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ABSTRACT

Meta continual learning algorithms seek to train a model when faced with sim-
ilar tasks observed in a sequential manner. Despite promising methodological
advancements, there is a lack of theoretical frameworks that enable analysis of
learning challenges such as generalization and catastrophic forgetting. To that
end, we develop a new theoretical approach for meta continual learning (MCL)
where we mathematically model the learning dynamics using dynamic program-
ming, and we establish conditions of optimality for the MCL problem. Moreover,
using the theoretical framework, we derive a new dynamic-programming-based
MCL method that adopts stochastic-gradient-driven alternating optimization to
balance generalization and catastrophic forgetting. We show that, on MCL bench-
mark data sets, our theoretically grounded method achieves accuracy better than
or comparable to that of existing state-of-the-art methods.

A APPENDIX -DERIVATION AND PROOFS

First we will derive our PDE. Additional details about the derivation can be found in Lewis et al.
(2012).

A.1 DERIVATION OF HAMILTON-JACOBI BELLMAN FOR THE META CONTINUAL LEARNING
SETTING

Let the optimal cost be given as

V ∗(t; θ̂(t)) = minθ̂(τ)∈Ω:t≤τ≤Γ

[ ∫ Γ

τ=t

J(τ ; θ̂(τ))d τ

]
. (1)

We split the interval [t,Γ] as [t, t+ ∆t], and [t+ ∆t,Γ]. With this split, we rewrite the cost function
as

V ∗(t; θ̂(t)) = minθ̂(τ)∈Ω:t≤τ≤Γ

[ ∫ t+∆t

τ=t

J(τ ; θ̂(τ))d τ

+

∫ Γ

τ=t+∆t

J(τ ; θ̂(τ))d τ

]
.

(2)

With V (t; θ̂(t)) =
∫ Γ

τ=t
J(τ ; θ̂(τ))d τ, note that

∫ Γ

τ=t+∆t
J(τ ; θ̂(τ))d τ is V at t + ∆t and can be

defined as V (t+ ∆t; θ̂(t+ ∆t)), which provides

V ∗(t; θ̂(t)) = minθ̂(τ)∈Ω:t≤τ≤Γ

[ ∫ t+∆t

τ=t

J(τ ; θ̂(τ))d τ

+V (t+ ∆t; θ̂(t+ ∆t))

]
.

(3)

Suppose now that all information for τ ≥ t + ∆t is known, and also suppose that all optimal
configurations of parameters are known. With this information, we can narrow our search to find
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just the optimal costs for the interval [t, t+ ∆t] and assume all the other costs are optimal.

V ∗(t; θ̂(t)) = minθ̂(τ)∈Ω:t≤τ≤t+∆t

[ ∫ t+∆t

τ=t

J(τ ; θ̂(τ))d τ

+V ∗(t+ ∆t; θ̂(t+ ∆t))

]
.

(4)

Now, the only parameters to be obtained are for the sequence t ≤ τ ≤ t+∆t.We must approximate
the V ∗(t + ∆t; θ̂(t + ∆t)) using the information provided in the interval [t, t + ∆t]. To do so, we
further simplify this framework by writing the first-order Taylor series expansion. However, V ∗(t+

∆t; θ̂(t + ∆t)) is a function of y(t), that is the model. Since y(t) is a function of (t,x(t), θ̂(t)),

all changes in y(t), can be summarized through (t,x(t), θ̂(t)). Therefore, we evaluate the Taylor
series around (t,x(t), θ̂(t)),

V ∗(t+ ∆t; θ̂(t+ ∆t)) = V ∗(t; θ̂(t)) +
(
V ∗t
)T

∆t

+
(
V ∗
θ̂(t)

)T
∆θ̂ +

(
V ∗x(t)

)T
∆x(t),

(5)

where we use the notation V ∗(.) to denote the partial derivative with respect to (.). For instance,

V ∗
θ̂(t)

= ∂V ∗((t;θ̂(t))

∂θ̂(t)
. Substituting into the original equation, we have

V ∗(t; θ̂(t)) = minθ̂(τ)∈Ω:t≤τ≤t+∆t

[ ∫ t+∆t

τ=t

J(τ ; θ̂(τ))d τ

+ V ∗(t; θ̂(t)) +
(
V ∗t
)T

∆t+
(
V ∗
θ̂(t)

)T
∆θ̂

+
(
V ∗x(t)

)T
∆x(t)

]
.

(6)

The terms V ∗(t; θ̂(t)) +
(
V ∗t
)T

∆t can be brought outside the minimization because they are inde-
pendent of τ , the sequence being selected. Therefore,

V ∗(t; θ̂(t)) = minθ̂(τ)∈Ω:t≤τ≤t+∆t

[ ∫ t+∆t

τ=t

J(τ ; θ̂(τ))d τ

+
(
V ∗
θ̂(t)

)T
∆θ̂ +

(
V ∗x(t)

)T
∆x(t)

]
+ V ∗(t; θ̂(t))

+
(
V ∗t
)T

∆t .

(7)

Upon cancellation of common terms we have

−
(
V ∗t
)T

∆t = minθ̂(τ)∈Ω:t≤τ≤t+∆t

[ ∫ t+∆t

τ=t

J(τ ; θ̂(τ))d τ

+
(
V ∗
θ̂(t)

)T
∆θ̂ +

(
V ∗x(t)

)T
∆x(t)

]
.

(8)

Observe that
∫ t+∆t

τ=t
J(τ ; θ̂(τ))d τ = J(t; θ̂(t)) +

∫ t+∆t

τ=t+
γ(τ)`(τ)dτ, where J(t; θ̂(t)) represents

all the previous tasks and
∫ t+∆t

τ=t+
γ(τ)`(τ)dτ represents the new task. Therefore, we get our final

PDE as

−
(
V ∗t
)T

∆t = minθ̂(τ)∈Ω:t≤τ≤t+∆t

[
J(τ ; θ̂(τ))

+

∫ t+∆t

τ=t+

γ(τ)`(τ)dτ

+
(
V ∗
θ̂(t)

)T
∆θ̂ +

(
V ∗x(t)

)T
∆x(t)

]
.

(9)
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Let us push ∆t→ 0 and denote lim∆t→0

∫ t+∆t

τ=t+
γ(τ)`(τ)dτ as JN (τ ; θ̂(τ)). We get

−
(
V ∗t
)T

∆t = minθ̂(t)∈Ω

[
J(t; θ̂(t)) + JN (t; θ̂(t))

+
(
V ∗
θ̂(t)

)T
∆θ̂ +

(
V ∗x(t)

)T
∆x(t)

]
.

(10)

This is the Hamilton-Jacobi Bellman equation that is specific to the meta continual learning problem.

A.2 PROOF OF LEMMA AND COROLLARY 1

Lemma 1. Let J(t; θ̂(t)) =
∫ t
τ=0

γ(τ)`(τ)dτ , and let ` be continuous and L ≥ `(τ) ≥ ε,∀τ, ε > 0.
Let γ(t) = 1, then J(t; θ̂(t)) is divergent. Proof: See Appendix A.2.

Proof of Lemma 1. consider J(t; θ̂(t)) =
∫ t
τ=0

γ(τ)`(τ)dτ and we want to show that
limt→∞

∫ t
τ=0

γ(τ)`(τ)dτ diverges. We may write limt→∞
∫∞
t=0

εdt, where limt→∞
∫∞
t=0

εdt =

limt→∞[εt]Γ0 =∞. Therefore, the limit is divergent.

Corollary 1. Consider t ∈ [0,Γ) : Γ→∞ and J(t; θ̂(t)) =
∫ t
τ=0

γ(τ)`(τ)dτ, and let ε ≤ `(τ) ≤
L,∀ε > 0 and let ` be a continuous and integrable ∀τ ∈ [0, t]. Choose γ such that γ(t)→ 1, t→∞
such that γ(τ) ≤ 1,∀τ ∈ [0, t]. Under these assumptions, J(t; θ̂(t)) is convergent if

∫ t
τ=0

γ(τ)dτ ≤
M. Proof: See Appendix A.2.

Proof of Corollary 1. Consider J(t; θ̂(t)) =
∫ t
τ=0

γ(τ)`(τ)dτ and we want to show that
limt→∞

∫ t
τ=0

γ(τ)`(τ)dτ exists. Since, `(τ) ≤ L, we may write limt→∞
∫ t
τ=0

γ(τ)`(τ)dτ ≤
limt→∞

∫ t
τ=0

γ(τ)Ldτ ≤ Llimt→∞
∫ t
τ=0

γ(τ)dτ. As, γ(τ) is a monotonic function which
converges point-wise to 1, we may use the monotone convergence theorem to write
Llimt→∞

∫ t
τ=0

γ(τ)dτ ≤
∫ t
τ=0

γ(τ)dτ. Next, if
∫ t
τ=0

γ(τ)dτ ≤ M, then L
∫ t
τ=0

γ(τ)dτ is con-
vergent. Therefore, J(t; θ̂(t)) is upper bounded by a sequence that is convergent and J(t; θ̂(t)) is
convergent.

A.3 THEOREM 1

Theorem 1. Let the cumulative cost be bounded (according to Lemma 1) and defined in (??) with its
time derivative is defined in (??). Let Ω be a compact set with θ̂(t) ∈ Ω. Consider the assumptions
||Jθ̂(t)|| > 0, ||Jx||‖∆x(t)‖ < 1, ‖Jx‖ > 0 and ∂

∂(θ(t))

∫ c
τ=t

J(τ, θ̂(τ))d τ = J(t, θ̂(t)), c ∈
[t, t + ∆t],∀t ∈ [0,Γ] Consider the gradient update given as α(t)Vθ̂(t) with α(t) > 0 being the

learning rate. Choose α(t) = 1−||Jx||‖∆x(t)‖
β‖Jθ̂(t)‖

. The first derivative of V (t; θ̂(t)) is less than equal

to zero and V (t; θ̂(t)) is ultimately bounded with the bound on J(t; θ̂(t)) given as J(t; θ̂(t)) ≤ β,
where β is a user defined threshold on the cost.

Proof of Theorem 1. To show that the cumulative cost will achieve a bound, we need only to show
that the first derivative of the cumulative cost is negative semi-definite and bounded. This idea stems
from the principles of Lyapunov, which we discuss below.

Lyapunov Principles The basic idea is to demonstrate stability of the system described by the PDE
in the sense of Lyapunov.

Definition 1 (Definition of stability in the Lyapunov sense ((Lewis et al., 2012))). Let V (x, t) be a
non-negative function with derivative V̇ (x, t) along the system. The following is then true:

1. If V (x, t) is locally positive definite and V̇ (x, t) ≤ 0 locally in x and for all t, then the
equilibrium point is locally stable (in the sense of Lyapunov).
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2. If V (x, t) is locally positive definite and decresent and V̇ (x, t) ≤ 0 locally in x and for all
t, then the equilibrium point is uniformly locally stable (in the sense of Lyapunov).

3. If V (x, t) is locally positive definite and decresent and V̇ (x, t) < a in x and for all t, then
the equilibrium point is Lyapunov stable, and the equillibrium point is ultimately bounded.
Refer to Definition 2.

4. If V (x, t) is locally positive definite and decresent and V̇ (x, t) < 0 locally in x and for all
t, then the equilibrium point is locally asymptotically stable.

5. If V (x, t) is locally positive definite and decresent and V̇ (x, t) < 0 in x and for all t, then
the equilibrium point is globally asymptotically stable.

In our analysis we seek to determine the behavior of cumulative cost with respect to change in the
parameters (controllable by choice of the parameter update) and change in the input (uncontrollable).
We assume that the changes due to input and parameter update are both bounded, and we conclude
that V is ultimately bounded and stable in the sense of Lyapunov. The idea of ultimately bounded is
described by the next definition.

Definition 2. The solution of a differential equation ẋ = f(t, x) is uniformly ultimately bounded
with ultimate bound b if b and c and for every 0 < a < c, ∃T = T (a, b) ≥ 0 such that ‖x(t0)‖ ≤
a =⇒ ‖x(t)‖ ≤ b,∀t ≥ t0 + T.

The full proof is as follows. Let the Lyapunov function be given as

V (t; θ̂(t)) =

∫ Γ

τ=t

J(τ, θ̂(τ)))d τ. (11)

The first step is to observe that cumulative cost is a suitable function to summarize the state of the
learning at any time t. The integral is indefinite and therefore represents a family of non-negative
functions, parameterized by θ̂(τ) and x(t). The non-negative nature of the function is guaranteed
by the construction of the cost and the choice of the cost. Furthermore, the function is zero when
both θ̂(τ) and x(t). are zero. The function is continuously differentiable by construction. Lemma
1 describes boundedness and existence of the convergence point for J(τ, θ̂(τ))) for all τ ∈ [t,Γ).

We will also assume that there exists a bounded compact set (search space) for θ̂(τ) (the weight
initialization procedure ensures this) and that input x(t) is always numerically bounded (this can be
achieved through data normalization methods). With all these conditions being true, we can observe
that Eq. 11 is a reasonable candidate for this analysis (Athalye, 2015) and also explains the behavior
of the system completely.

Note that we can write the first derivative of the cost function (this was derived as part of the HJB
derivation) under the assumption that the boundary condition for the optimal cost V ∗ is V such that

∂V (t; θ̂(t))

∂t
= −

[
J(t; θ̂(t))) +

(
Vθ̂(t)

)T
∆θ̂(t)

+

(
Vx

)T
∆x(t)

]
.

(12)
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Consider the update as ∆θ̂(t) = αVθ̂(t), with α > 0, and write by the fundamental theorem of
calculus and chain rule

Vθ̂(t) =
∂

∂θ̂(t)

∫ Γ

τ=t

J(τ, θ̂(τ)))d τ

= − ∂

∂θ̂(t)

∫ t

τ=Γ

J(τ,y(τ ; θ̂(τ)))d τ

= − ∂

∂θ̂(t)
[

∫ c

τ=Γ

J(τ,y(τ ; θ̂(τ)))d τ

+

∫ t

τ=c

J(τ,y(τ ; θ̂(τ)))d τ ]

= −J(t,y(t; θ̂(t)))
∂J(t; θ̂(t)

∂θ̂(t)

= −J(t; θ̂(t))Jθ̂(t)(t; θ̂(t)))

= −J(t; θ̂(t))Jθ̂(t).

(13)

Similarly, simplify Vx, and write by the fundamental theorem of calculus and chain rule

Vx =
∂

∂x

∫ Γ

τ=t

J(τ, θ̂(τ)))d τ

= − ∂

∂x

∫ t

τ=Γ

J(τ,y(τ ; θ̂(τ)))d τ

=
∂

∂x
[

∫ c

τ=Γ

J(τ,y(τ ; θ̂(τ)))d τ

+

∫ t

τ=c

J(τ,y(τ ; θ̂(τ)))d τ ]

= −J(t,y(t; θ̂(t)))
∂J(t; θ̂(t)

∂x

= −J(t; θ̂(t))Jx(t; θ̂(t)))

= −J(t; θ̂(t))Jx.

(14)

Substituting Eqs. (13) and (14) into (12), we can write

∂V (t; θ̂(t))

∂t
= −

[
J(t; θ̂(t)))

−
(
J(t; θ̂(t))Jθ̂(t)

)T
(α(t)J(t; θ̂(t))Jθ̂(t))

−
(
J(t; θ̂(t))Jx

)T
∆x(t)

]
,

(15)

which when simplified provides

∂V (t; θ̂(t))

∂t
= −

[
J(t; θ̂(t)))− α(t)J(t; θ̂(t))2||Jθ̂(t)||

2

− J(t; θ̂(t))

(
Jx

)T
∆x(t)

]
.

(16)

Pulling J(t; θ̂(t)) out of the bracket provides

∂V (t; θ̂(t))

∂t
= −J(t; θ̂(t)))

[
1− α(t)J(t; θ̂(t))||Jθ̂(t)||

2

−
(
Jx

)T
∆x(t)

]
.

(17)
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The first term J(t; θ̂(t))) ≥ 0 and bounded by construction of the cost function. Equation (17) is
negative as long as the terms in the bracket are greater than or equal to zero, which is possible if and
only if [

α(t)J(t; θ̂(t))||Jθ̂(t)||
2 +

(
Jx

)T
∆x(t)

]
< 1. (18)

Hence, by Cauchy’s inequality,[
αJ(t; θ̂(t))||Jθ̂(t)||

2 + ‖Jx‖‖∆x(t)‖
]
< 1,

J(t; θ̂(t)) <
1− ‖Jx‖‖∆x(t)‖
α(t)||Jθ̂(t)||2

.

(19)

Choose α(t) = 1−‖Jx‖‖∆x(t)‖
β||Jθ̂(t)||2

with β > 0, and get the bound on ‖J(t; θ̂(t))‖ as

J(t; θ̂(t)) < β. (20)

As a consequence, V (t; θ̂(t)) is ultimately bounded (Lewis et al., 2012) with ‖J(t; θ̂(t))‖ < β.

A.4 DERIVATION OF THE UPDATE THROUGH FINITE APPROXIMATION

From Theorem 1, the update for the network is chosen as the derivative of the cumulative cost, that
is, ∂V (t,y(t;θ̂(t)))

∂θ̂(t)
providing

− ∂V ∗(t; θ̂(t))

∂t
= minθ̂(t)∈Ω

[
H(t; θ̂(t)))

]
, (21)

where H(t; θ̂(t))) is the CT Hamiltonian, which we will discretize and approximate. Under the
assumption that the boundary condition for the optimal cost is the cumulative cost itself, we may
write

H(t; θ̂(t))) = J(t; θ̂(t))

+
(
Vθ̂(t)

)T
∆θ̂ +

(
Vx(t)

)T
∆x(t).

(22)

Upon Euler’s disretization, we achieve

1

∆t
H(k; θ̂(k))) =

1

∆t
J(k; θ̂(k))

+
(
V (k; θ̂(k + 1))− V (k; θ̂(k))

+
(
V (k + 1; θ̂(k))− V (k; θ̂(k))

(23)

Simplification provides

H(k; θ̂(k))) = J(k; θ̂(k))

+ ∆t
(
V (k; θ̂(k + 1))− V (k; θ̂(k))

+ ∆t
(
V (k + 1; θ̂(k))− V ∗(k; θ̂(k))

(24)

Taking the derivative and setting it to zero, we get

0 =
∂

∂θ̂(k)
J(k; θ̂(k))

+
∂

∂θ̂(k)
∆t
(
V (k; θ̂(k + 1))− V (k; θ̂(k))

+
∂

∂θ̂(k)
∆t
(
V (k + 1; θ̂(k))− V (k; θ̂(k)).

(25)
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Rearranging, we get
∂V (k; θ̂(k))

∂θ̂(k)
=

[
∂

∂θ̂(k)

J(k; θ̂(k))

∆t

+
∂

∂θ̂(k)

(
V (k; θ̂(k + 1)))− V (k; θ̂(k))

)
+

∂

∂θ̂(k)
V (k + 1; θ̂(k))

]
.

(26)

Since we have no information about the data from the future, we will think of the last term
∂

∂θ̂(k)

(
V (k + 1; θ̂(k)) as 0. Under the assumption that ∂

∂θ̂(t)

∫ c
τ=t

J(τ, θ̂(τ)))d τ ∝ J(t, θ̂(t))).

From the fundamental theorem of calculus we write

Vθ̂(t) =
∂

∂θ̂(t)

∫ Γ

τ=t

J(τ, θ̂(τ)))d τ

= − ∂

∂θ̂(t)

∫ t

τ=Γ

J(τ,y(τ ; θ̂(τ)))d τ

∝ −J(t; θ̂(t))
∂J(t; θ̂(t)

∂θ̂(t)

∝ −J(t; θ̂(t))).

(27)

We now achieve our update as

∂V (k; θ̂(k))

∂θ̂(k)
∝
[

∂

∂θ̂(k)

J(k; θ̂(k))

∆t

− ∂

∂θ̂(k)

(
J(k; θ̂(k + 1))− J(k; θ̂(k)))

)]
.

(28)

To obtain the first term, we replace 1/∆t with a small value η and write J(k; θ̂(k)). =

JN (k; θ̂(k)) + JP (k; θ̂(k)), where JP (k; θ̂(k)) refers to the cost on all the previous tasks and
JN (k; θ̂(k)) refers to the cost on the new task. For the second term, we replace the difference(
J(k; θ̂(k+ 1)))−J(k; θ̂(k))

)
with

(
J(k; θ̂(k+ ζ)))−J(k; θ̂(k))

)
with ζ being the finite number

of steps for the approximation. We get the gradient

∂V (k; θ̂(k))

∂θ̂(k)
∝
[

∂

∂θ̂(k)
η[JN (k; θ̂(k)) + JP (k; θ̂(k))]

+
∂

∂θ̂(k)

(
J(k; θ̂(k))− J(k; θ̂(k + ζ)))

)
,

]
,

(29)

where ζ is a predefined number of iterations for the parameters. To simplify notation, we write
JN (k; θ̂(k)) as JN (k), JN (k; θ̂(k)) as JP (k), J(k; θ̂(k)) as JPN (k), and J(k; θ̂(k + ζ)) as
JPN (k; θ̂(k + ζ)) and

∂V (k; θ̂(k))

∂θ̂(k)
∝
[

∂

∂θ̂(k)
η[JN (k) + JP (k)]

+
∂

∂θ̂(k)

(
JPN (k)− JPN (k; θ̂(k + ζ)))

)
,

]
..

(30)

Our update rule with η = 1 then is

θ̂(k + 1) = θ̂(k)− α(t)×
[

∂

∂θ̂(k)
[JN (k) + JP (k)]

+
∂

∂θ̂(k)

(
JPN (k)− JPN (k; θ̂(k + ζ)))

)
,

]
.

(31)
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B APPENDIX - RESULTS AND IMPLEMENTATION DETAILS

Our implementations are done in Python with the Pytorch library (version 1.4). All the code includ-
ing the data obtained from the our runs is provided in a separate zip file. First, we will discuss the
datasets.

B.1 DATA SET

Incremental Sine Waves (regression problem): An incremental sine wave problem is defined by fifty
(randomly generated) sine functions where each sine wave is considered a task and is incrementally
shown to the model. Each sine function is generated by randomly selecting an amplitude in the range
[0.1, 5] and phase in [0, π]. For training, we generate 40 minibatches from the first sine function in
the sequence (each minibatch has eight elements) and then 40 from the second and so on. We
use a single regression head to predict these tasks. For the time, t ∈ {0, 0.001, · · · , 0.01}. We
generate a sine wave data set consisting of 50 tasks. Each task is shown sequentially to the model
and is described by its amplitude, phase, frequency, and time t ∈ {0, 0.001, · · · , 0.01}. Each task is
generated by making incremental changes to amplitude, phase, and frequency while following the
protocol in (Finn et al., 2017).

Split-Omniglot data set): We choose the first fifty classes to constitute our problem. Each character
has 20 handwritten images. The data set is divided into two parts. These classes are shown incre-
mentally to all the approaches. We choose 12 images to be part of the training data for each task, 3
images for validation, and 5 images for the testing.

MNIST CIFAR10 data set): These data-sets are comprised of ten classes. We incremently show
each of these classes to our model. Therefore, each task in our problem is comprised of exactly one
class. We choose 60 % of the data from each task to constitute our training data and the rest is split
into validation and test.

B.2 MODEL SETUP

SINE: DPMCL uses two neural networks: one for the representation and one for the prediction.
Both have a three-layer feed-forward network (one input, one hidden, and one output layer) with
100 hidden layer neurons and relu activation function.The input vector is 3× 1m and the output of
the prediction network is a 100 × 1 vector with a linear activation function at the output layer. For
the implementations of Naive, ER, and FTML, a single six-layer network (100 hidden units, relu ac-
tivation) is utilized. For OML, we use two networks: representation learning network and prediction
learning networks. For ANML, the representation learning network becomes the neuromodulatory
network (Beaulieu et al., 2020). For OML and ANML implementations, we use 100 hidden units
(same as DPMCL).

B.2.1 SINE MODEL DEFINITIONS

# Model F e a t u r e e x t r a c t i o n s .
s e l f . model F = t o r c h . nn . S e q u e n t i a l (

t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’ D in ’ ] , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’ D in ’ ] )

)

# The g model and t h e b u f f e r model a r e t h e same
# Model g
s e l f . model P = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’ D in ’ ] , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’ D out ’ ] )
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)

# Model b u f f e r
s e l f . m o d e l b u f f e r = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’ D in ’ ] , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’ D out ’ ] )
)

MNIST, OMNI, CIFAR10: For all these data sets, we use a combination of convolutional neural
network (two convolutional layers, max pooling, relu-activation function) and a feed-forward net-
work (2 feed-forward layer, relu activation function, softmax output). For CIFAR10, we use three
channels, of which only one channel is used with OMNI and MNIST. For the implementations of
Naive, ER, and FTML, a single four-layer network (2 convolutional layers, 2 feed-forward layers)
is utilized. For OML (Javed and White, 2019), we use two networks: a representation learning
network (convolutional neural network) and a prediction learning network (feed-forward network),
respectively. For ANML, the representation learning network becomes the neuromodulatory net-
work (Beaulieu et al., 2020).

B.2.2 OMNI

# F e a t u r e E x t r a c t o r
s e l f . model F = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d ( 1 , 32 , k e r n e l s i z e =5 , s t r i d e =1 , padd ing = 2) ,
t o r c h . nn . MaxPool2d ( k e r n e l s i z e =2 , s t r i d e = 2 ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . Conv2d ( 3 2 , 64 , k e r n e l s i z e =5 , s t r i d e =1 , padd ing = 2) ,
t o r c h . nn . MaxPool2d ( k e r n e l s i z e =2 , s t r i d e = 2 ) ,
t o r c h . nn . ReLU ( ) ,
)

# Feed fo rward Layer
s e l f . model P = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . L i n e a r (7 * 7 * 64 , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’ D out ’ ] )
)

# B u f f e r Layer
s e l f . m o d e l b u f f e r = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . L i n e a r (7 * 7 * 64 , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’ D out ’ ] )
)

B.2.3 CIFAR10 AND MNIST

# F e a t u r e E x t r a c t o r
s e l f . model F = t o r c h . nn . S e q u e n t i a l (

t o r c h . nn . Conv2d ( 3 , 6 , 5 ) ,
t o r c h . nn . MaxPool2d ( k e r n e l s i z e =2 , s t r i d e = 2 ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . Conv2d ( 6 , 16 , 5 ) ,
t o r c h . nn . MaxPool2d ( k e r n e l s i z e =2 , s t r i d e = 2 ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . Dropout ( )
)
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# Feed Forward Layer
s e l f . model P = t o r c h . nn . S e q u e n t i a l (

t o r c h . nn . L i n e a r ( 2 5 6 , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’ D out ’ ] )
)

# B u f f e r Layer
s e l f . m o d e l b u f f e r = t o r c h . nn . S e q u e n t i a l (

t o r c h . nn . L i n e a r ( 2 5 6 , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’H’ ] ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( s e l f . c o n f i g [ ’H’ ] , s e l f . c o n f i g [ ’ D out ’ ] )
)

B.3 HYPERPARAMETERS

Since, DPMCL update rule involves division by the norm of the gradient, we use the Adagrad
optimizer throughout.

Parameters Sine Omniglot MNIST CIFAR10
Learning rate 1e− 03 1e− 04 1e− 04 1e− 04
total runs 50 50 50 50
num tasks 50 50 10 10
Num of Hidden Layers. 100 100 512 512
Inputsize 3 28× 28 28× 28 28× 28
Output Size 100 50 10 10
ρ 300 200 300 600
ζ 2 2 5 5
Nmeta 150 100 150 300
Ngrad 150 100 150 300
N 300 200 300 600
length ofDP 1000 20000 20000 100000
β 1000 10000 10000 10000
batchsize 64 8 32 512
activation function relu, output-linear relu,output-softmax relu, output-softmax relu, output-softmax
optimizer Adagrad Adagrad Adagrad Adagrad
Loss function MSE Cross Entropy Cross Entropy Cross Entropy

Next, we will discuss the different methods that have been used in the study. We start by describing
the algorithm for DPMCL.

B.4 DPMCL

Figure 1: Illustration of DPMCL to learn parameters
θ̂1, θ̂2 (the copy of θ̂2 is θ̂B).

We define a new task sample, DN (k) =
{Xk,Yk}, and a task memory (samples from all
the previous tasks) DP (k) ⊂ ∪k−1

τ=0T τ . We can
approximate the required terms in our update
rule using samples (batches) from DP (k) and
DN (k). The overall algorithm consists of two
steps: generalization and catastrophic forget-
ting (see Algorithm 1 in Appendix C). DPMCL
comprises representation and prediction neural
networks parameterized by θ̂1 and θ̂2, respec-
tively. For each batch bN ∈ DN (k), DPMCL
alternatively performs generalization and catas-
trophic forgetting cost updates ρ times. The
generalization cost update consists of comput-
ing the cost JN and using that to update θ̂1

10
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and θ̂2; the catastrophic forgetting cost update
comprises the following steps. First we create
a batch that combines the new task data with
samples from the previous tasks bPN = bP ∪ bN (k), where bP ∈ DP (k). Second, to approximate
the term

(
JPN (k; θ̂(k+ζ))),, we copy θ̂2 (prediction network) into a temporary network parameter-

ized by θ̂B . We then perform ζ updates on θ̂B while keeping θ̂1 fixed. Third, using θ̂B(k + ζ), we
compute JPN (k; θ̂B(k+ζ)) and update θ̂1, θ̂2 with JP (k)+(JPN (k)−JPN (k; θ̂B(k+ζ))) (lines
16-17 in Alg. 1).

Algorithm 1: DPMCL algorithm.

Initialize θ̂1, θ̂2, DP , DN

while k = 1, 2, 3, ...k × Γ do
i = 0
while i < ρ do

Step 1: Generalization
Get bN ∈ DN (k) Update θ̂1(k), θ̂2(k) with JN (k)
Step 2: Catastrophic Forgetting
Get JP (k) with bP ∈ DP (k)

Get bPN = bP ∪ bN and copy θ̂2 into θ̂B
j = 0
while j + 1 <= ζ do

Update θ̂B(k) with JPN (k; θ̂B(k)).
j = j+1

end
Update θ̂2(k), θ̂1(k) with JP (k) + (JPN (k)− JPN (k; θ̂B(k + ζ))).
i = i+1

end
Update DP (k) with DN (k).

end

B.5 COMPARATIVE METHODS

The five methods are Naive, ER, FTML, OML and ANML. Naive For the naive implementation,
we use the training data for each task to train our approach. The core idea is to greedily learn
any new task. We run gradient updates for each task data for a predetermined number of epochs.

Algorithm 2: Naive algorithm.
Initialize θ(k).
while j < num tasks do

Initialize task data DN

k =0
while k < N do

bN ∈ DN

Update θ
k = k+1

end
end

Experience-Replay (ER (Lin, 1992)): This approach aims at maintaining the performance
of all the tasks till now. We therefore define a task memory array. We store sam-
ples from each new task into the experience replay array. At the start of every new
task, we use the samples from the task memory array for training the network multi-
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ple epochs through the data. This method focuses on minimizing catastrophic forgetting.

Algorithm 3: Experience Replay Algorithm.
Initialize θ(k) and DPN

while j < num tasks do
Initialize task data DN and append to DPN

k =0
while k < N do

bPN ∈ DPN

Update θ
k = k+1

end
end

Follow the Meta Leader (FTML), (Finn et al., 2019)): We follow the meta training testing proce-
dures described in (Finn et al., 2019) for this implementation. The process is composed of two loops.
In the inner loop, the training is performed on the new task; in the outer loop, the training is per-
formed on the buffer (task memory). We first save samples from each task into the buffer data. Both
the inner loop and the outer loop updates are performed by using the gradients of the cost function.

Algorithm 4: Our FTML implementation.
Initialize θ(t).
Initialize DPN

while j < num tasks do
Initialize DN and append to DPN for Nmeta samples in DPN do

Update θ(k) to obtain θ̃(k)
end
for Ngrad samples in DN do

Update θ(k) using cost calculated with θ̃.
end

end

Online Meta Continual Learning ( OML, (Javed and White, 2019)): The learning process of this
method is the same as that of the one in (Finn et al., 2019) with the key difference being the use of
the representation network. The algorithm is provided in (Javed and White, 2019). This approach
is composed of a prelearned representation. We do not train a representation but try to learn it
while the tasks are being observed sequentially. This protocol is followed to highlight the idea
that although good representations are necessary, no data is available for training a representation.

Algorithm 5: Our OML Implementation.
Initialize θ1(t),θ2(t).
Initialize DPN

while j < num tasks do
Initialize DN and append to DPN for Nmeta samples in DPN do

Update θ2(k) to obtain θ̃2(k)
end
for Ngrad samples in DN do

Update θ(k) using cost calculated with θ̃2 and θ1

end
end

Neuromodulated Meta Learning (ANML (Beaulieu et al., 2020)): Similar to the OML
case, the learning process is the same as that of FTML with the key difference be-
ing the neuromodulatory network which is in addition to the representation learning net-
work. The algorithm is provided in (Beaulieu et al., 2020). Similar to the earlier
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Figure 2: Cumulative error (CME) and new task error (NTE) trends with respect to (a,b) ζ with ρ = 200 and
(c, d) ρ with ζ = 2. . For each value of ρ or ζ, we learn a total of 50 tasks incrementally. We perform 50

repetitions of this learning. Next, we calculate the µ and σerr value of cumulative error and new task error
over these 50 runs and record them. After we have computed these values for each value of ρ or ζ, we plot the

mean values with error bars from σerr as a function of ζ or ρ. We apply a Gaussian smoothing filter with a
standard deviation of 2.

scenario, a the neuromodulatory network is learned while the tasks are being observed.

Algorithm 6: Our OML Implementation.
Initialize Network 1 with parameters θ1(t)
Initialize Network 2 with θ2(t)
Initialize DPN

while j < num tasks do
Initialize DN and append to DPN

for Nmeta samples in DPN do
Get output by multiplying Network 1 and Network 2 outputs(similar to gating process

in Beaulieu et al. (2020)).
Update θ2(k)

end
for Ngrad samples in DN do

Get output by multiplying Network 1 and Network 2 outputs(similar to gating process
in Beaulieu et al. (2020)).

Update θ1(k) using cost calculated with θ2 and θ1

end
end

Meta Experience Replay (MER (Riemer et al., 2018)): For implementation of this method, we
fllow algorithm 1 in the original paper (Riemer et al., 2018) with the key difference that the expe-
rience replay part is kept similar to DPMCL that is utilized in the study. This is done to ensure
that the comparisons are fair. Therefore, we use the reptile updates but with random sampling for
maintaining the experience replay array

B.6 ADDITIONAL RESULTS

Table 1: cumulative error (CME) and new task error (NTE)value for different data sets. The mean and
standard error of the mean are reported. These values are calculated by averaging across 50 repetitions.

Naive DPMCL FTML OML ANML ER MER

SINE CME 0.3(0) 1.12(0) 2.28(0) 3.13(0) 9.85(0) 1.7(0) 10.5(0)
NTE 0.01(0) 3.89(0) 1.6(0) 1.3(0) 10.2(7) 4.5(0) 2.28(0)

OMNI CME 0.979(0) 0.175(0.007) 0.221(0.010) 0.268(0.012) 0.976(0.001) 0195(0.008) 0.163(0.010)
NTE 0.001(0) 0.189(0.091) 0.512(0.098) 0.077(0.053) 0.945(0) 0.291(0.071) 0.002(0)

MNIST CME 0.912(0) 0.015(0.001) 0.018(0.001) 0.033(0.004) 0.835(0.002) 0.022(0.001) 0.049(0.002)
NTE 0.001(0) 0.003(0) 0.009(0) 0.010(0) 0.884(0) 0.023(0.001) 0.009(0.001)

CIFAR10 CME 0.949(2) 0.475(0.003) 0.634(0.006) 0.630(0.004) 0.906(0.016) 0.451(0.002) 0.682(0.006)
NTE 0.01(0) 0.273(0.008) 0.140(0.005) 0.057(0.003) 0.606(0.140) 0.436(0.008) 0.036(0.003)

For Naive, the orders are 10−5, for instance, 1 refers to 1 × 10−5
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B.6.1 THE PERFORMANCE OF THE THIRD TERM

In Fig. 2, we plot the variation in CME and NTE for the 50th task in the OMNI data set with
respect to hyperparameter ζ. In DPMCL, the value of ζ controls the magnitude of the third term
in the update rule, namely,

(
JPN (k) − JPN (k; θ̂(k + ζ)))

)
, where JPN (k; θ̂(k + ζ))) is an ap-

proximation of the optimal cost. Therefore, the larger the value of ζ, the greater the value of(
JPN (k) − JPN (k; θ̂(k + ζ)))

)
, and the third term is zero when ζ = 0. We observe from Figs.

2(a) and (b) that when the value of ζ is zero, DPMCL generalizes poorly to a new task (low NTE)
and incurs catastrophic forgetting (low CME). As the value of ζ is increased from zero, however,
forgetting reduces (decreasing CME in Fig. 2(a)) and generalization improves (decreasing NTE in
Fig. 2(b)). Furthermore, the best value of forgetting with generalization is achieved when ζ = 20.

We know from our theoretical analysis that the larger the value of ζ, the closer JPN (k; θ̂(k + ζ))

is to the optimal cost. Minimizing the difference
(
JPN (k) − JPN (k; θ̂(k + ζ)))

)
would push the

model toward optimal generalization and catastrophic forgetting. This behavior is observed in Fig.
2(a, b).

Next, we analyzed the impact of ρ, the parameter controlling the total number of alternative updates.
From our theory, we know that an appropriate number of ρ allows DPMCL to balance forgetting and
generalization. We observe this behavior from Figs. 2(c) and (d). Note that with an increase in ρ
from zero, forgetting keeps on reducing (decreasing CME on Fig. 2(c).) When ρ > 250, however, we
observe that while forgetting does improve, generalization no longer improves (Fig. 2(d)). In fact,
we observe an inflection point on NTE between ρ = 200 and ρ = 250. where a balance between
CME and NTE is achieved. DPMCL is designed in such a way that with choice of ρ, this balance
point can be engineered.
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