
1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A IMPLEMENTATION DETAILS
A.1 Datasets
In our experiments, we used three datasets.

MNIST [16] contains 60,000 training images and 10,000 testing
images for digits 0 to 9. Each digit has 50000 training and 10000
evaluation samples with the size 28 × 28.

CIFAR10 [15] is composed of 60,000 color images from 10 classes.
Each class has 50000 training and 10000 evaluation samples with
the size 32 × 32.

CIFAR100 [15] is composed of 60,000 color images from 100
classes. Each class has 500 training and 100 evaluation samples with
the size 32 × 32.

A.2 Experimental Settings
For the federated learning setting, there are three clients and one
central server in this system. In the beginning, for each dataset,
we split the data for each class into three parts using a Dirichlet
distribution to ensure that there is data overlap between clients. We
ensure that each client has at least 20% of the data for each class by
adjusting the scaling factor.

As for the continual learning setting, each client possesses a
sequence that consists of five different tasks. Thus, different tasks
would include different classes. For MNIST and CIFAR-10, each
client exclusively owns two classes that were only accessible to
itself and not accessible to others. Therefore, the number of public
classes is four. For CIFAR-100, we allow each client to have 25
private classes, resulting in 25 public classes. Each task consists of
10 classes sampled from both private and public classes, with no
class overlap between tasks.

In detail, forMNIST and CIFAR-10, we first randomly sample four
classes as public classes using different random seeds. Subsequently,
we randomly sample two classes from the remaining six classes for
each client as private classes. After that, each client owns data from
six classes, including four public classes and two private classes.
The data of each task is randomly sampled from these six classes,
with three classes chosen for each task. So there is an overlap of
classes between tasks.

As for CIFAR-100, we randomly select 25 classes out of the 100
classes as public classes, and the remaining classes are allocated to
each client as their private classes, with each client receiving 25
private classes. Afterward, each client concatenates their private
classes with the public classes, shuffles the order, and then selects
10 classes sequentially for their task’s data. With this processing,
there is no class overlap between tasks for each client.

On each dataset, we conducted experiments using three different
random seeds (42, 1999,2002) and averaged the results. We set the
number of global epochs to 5 and the number of local epochs to
50. We use an Adam optimizer whose initial learning rate is 0.001
to train all classification models, including baseline methods. The
batch size is 32 and each VAE needs to generate 100 pseudo-samples
during the selective knowledge fusion on the server side.

A.3 Comparsion Methods
Due to the novelty and complexity of the FCiLps scenario, no prior
work has explicitly adopted this setting. Therefore, for fair com-
parisons, we compare our FedAE with several traditional FL meth-
ods and conventional FCiL methods, including FedAvg [24], Fe-
dAvg+EWC, FedProx [21], GLFC [5], FedSpace [29], to validate
the effectiveness on the heterogeneous knowledge fusion of our pro-
posed FedAE framework. Besides, three novel metrics are employed
to evaluate the abilities of fusing heterogeneous knowledge and
resisting spatial-temporal catastrophic forgetting of other baseline
methods and our proposed FedAE method.

B OPTIMIZATION PIPELINE
The proposed algorithm is summarized in Algorithm 1. We now
further describe our optimization pipeline in detail. Starting from
the first incremental task, the first clients group their data of the
current task by class. Then, for each class that has appeared in this
task, the client establishes a VAE model dedicated to it, serving as
an anomaly detection module. If the client’s existing global models
already have a VAE related to this class, the global VAE will also
participate in training for continual personalization. The goal is to
personalize the generalized knowledge of this class from the global
VAE. If there is no existing global VAE for this class, then regular
VAE training will take place to train class-specific VAE.

After each client has established a VAE for each class, the server
will begin selective knowledge fusion. Firstly, the server performs
a union operation on the classes encountered by each client in
this round. This way, the server can determine which classes are
included in the client tasks for this round. Subsequently, for each
class, the server creates an empty list to store the local models of
this class. If the global model from the previous round includes a
model related to this class, it is also added to this list. Once all local
models and the global model from the previous round related to
that class are added to the list, the server will proceed with selective
knowledge fusion.

Firstly, all the decoders in this list will generate𝑛 pseudo-samples
based on Gaussian noise generated from a normal distribution.
Subsequently, these pseudo-samples are used as a training set for
the next distillation step to generate a more generalized global
model, see Sec. 4.2 for more detail. Once the global model of this
class is obtained, the server stores it in the form of the key-value
pair, in which the key is the class and the value is the global VAE.
When all the class is processed, the server distributes all the global
VAE to clients.

C EXPERIMENTS ON CIFAR-100 DATASET
Table 5 shows the accuracy of local models from clients when tested
on the current task’s test set after completing the training for the
current task. Table 6 shows the accuracy of the global model, gener-
ated by aggregating local models from the current task, on the local
test set. We can observe that after aggregation, the performance
of the global models for all baseline methods decreases compared
to the individual local models before aggregation, and it may even
drop to 0%. This indicates that these methods have all experienced
varying degrees of spatial catastrophic forgetting. Compared to the
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Table 5: The accuracy of local models trained on the current
task when tested on the same task.

Algorithm Task ID
1 2 3 4 5

FedAvg[24] 42.63 38.71 40.95 44.01 41.59
FedAvg+EWC 42.37 37.35 43.55 43.13 42.22
FedProx[21] 51.94 11.86 13.29 12.30 9.92
GLFC[5] 89.45 78.32 98.05 88.88 98.91

FedSpace[29] 58.75 49.92 52.45 49.49 50.08

Ours(FedAE) 61.94 57.99 61.54 58.77 56.97

Table 6: The accuracy of the global model testing on the local
testing set of current task.

Algorithm Task ID
1 2 3 4 5

FedAvg[24] 10.38 11.53 8.55 13.19 9.76
FedAvg+EWC 5.41 7.62 5.50 7.44 8.09
FedProx[21] 8.92 7.44 1.97 2.49 0.00
GLFC[5] 42.21 51.01 57.67 56.79 63.11

FedSpace[29] 22.19 24.46 20.75 25.34 23.06

Ours(FedAE) 65.16 62.94 65.93 62.77 62.00

accuracy of local model testing, our method shows an improve-
ment in the accuracy of the global model on the local test set after
aggregation. This indicates that our selective knowledge fusion

can combine and refine knowledge from different clients about the
same class, making the knowledge in the resulting global model
more generalized.

Table 7: The accuracy of local models trained on the current
task when tested on the first task.

Algorithm Task ID
1 2 3 4 5

FedAvg[24] 42.63 0.00 0.00 0.00 0.00
FedAvg+EWC 42.39 0.00 0.00 0.00 0.00
FedProx[21] 51.94 0.00 0.00 0.00 0.13
GLFC[5] 89.78 1.16 0.00 4.15 0.00

FedSpace[29] 58.75 0.00 0.00 0.00 0.00

Ours(FedAE) 62.12 61.77 62.23 61.59 61.64

Table 7 shows the accuracy of local models at different stages
when retroactively tested on the local test set of the first task. The
results in the first column refer to the accuracy testing on the first
test set using the local models trained on the first task. The re-
sults clearly show that all the baseline methods cannot alleviate the
temporal catastrophic forgetting caused by the class-incremental
tasks. Based on the experimental results, it is evident that all base-
line methods have not taken into account the temporal forgetting
caused by continual learning. Our method shows little to no decline
in accuracy, indicating strong resilience against forgetting caused
by class-incremental tasks.
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