33].

What’s more, knowledge acquired from others may conflict with
one’s existing knowledge [1]. Such a conflict will also happen in
FCL. Human knowledge exchange occurs through communication.
However, in FCL, knowledge exchange is accomplished through
the aggregation of local models and the distribution of the global
model. The knowledge of a model is often represented by param-
eters. Learning on heterogeneous data results in heterogeneous
models. The more different the data, the greater the parameter
divergence. Aggregating heterogeneous local models can lead to
critical parameters for certain local tasks being overwritten, caus-
ing spatial catastrophic forgetting, i.e., poor performance on local

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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test sets [18, 19, 38]. When the aggregated global model is dis-
tributed to clients and used as a base model to continually learn
new tasks, the important parameters of the previous task have been
further rewritten [22], known as temporal catastrophic forgetting.
Spatial-temporal catastrophic forgetting impedes traditional FL or
CL techniques for FCL. The presence of private classes intensifies
the heterogeneity among clients, making the fusion of local knowl-
edge challenging and exacerbating spatial-temporal catastrophic
forgetting [7, 39]. Existing research in FCL completely ignores the
potential impacts of private classes. Moreover, they fail to solve
spatial-temporal catastrophic forgetting, a fundamental challenge
in FCL.

To thoroughly investigate the spatial-temporal catastrophic for-
getting in FCiL under extremely imbalanced class distributions, we
considered an real-world application setting, as illustrated in Fig. 1.
In this problem, each client needs to continually tackle its training
data, and the classes of these data also increase over time. Each
client encounters different classes, including both public classes
and private classes. Clients upload their direct experience to the
server and receive indirect experience from other clients. In this
way, clients continually gain the capability to recognize classes they
have never observed before but are observed by other clients. The
FCiL has two main objectives: the first is to ensure that local models
do not forget the knowledge of old classes while learning new ones,
which refers to overcoming temporal catastrophic forgetting. The
second is to enable the global model to recognize all the classes
encountered across all clients, addressing the problem of spatial
catastrophic forgetting. To the best knowledge, we are the first to
deal with such a problem.

To address these issues, in this work, we propose a novel frame-
work called Federated Class-specific Binary Classifier (FedCBC),
which effectively overcomes spatial-temporal catastrophic forget-
ting in FCiL. Generally, we introduce the concept of anomaly de-
tection [32] for classification as a promising strategy. To be more
specific, we construct a class-specific binary classifier for each
class, rather than the conventional deep neural network approach.
Moreover, our approach allows for the fusion of relevant knowl-
edge while excluding conflicting knowledge. On the server side, we
realize selective knowledge fusion, enhancing the generalization
performance of the global model and mitigating spatial and tempo-
ral catastrophic forgetting. On the client side, we utilize the global
model to generate previous data and add to the new task’s dataset,
thereby overcoming temporal catastrophic forgetting. Addition-
ally, we employ the global model as a teacher model to perform
knowledge distillation on the local model. Compared to several
recent baseline methods, our approach achieves state-of-the-art
performance in terms of average accuracy on various benchmark
datasets. Moreover, we design three new metrics to evaluate the
performance of models in this setting. The contributions of this
paper are summarized as follows:
• We define a fundamental challenge in FCL, referred to as spatial-
temporal catastrophic forgetting. In addition, we introduce a
novel scenario, in which every client is required to perform class-
incremental learning, and each client possesses private classes
that are exclusively accessible to them, with no data from these
classes ever being available to others.

• We propose a novel framework called FedCBC to address both
spatial and temporal catastrophic forgetting. Moreover, employ-
ing variational autoencoders helps prevent the leakage of raw
data, ensuring privacy and security. To our knowledge, the frame-
work we designed exhibits state-of-the-art average accuracy per-
formance in this problem domain.
• We design three new evaluation metrics in terms of global ac-
curacy, spatial knowledge retention, and temporal knowledge
retention to measure the degree of heterogeneous knowledge
fusion and the level of spatial-temporal knowledge forgetting.
Experimental results on three datasets show the superior perfor-
mance of the proposed approach against baseline methods.

2 RELATEDWORK
2.1 Federated Class Incremental Learning
Federated Class-Incremental Learning (FCiL) is a newly emerging
research area, which focuses on overcoming catastrophic forget-
ting of previous tasks and data heterogeneity among clients jointly
[12, 23, 37]. FedLwF [31] addresses catastrophic forgetting by dis-
tilling the knowledge of past local models to current local models,
and addresses non-iid by distilling the general knowledge of global
models to local models. GLFC [5] designs a class-aware gradient
compensation loss to correct the imbalanced gradient propagation
of old classes and a class-semantic relation distillation loss to keep
inter-class relations consistent across tasks, and selects the best
global model iteratively for preserving old knowledge with a proxy
server. FedReconnaissance [11] treats the FCiL problem as main-
taining the knowledge of the superset of classes observed by all
clients and proposes to solve it with a prototypical network. AFCL
[29] performs a prototype aggregation and a modified federated
averaging aggregation on the server to overcome forgetting and
client drift jointly.

However, existing methods overlook a crucial challenge in FCL,
called spatial-temporal catastrophic forgetting. Additionally, they
equally disregard the challenges posed by aggregating heteroge-
neous models when each client possesses unique private classes.
Furthermore, these methods [5, 36] rely on storing a portion of old
samples, thereby compromising privacy-preserving protocols.

2.2 Variational Auto-Encoder in FL
Variational auto-encoders refer to a class of generative models that
aim to learn the probabilistic mapping between the data space
and the representation latent space [14]. A typical VAE consists
of two main components: an encoder and a decoder. The encoder
maps input data into a probabilistic distribution in the latent space,
while the decoder, on the other hand, maps samples from the latent
space back to the data space [25]. The training objective of VAE
is to minimize the reconstruction error while regularizing the la-
tent space to follow a specific prior distribution. Instead of directly
learning the conditional distribution 𝑝 (𝑦 |x), a VAE-based genera-
tive classifier learns the joint distribution 𝑝 (x, 𝑦), which is factored
as 𝑝 (x|𝑦)𝑝 (𝑦), and to classify the samples via Bayes’ rule [17]. In
general, the application of VAE in federated learning is still limited,
and existing works mainly focus on mitigating the cross-model
covariate shift to address non-iid issues or detecting Byzantine
attacks. VIRTUAL [2] uses a hierarchical Bayesian network on both
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the client and server side, transfers posterior within the FL system,
and performs interference with variational methods. FedDNA [6]
decouples gradient parameters and statistical parameters to reduce
the divergence between the global model and local models. FREPD
[8] uses VAE to compute the reconstruction error of local updates
to detect and defend against malicious attacks. ss In this paper, we
innovatively combine VAEs with binary classifiers, utilizing the
reconstruction loss of samples to serve as a class-specific binary
classifier to mitigate the spatial forgetting of the global model, i.e.,
non-IID issues, and achieve continual personalization of local mod-
els. Continual personalization aims to ensure that, in the iterative
federated training process, the clients do not underfit their private
classes, even if private class samples are only accessed by the client
itself and are non-dominant in quantity.

3 PROBLEM STATEMENT
3.1 Federated Class-Incremental learning
In traditional FL [20, 35], there are 𝑎 clients A = {𝐴1, . . . , 𝐴𝑎}
and one central server 𝑆 . And each client {𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑎} only
has access to its own data D𝑖 due to privacy concerns. Basically,
one communication round should contain three steps: 1) Server 𝑆
distributes the initial model or the global model from the last round
to clients, 2) Client 𝐴𝑖 would use its private data D𝑖 to train its
local model𝑀𝑖 based on the model from the server, and 3) Server
collects local models {𝜃1, . . . , 𝜃𝑎} then aggregates them to update
the global model. The performance of the final global model should
be very close to the performance of a centralized trained model
[24].

We now extend the traditional FL to the class-imbalanced FCiL.
• Given 𝑎 clients (denoted as A = {𝐴1, 𝐴2, . . . , 𝐴𝑎}), and a central
server (denoted as 𝑆), each client {𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑎} has its unique
task sequence T𝑖 , which can differ significantly from one client to
another. Suppose a set of public classes (denoted as C𝑝𝑢𝑏 ) is acces-
sible to all clients, and each client𝐴𝑖 has its private class set C𝑝𝑟𝑖 .
The primary objective of the local model 𝜃𝑖 is to incrementally
learn to discriminate classes from the set C𝑖 = {C𝑝𝑟𝑖 ∪ C𝑝𝑢𝑏 }.
• The task sequence of client𝐴𝑖 is denoted asT𝑖 = {𝑇 1

𝑖
,𝑇 2
𝑖
, . . . ,𝑇

𝑛𝑖
𝑖
},

where 𝑛𝑖 represents the total number of tasks on client𝐴𝑖 . The 𝑘-
th task of T𝑖 contains

���C𝑘𝑖 ��� classes, and C𝑖 = {C1
𝑖
∪C2

𝑖
∪ . . . ,∪C𝑛𝑖

𝑖
}.

• At task 𝑟 , the global model 𝜃𝑟−1
𝑔 can distinguish

���C𝑟−1
𝑔

��� classes.
The server 𝑆 then distributes it back to clients. Client 𝐴𝑖 uses
𝜃𝑟−1
𝑔 as an initial model to train on its 𝑟 -th task 𝑇 𝑟

𝑖
. The local

model 𝜃𝑟
𝑖
should perform well in classifying classes from the set

{C𝑟−1
𝑔 ∪ C𝑟

𝑖
}.

• Finally, the server collects the local models from clients who
participate in FCL and obtains a new global model 𝜃𝑟𝑔 , which can
identify classes from the set C𝑟𝑔 = {C𝑟−1

𝑔 ∪ C𝑟1 ∪ C
𝑟
2 ∪ . . . ∪ C

𝑟
𝑐 }.

The goal of this setting is to end up with a global model that
has assimilated all the tasks’ knowledge acquired by individual
clients, avoiding temporal catastrophic forgetting from the incre-
mental local task progression and spatial catastrophic forgetting
from aggregating heterogeneous local models of distinct clients
(see Fig. 1).

3.2 Spatial-Temporal Catastrophic Forgetting
Catastrophic Forgetting is a fundamental challenge in CL, which
mainly refers to a phenomenon that a model would forget the
knowledge learned on old tasks when it is training on new tasks
[4]. The reason for catastrophic forgetting is that the well-learned
network parameters on the old tasks are overwritten during train-
ing on the new tasks [9]. In real-world applications, data is often
collected gradually and a pre-trained model would continually train
on the newly collected data for the new task requirements [28].

In the FCL setting, catastrophic forgetting exists as well. The
assumption of static datasets in conventional FL is impractical. In a
real-world scenario, data arrives at clients consecutively in the form
of task streams, causing temporal catastrophic forgetting. When
coming to the “aggregation" stage, the central server collects local
models and aggregates them into one global model. After that, the
server distributes the global model back to clients. Local models
are trained with different training data. Aggregating them leads to
the overwritten of certain task-specific crucial parameters, conse-
quently causing a decline in the performance of the global model
on local-specific tasks. Adopting the global model consolidated
such conflict knowledge exacerbates the temporal catastrophic
forgetting of each client itself previous tasks, especially for the
non-overlapped classes, i.e., private classes.

In a nutshell, temporal catastrophic forgetting is caused by the
unavailability of data in time. Spatial catastrophic forgetting is
caused by the inaccessibility of data in space. In FCiL, clients also
need to preserve the knowledge learned from previous tasks and
learn new knowledge on newly arrived tasks. On the other hand,
the server should achieve a selective knowledge fusion to maximize
the retention of local knowledge from different clients, especially
for the knowledge of those private classes.

4 PROPOSED METHOD: FEDCBC
In this section, we present the proposed method, i.e., Federated
Class-specific Binary Classifier (FedCBC), to overcome spatial-
temporal catastrophic forgetting, class privacy, and knowledge het-
erogeneity in FCiL. We firstly introduce binary classifiers for image
classification instead of the traditional discriminative classifier in
FCL. Specifically, on the client side, we construct a Class-specific Bi-
nary Classifier (see Section 4.1) for each class to determinewhether
a sample belongs to that class based on the reconstruction loss of
variational auto-encoder. Subsequently, due to this unique network
structure, it becomes easier to achieve Selective Knowledge Fusion
(see Section 4.2) at the server, avoiding spatial catastrophic forget-
ting. It also enables the knowledge of private classes to be shared
seamlessly between the server and clients. Finally, after receiving
the more generalized global model from the server, the clients pro-
ceed to perform Continual Personalization (see Section 4.3) locally.
This adaptation of the global model to local data distributions helps
prevent temporal catastrophic forgetting.

The overall framework of the proposed method is shown in Fig. 2
and the algorithm is summarized in Algorithm 1.

4.1 Class-specific Binary Classifier
When learning on a new task, the parameters of the network
trained on previous tasks are overwritten, which results in temporal
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Figure 2: An overview of the proposed FedCBC. Class-specific BCs are adopted to avoid temporal forgetting caused by learning
new classes. On the server, Selective Knowledge Fusion fuses knowledge of the same class from different clients, avoiding
spatial catastrophic forgetting due to the fusion of unrelated knowledge. It can also alleviate temporal catastrophic forgetting
by incorporating the global model from the last task into the process. On the client, Continual Personalization allows general
knowledge adapted to the local distribution, avoiding temporal catastrophic forgetting.

catastrophic forgetting. Furthermore, the overwritten parameters
also bring about an overfitting towards new classes. In a vanilla
class-incremental setting, the norms of weight vectors in the full-
connected layer for new classes tend to be larger, leading to network
mispredictions of samples from previous classes as new ones.

Based on the above analysis, it can be concluded that the key to
mitigating forgetting is to prevent interference among class knowl-
edge. To address this issue, we propose to use class-specific VAEs to
memorize the specialized knowledge of each class separately. We
start by training class-specific VAEs for each class on each client,
and preserve the class-wise knowledge in them. When we compute
the reconstruction loss with the original samples (features), they
become a kind of class-specific binary classifier. When encounter-
ing a new class, all we need is to train another classifier for the new
class, leaving the rest for previous classes unchanged.
Training Stage: A VAE model consists of two parts: an encoder 𝑞𝜙
and a decoder 𝑝𝜃 . The encoder 𝑞𝜙 maps the input 𝑥 to a posterior
distribution 𝑞𝜙 (𝑧 |𝑥), and the decoder 𝑝𝜃 is used to reconstruct
the input sample 𝑥 from the latent variable 𝑧. Moreover, the prior
distribution 𝑝𝑝𝑟𝑖𝑜𝑟 (𝑧) is typically assumed to follow a standard
normal distribution during the training process of a VAE, which is
defined as:

𝑞𝜙 (𝑧 |𝑥) = N(𝑧 |𝜇
(𝑥 )
𝜙

, 𝜎
(𝑥 )2
𝜙
), (1)

𝑝𝜃 (𝑥 |𝑧) = N(𝑥 |𝜇
(𝑧 )
𝜃
, 1), (2)

𝑝𝑝𝑟𝑖𝑜𝑟 (𝑧) = N(0, 1), (3)

where 𝜇 (𝑥 )
𝜙

and 𝜎 (𝑥 )
2

𝜙
are the output of the encoder, and 𝜇 (𝑧 )

𝜃
is the

output of the decoder.
The VAE models are trained by optimizing two parts. The first is

about the Kullback-Leibler divergence between𝑞𝜙 (𝑧 |𝑥) andN(0, 1).
The second part is the reconstruction loss. Formally, the lower

bound (or ELBO) is formulated as follows

LELBO (𝜽 , 𝝓; 𝒙) = 𝐸𝑞𝝓 (𝒛 |𝒙 )
[
log

𝑝𝜽 (𝒙, 𝒛)
𝑞𝝓 (𝒛 | 𝒙)

]
= 𝐸𝑞𝝓 (𝒛 |𝒙 ) [log 𝑝𝜽 (𝒙 | 𝒛)] − 𝐷𝐾𝐿

(
𝑞𝝓 (𝒛 | 𝒙)∥𝑝prior (𝒛)

)
.

(4)

Therefore, the whole training stage can be summarized as a loss
function:

L𝑙𝑜𝑠𝑠 = (1−𝛼)∗𝐷𝐾𝐿 (N (𝜇
(𝑥 )
𝜙

, 𝜎
(𝑥 )2
𝜙
) |N (0, 1))+𝛼∗𝑀𝑆𝐸 (𝑥, 𝑥 ′). (5)

Prediction Stage: After the training stage, each client has a set
of VAEs containing class-specific knowledge. The class-specific
knowledge is stored locally in the form of key-value pairs, where
the key is the class name and the value is VAE.

When it comes to the prediction stage, the test sample 𝑥 would go
through all the VAEs and generate 𝑣 samples, where 𝑣 represents the
number of VAEs. And the one that has the smallest reconstruction
loss is the prediction class. In summary, the classification is done
using:

𝑦𝑥 = arg min
𝑦∈C

𝑀𝑆𝐸 (𝑥, 𝑥 ′𝑦), (6)

where C denotes the entire class set and 𝑥 ′𝑦 is the reconstruct sample
from the VAE of class 𝑦.

4.2 Selective Knowledge Fusion
Spatial catastrophic forgetting is caused by the aggregation of het-
erogeneous local models. Due to variations in data distribution
and classes, each local model acquires distinct knowledge. Simul-
taneously, the inexplicability of deep neural networks results in
the entanglement of class-specific knowledge within the network,
making it difficult to isolate individual class knowledge. This results
in the overwriting of knowledge among classes within aggregate
models, subsequently causing the merged global model to perform
below expectations on local datasets.
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Algorithm 1: Proposed FedCBC Algorithm
Input: 𝑎 clients A = {𝐴𝑖 }𝑎𝑖=1 with their own task sequence

T𝑖 = {𝑇𝑛𝑖 }
𝑁
𝑛=1.

Output: Global models in the form of𝑀𝑁
𝑔 = {Class C𝑔 :

model 𝜃𝑁(𝑔,C𝑔 ) }.

1 Initialization;
2 while task number n ≤ N do
3 for each client 𝐴𝑖 , 1 ≤ i ≤ a do
4 {C𝑛

𝑖
: D𝑛C} ← GroupByClassLabel(𝑇𝑛

𝑖
);

5 for class c ∈ C𝑇
𝑛
𝑖

𝑖
do

6 if 𝜃𝑛−1
(𝑔,𝑐 ) is in𝑀

𝑛−1
𝑔 then

7 𝜃𝑛(𝑖,𝑐 ) ← ContPers(𝜃𝑛−1
(𝑔,𝑐 ) , D

𝑛
𝑐 );

8 else
9 𝜃𝑛(𝑖,𝑐 ) ← TrainLocalModel(D𝑛𝑐 );

10 Server aggregation:

11 C𝑛𝑔 = {C𝑇
𝑛
1

1 ∪ . . . ∪ C𝑇
𝑛
𝑎
𝑎 } ;

// Set of classes seen by all clients in the

𝑛-th task

12 for class c ∈ C𝑛𝑔 do
13 set an empty local model list𝑀𝑐 of class 𝑐;
14 if 𝜃𝑛−1

(𝑔,𝑐 ) is in𝑀
𝑛−1
𝑔 then

15 add 𝜃𝑛−1
(𝑔,𝑐 ) into𝑀𝑐 ;

16 if client 𝐴𝑖 has a model of c then
17 add 𝜃𝑛(𝑖,𝑐 ) into𝑀𝑐 ;
18 𝜃𝑛(𝑔,𝑐 ) ← SelectiveKnowledgeFusion(𝑀𝑐 );
19 add 𝜃𝑛(𝑔,𝑐 ) into𝑀

𝑛
𝑔 ;

20 Distribute𝑀𝑛
𝑔 to all clients.

In order to mitigate temporal-spatial forgetting, we introduced
selective knowledge fusion on the server side. The main idea is to
merge knowledge about the same class from different clients, along
with the integration of past knowledge. Since the class-wise knowl-
edge is stored separately in different VAEs, the selective knowledge
fusion process is straightforward by simply consolidating the lists
of key-value pairs uploaded from clients. Specifically, the server
will group the model key-value pairs collected from various clients
based on their class names. That is, the VAEs of the same class while
from different clients are grouped together and fused separately.
Such an approach by preventing the merging of unrelated knowl-
edge is useful to avoid spatial catastrophic forgetting, especially
when the data distribution is extremely Non-IID. Furthermore, if
there is already a global model of the same class from the previous
round, it can be also included in the group for selective knowledge
integration. It is still helpful for alleviating temporal catastrophic
forgetting.

In the FCiL setting, the client’s dataset consists of two types of
data: samples from public classes and samples from private classes.
Private classes refer to those classes that only the respective client
has access to throughout the entire training process. Aggregation
enables clients to acquire knowledge about private classes from

other clients, granting them the capability to identify classes they
have never encountered before. This approach avoids direct data
sharing and prevents privacy.

Public Class: Public class implies that multiple clients possess
training data for this class and upload related models. Therefore,
within this group, there will be multiple class-specific VAEs, includ-
ing the global model of the last round if it exists. In such groups, we
feed Gaussian noise data sampled from a normal distribution into
the decoder part of the VAE to generate pseudo-samples. While
these pseudo-samples belong to the same class, each VAE generates
samples with its own unique local characteristics, much like coffee
beans from different origins.

Subsequently, these pseudo-samples are used as a training set
for the next distillation step to generate a more generalized global
model. First, we initialize a new VAE as the global model of this
class, denoted as𝑀𝑔 . For the decoder part of𝑀𝑔 , the traditional MSE
loss is used to train its reconstruction ability. And for the encoder
part, there’s something different about the training process. We
consider the other local VAEs as teacher models, while the global
VAE is the student model. The encoder of 𝑀𝑔 maps input 𝑥 to a
posterior distribution 𝑞𝑔

𝜙
(𝑧 |𝑥) = N(𝜇𝑔, 𝜎2

𝑔 ). Training the encoder
part involves reducing both the KL divergence between N(𝜇𝑔, 𝜎2

𝑔 )
and N(0, 1) and the KL divergence between N(𝜇𝑔, 𝜎2

𝑔 ) and the
average posterior distributions of other VAEs N(𝜇, 𝜎2). The final
loss function of this stage is formulated as:

L𝑘𝑑 = 𝛼 ∗𝑀𝑆𝐸 (𝑥, 𝑥 ′) + 𝛽 ∗ 𝐷𝐾𝐿 (N (𝜇𝑔, 𝜎2
𝑔 ) |N (0, 1)

+(1 − 𝛼 − 𝛽) ∗ 𝐷𝐾𝐿 (N (𝜇𝑔, 𝜎2
𝑔 ) |N (𝜇, 𝜎2)

(7)

where 𝛼 and 𝛽 are the hyperparameters. Finally, the generalized
global VAE is obtained.

Private Class: Private class means that there is only one local
VAE specific to that class within the group. A naive method for
private classes is to use this model directly as the global model. How-
ever, due to privacy concerns, this method is not feasible. Therefore,
we follow a similar approach for handling public classes, where the
local models and the previous round’s global model still rehearsal
samples. Afterward, these pseudo-samples are used as the training
set to train and distillate the global model. Once the global model
for a private class is trained, it will be distributed to the participat-
ing clients along with the models for other public classes. This way,
other clients gain the capability to identify classes they have never
encountered before, achieving knowledge sharing.

4.3 Continual Personalization
Following the selective knowledge fusion on the server side, all
global VAEs are distributed to the clients that just participated
in the aggregation process. For the classes they are familiar with,
clients will possess a more generalized VAE. Simultaneously, for
classes that they have not encountered themselves but others have,
clients will also have the capability to recognize them, as they have
received knowledge about these unknown classes from others.

Although the global model would be more generalized, the per-
formance on the local test set could still be worse than existing
local models [26]. Moreover, when learning new data about the old
classes, some knowledge may still be forgotten because of concept
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drift. Therefore, based on the idea of personalized FL [30], the global
model would only be used as a teacher model on the client side.
On the one hand, the global model rehearsals previous knowledge
samples and integrates them into newly collected data, thereby
curbing temporal catastrophic forgetting at the data level. On the
other hand, employing knowledge distillation limits the output of
local models, mitigating temporal catastrophic forgetting in terms
of model output.

5 EXPERIMENTS
5.1 Experiment Setup
Datasets. To evaluate the performance of our method, we use three
datasets: MNIST [16], CIFAR-10 [15] and CIFAR-100 [15] in our
experiments. In our setup, the federated system consists of three
clients and one central server, and each client possesses a sequence
of five unique tasks. Initially, we divide the data for each class into
three parts using a Dirichlet distribution to ensure that there is no
data overlap between clients. For MNIST and CIFAR-10, each client
exclusively owns two classes that were only accessible to itself and
not accessible to others. Therefore, all clients could only access
four classes. The data for each client’s tasks is randomly sampled
from these six classes, with three classes chosen for each task. For
CIFAR-100, we allow each client to have 25 private classes, resulting
in 25 common classes. Each task consists of 10 classes sampled from
both private and common classes, with no class overlap between
tasks.

Baselines. To have a comprehensive evaluation, we compared
our method with representative existing FCiL methods. The com-
pared methods include: (1) FedAvg [24], a standard approach for FL.
(2) FedAvg+EWC, integrating a regularization-based approach of
continual learning to the standard FL framework. (3) FedProx [21],
a well-known FL method aiming to address statistical heterogeneity.
(4) GLFC [5], a newest and famous FCiL method using multiple
complex components. (5) FedSpace [29], an asynchronous FCiL
method. For baseline algorithms, we employed ResNet-18 [10] as
the backbone network.

Implementation. The code of each method is implemented
in PyTorch. For the baseline algorithms, the employed classifica-
tion network is ResNet-18. We conducted experiments on each
dataset using three different random seeds (42, 1999, 2002) and
averaged the results. We set the number of global epochs as 5 and
the number of local epochs as 50. For CIFAR-10 and CIFAR-100,
we utilized 5% of the data of each class for pretraining the feature
extractor. The whole training process is performed sequentially on
an NVIDIA GPU RTX-3090. Our code is now anonymously hosted
at: https://anonymous.4open.science/r/FedAE-CDE7/.

5.2 Evaluation Metrics
Since spatial-temporal catastrophic forgetting is a novel challenge
that we first introduced, lacking measurements, we have designed
three different metrics to assess heterogeneous knowledge integra-
tion, temporal knowledge retention and spatial knowledge reten-
tion. All three metrics are designed based on accuracy.

Global accuracy. Specifically, it is the accuracy of the global
model testing on the test set of all classes. This metric is used to
measure the degree of heterogeneous knowledge fusion. Since each

client has some private classes, testing the aggregated global model
on a test set containing all classes can detect whether these unique
knowledge aspects have been preserved. For example, if only one
client’s model was trained on Apple images, and after aggregation,
the global model still performs well on an Apple test set, it indicates
that it has retained the unique knowledge about apples without
being overwritten. In short, it is used to evaluate the ability of the
global model to recognize all the classes encountered across all
clients.

Temporal knowledge retention.Weuse𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛
as measurement of forgetting. Temporal knowledge retention is
designed to measure the extent to which local models retain knowl-
edge of old tasks as they learn on the task sequence. 𝐴𝑐𝑐 (0,0)

𝑖
repre-

sents the accuracy of client 𝑖’s local model trained on the first task
testing on the test set of the first task. And 𝐴𝑐𝑐 (𝑟,0)

𝑖
represents the

accuracy of client 𝑖’s local model trained on the 𝑟 -th task testing on
the test set of the first task. The ratio of these two values provides
insight into how much knowledge the local model retains from the
first task when it has completed training on the 𝑟 -th task. Therefore,
the spatial catastrophic forgetting can be expressed in equation 8.

𝐾𝑅𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

𝐴𝑐𝑐
(𝑟,0)
𝑖

𝐴𝑐𝑐
(0,0)
𝑖

(8)

where 𝑁 represents the number of clients.
Spatial knowledge retention. Similarly, we can deduce the

expression form of spatial catastrophic forgetting in equation 9. This
metric is designed tomeasure howmuch local-specific knowledge is
retained by the aggregated global model. A smaller value indicates
that more local knowledge was overwritten during aggregation.

𝐾𝑅𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

𝐴𝑐𝑐
(𝑟,𝑟𝑖 )
𝑔

𝐴𝑐𝑐
(𝑟,𝑟 )
𝑖

(9)

where 𝐴𝑐𝑐 (𝑟,𝑟𝑖 )𝑔 is the accuracy of the global models on the 𝑟 -th
testset of client 𝑖 . And the global model is obtained by aggregating
the local models trained on the 𝑟 -th task from all the clients.

5.3 Experimental Results

Table 1: Average global accuracy on MNIST with 5 class-
incremental tasks each client.

Algorithm Task ID
1 2 3 4 5 Avg.

FedAvg[24] 16.38 27.25 29.29 29.78 23.69 25.28
FedAvg+EWC 10.06 9.53 10.30 10.06 10.08 10.01
FedProx[21] 14.81 10.57 14.99 13.08 10.22 12.73
GLFC[5] 53.56 55.99 51.24 65.66 51.46 55.58

FedSpace[29] 25.32 26.17 31.48 34.27 37.26 30.90

Ours (FedCBC) 64.90 77.17 85.86 87.46 90.01 81.08

In Table 1 to Table 3, we reported the accuracy after 5 global
epoch training each task and compared the performance with GLFC,
AFCL, FedSpace, FedProx, FedAvg and FedAvg+EWC. Under the
challenging restriction of federated private class incremental setup,

https://anonymous.4open.science/r/FedAE-CDE7
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Table 2: Average global accuracy on CIFAR-10 with 5 class-
incremental tasks each client.

Algorithm Task ID
1 2 3 4 5 Avg.

FedAvg[24] 20.25 16.71 24.57 24.29 23.79 21.92
FedAvg+EWC 10.00 10.00 10.00 9.78 10.03 9.96
FedProx[21] 16.27 10.18 10.39 12.33 12.64 12.36
GLFC[5] 41.55 43.59 38.60 44.54 45.02 42.66

FedSpace[29] 23.56 22.05 25.63 25.93 25.50 24.53

Ours (FedCBC) 45.94 55.76 58.86 61.36 67.74 57.93

Table 3: Average global accuracy on CIFAR-100 with 5 class-
incremental tasks each client.

Algorithm Task ID
1 2 3 4 5 Avg.

FedAvg[24] 1.45 1.52 1.63 1.67 1.28 1.51
FedAvg+EWC 0.86 1.00 1.00 1.00 1.00 0.97
FedProx[21] 1.39 1.00 1.00 1.00 1.03 1.08
GLFC[5] 9.27 9.91 11.37 10.63 10.97 10.43

FedSpace[29] 4.30 4.68 5.34 4.53 4.36 4.64

Ours(FedCBC) 13.24 19.17 23.35 26.48 29.35 22.32

FedAvg+EWC failed and showed the poorest performance on all
datasets, we believe that is due to the inapplicability of the EWC
method in class-incremental scenarios is the root cause. FedProx
was also below expectations. While it is used to address statistical
heterogeneity, obviously it cannot handle such a challenging prob-
lem. Although FedSpace and GLFC have made special provisions
for such highly Non-IID scenarios, experimental results indicate
that they still struggle to effectively integrate the knowledge of
heterogeneous local models.

From the results, we can see our method achieves 90.01% on
MNIST, 67.74% on CIFAR-10, and 29.35% on CIFAR-100, showing the
state-of-the-art performance of fusing heterogeneous local models.

In the following section (i.e., Sec. 5.4), we will evaluate each
method using new metrics, i.e., temporal knowledge retention and
spatial knowledge retention, to evaluate the resistance of spatial-
temporal catastrophic forgetting.

5.4 Ablation Studies
To validate the effectiveness of our proposed method in mitigating
both spatial and temporal catastrophic forgetting, we conducted
experiments along with baselines to test the preservation of spatial-
temporal knowledge. Additionally, we performed ablation experi-
ments on our method. Fig. 3 shows the spatial knowledge retention
of all methods on three datasets. In Fig. 3b and Fig. 3c, we notice
that after aggregation on the server, the global model performs
even better than the local models. It indicates our method is robust
to spatial catastrophic forgetting. However, the spatial knowledge
retention drops shapely when we remove the selective knowledge
fusion on the server side (Ours-w/oSKF ). It indicates this strategy
helps.

Fig. 4 shows the temporal knowledge retention of all methods,
which indicates the ability to migrate catastrophic forgetting in
time. When we removed the continual personalization on the local
side, the temporal knowledge retention would drop to around 90%
on the MNIST and CIFAR10. It is mainly determined by the model’s
architecture and is not heavily influenced by the mechanisms.

5.5 Communication Cost Analysis

Table 4: The Number of Parameters in different backbone
networks.

BackBone Number of Trainable Parameters

ResNet-18 11,306,804
Binary Classifier 361,728

Tab. 4 illustrates the number of parameters that need to be trained
in two different backbone networks. Compared to a ResNet-18 with
11,306,804 parameters, a single VAE only has 361,728 parameters (in
our experiment setting). So training a VAE is much less challenging
than a ResNet-18.

Furthermore, we set up one VAE module for each class. However,
due to the redundancy of neural networks, data of multiple classes
can be included in a single VAE module for classification, further
reducing communication overhead and storage space.

Although the storage space required by our method grows lin-
early with the number of classes when facing a large number of
class-labeled data, the increase in parameter count is tolerable com-
pared to its superior performance in overcoming catastrophic for-
getting in both spatial and temporal aspects.

5.6 Sensitivity & Privacy Analysis
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Figure 5: As 𝛼 increases, the quality of replayed fake samples
improves, enhancing the accuracy of the method but simul-
taneously reducing the security of privacy.

Fig. 5 shows the accuracy of our method as 𝛼 in Equ. 7varies. On
one hand, 𝛼 controls the quality of generated pseudo-samples by
regulating the weight of the MSE loss. On the other hand, 1 − 𝛼
controls the weight of the KL divergence between the true latent
distribution and the standard normal distribution. In other words,
higher𝛼 values indicate higher quality of generated pseudo-samples
and lower privacy protection. Conversely, lower 𝛼 values signify a
more distorted shift in the latent distribution, resulting in stronger
privacy protection.
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Figure 3: Spatial knowledge retention (Eq. 9). Note that, ‘Ours-w/oSKF’ refers to our method without selective knowledge fusion
on the server side. ‘Ours-w/oCP’ refers to our method without continual personalization on the client side.
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Figure 4: Temporal knowledge retention (Eq. 8).

Figure 6: Visualization of the pseudo-samples generated by
our method on MNIST. It demonstrates that our approach
can control the quality of the pseudo-samples by adjusting
the value of 𝛼 , thereby balancing the accuracy and privacy.

Fig. 6 shows the visualization of the generated pseudo-samples
on MNIST when 𝛼 = 10−3 and 𝛼 = 100. Clearly, when 𝛼 = 10−3,
the generated pseudo-samples are very blurry, resulting in the
lowest accuracy for FedCBC. However, when 𝛼 = 100, although the
generated pseudo-samples are clear and the accuracy is satisfactory,
privacy protection is not controlled. FedCBC can adjust the trade-off
between privacy security and performance by changing 𝛼

6 CONCLUSION
Federated Clsss-Incremental Learning (FCiL) is a novel yet non-
trivial research topic. This paper investigated a new and real-word

setting problem, where new classes appear continually to each
client and some classes are private to certain clients. Therefore, class
privacy emerging on certain clients and knowledge heterogeneity
coming from different clients are two basic challenges for this
problem. In addition, we discussed a significant challenge, referred
to as Spatial-Temporal Catastrophic Forgetting.

To address these challenges, we proposed a Federated Class-
specific Binary Classifier (FedCBC) approach. To evaluate the per-
formance of FedCBC and its ability to resist spatial-temporal cat-
astrophic forgetting, we designed three new metrics to measure
the ability to fuse heterogeneous knowledge and the preservation
of temporal and spatial knowledge. Experimental results on three
datasets showed that the proposed approach outperformed the
existing baseline methods markedly.

We are interested in its potential to inspire future research in
this domain. Our future work includes: 1) exploring more effective
technologies for heterogeneous knowledge fusion on the server
side, 2) considering additional constraints in FL, such as fairness
and robustness, and 3) further devising a holistic method to tackle
heterogeneous FCiL settings.
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