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1 Implementation Details

In this section, we provide further details for reproducibility, including data preprocessing, training
steps and hyperparameters, and model architecture. We will also release all code to facilitate
experiments.

1.1 Data Processing

Preprocessing We recenter and normalize all objects in the Acronym [1] dataset. We use the
normalized object coordinate system (NOCS) [2]. This means we contain all points in 3D space
in a cube and uniformly scale each object such that the diagonal of its tight bounding box has a
length of 1 and is centered within the cube. Different from the original definition [2] where the cube
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has coordinates ranging from (0,0,0) to (1,1,1), we set our cube to have coordinates ranging from
(-1,-1,-1) to (1,1,1). That is, the length of each side on our cube is 2 instead of 1.

We do not perform this preprocessing for the YCB [3] dataset which we use for testing. The point
clouds are obtained from real-world scans and have size-accurate scaling. This makes testing difficult
since the scaling is out-of-distribution.

Labeled Data For labeled data, we largely follow [4] for preprocessing. From each mesh we
sample 235,000 points on the surface. These points form a point cloud P = {pi ∈ R3}235000i=1 that
describe the surface and have signed distances of 0. Then, for each point pi, we sample two Gaussian
distributions with mean 0 and standard deviation 0.005 and 0.0005, respectively. We add these
distributions to pi to obtain two query points per surface point. Since we have the mesh, we can
calculate ground truth signed distance values for supervised training and we store all points and
corresponding signed distances, one per object. During one training step of one mesh, we randomly
sample 1,024 surface points for generating shape features through the encoder, and sample 16,000
query points for predicting signed distance values. We did not run a grid search for determining the
optimal number of points. We experimented with a larger number for generating shape features (e.g.,
5,000 instead of 1,024), which led to a decrease in generalization capabilities.

Unlabeled Data For unlabeled data, we largely follow the preprocessing from [5] for generating
points on and near the surface. For each input point cloud, we randomly sample 5,000 points and
obtain P = {pi ∈ R3}5000i=1 . Then for each point pi, we sample 20 Gaussian distributions each with
mean 0 and standard deviation σ, where σ is the distance between pi and its 50-th nearest neighbor.
We add each distribution to pi to obtain 20 query points near the surface. Next, to ensure the model
does not overfit to generated queries that only take up a small spatial proportion of the cube, we
sample 30,000 additional points within the cube with each dimension ranging from -1 to 1. We
then store the nearest neighbor p to each query point x by finding the shortest distance between
x and p ∈ P . In total, we have 5,000 points on the surface and 130,000 query points near the
surface. During our first meta-learning stage, we randomly sample 1,024 surface points and 16,000
query points each training step, same as labeled data. During the second stage of semi-supervised
training, we randomly sample 5,000 surface points and 5,000 query points each training step. More
importantly, in this stage we train all 130,000 query points for each unlabeled object before moving
on to the next one; that is, we train each unlabeled object in 130,000 / 5,000 = 26 steps. In [5], 20,000
points per input point cloud are sampled and 25 query points per surface point, but we reduce this
number by a fraction to speed up training due to the higher number of training meshes.

1.2 Training Details

Model Hyperparameters For Eqs. (3) and (9) (main paper) we the set the loss coefficients to
λm = λs = 0.1, and λp = 0.01 in Eq. (7). λm and λs determine the weights of the unlabeled
data and we found that 0.1 was a good tradeoff between learning from unlabeled data and still
mainly guiding the model with supervised, labeled data. A higher value such as 1.0 would lead to
accumulation of inaccuracies in the proxies of unlabeled data. The parameter λp determines the
weight of points on the surface vs points near the surface for unlabeled data. Here, setting λp = 0.01
helped with thinner structures, but a larger value led to gaps and holes in the reconstructions.

For our meta-learning stage, we define one epoch as sampling one object from one class. Since our
labeled dataset consists of 20 classes, 20 objects are seen every epoch. We re-split the dataset into 10
labeled sets and 10 unlabeled sets every 1000 epochs and train for 40,000 epochs. We did not run
search to determine the optimal value of split frequency or split ratio.

Training Hyperparameters We use PyTorch [7] and train all models with the ADAM [8] optimizer.
We set learning rates to 1× 10−4 with no decay.

For our meta-learning stage, we use 2995 meshes from 20 classes and the max batch size is 10 (each
step trains one labeled and one unlabeled sample), so we set the batch size to 10. This takes up
roughly 4.5 GB of GPU memory and we trained to 40,000 epochs in 2 days on an NVIDIA A100
GPU.

For our semi-supervised stage, one epoch is defined as sampling all objects once; i.e., each epoch
iterates through 2995 labeled and 3408 unlabeled objects (see main paper for our specific data split).
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Table 1: Decoder architecture. Following DeepSDF [4] with a number of changes, see text.
Layer In-Features Out-Features Notes

Linear 259 512 input = shape code (256) + xyz (3)
ReLU
Linear 512 512
ReLU
Linear 512 512
ReLU
Linear 512 512
ReLU
Linear 771 512 skip connection = 512 + 259
ReLU
Linear 512 512
ReLU
Linear 512 512
ReLU
Linear 512 512
ReLU
Linear 512 1 output is not regressed with any activation

Table 2: Encoder architecture. Following ConvOccNet [6]. "+" represents a stacking of operations.
"lin" represents a fully-connected layer. "conv(a,b,c)" represents a 2D convolutional layer with kernel
size a, stride b, padding c, and convT is a transposed convolution. "pool(a,b,c)" represents a 2D max
pool with kernel size a, stride b, padding c.

Layer Name Type In-/Out-Features

Linear lin 3/128

ResnetBlock1 lin+ReLU+lin+ReLU+shortcut 128/128
ResnetBlock2 lin+ReLU+lin+ReLU+shortcut 128/128
ResnetBlock3 lin+ReLU+lin+ReLU+shortcut 128/128
ResnetBlock4 lin+ReLU+lin+ReLU+shortcut 128/128
ResnetBlock5 lin+ReLU+lin+ReLU+shortcut 128/64
Linear lin+ReLU 64/256

DownConv1 conv(3,1,1)+conv(3,1,1)+pool(2,2,0) 256/32
DownConv2 conv(3,1,1)+conv(3,1,1)+pool(2,2,0) 32/64
DownConv3 conv(3,1,1)+conv(3,1,1)+pool(2,2,0) 64/128
DownConv4 conv(3,1,1)+conv(3,1,1) 128/256
UpConv1 convT(2,2,0)+conv(3,1,1)+conv(3,1,1) 256/128
UpConv2 convT(2,2,0)+conv(3,1,1)+conv(3,1,1) 128/64
UpConv3 convT(2,2,0)+conv(3,1,1)+conv(3,1,1) 64/32

Final Conv conv(1,1,0) 32/256

Note that as mentioned previously, we train on all 130,000 query points for each unlabeled object.
We train for 500 epochs. We set the batch size to 128 and train on an NVIDIA A100 for 5 days.

Model Architecture As described in the main paper, we use the encoder from [6] and the decoder
from [4]. For the encoder, we set the latent size to 256 and hidden dimensions to 64. We use the
modified PointNet [9] proposed in [6] that uses plane projection to learn local geometric features, and
parallel UNets [10] to aggregate spatial information. For the decoder, we set the number of layers
to 8, and use 512 hidden dimensions. We use ReLU activation after each layer except the last, and
add a skip connection to the fourth layer. Different from [4], we do not use any normalization and
we do not regress the final output with a Tanh activation. We also apply the geometric initialization
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proposed in [11]. We provide a detailed list in Tab. 1 and 2. We also evaluate different architectures
in Sec. 3.

1.3 Test-time Refinement

Most existing works that fit to multiple objects perform test-time refinement [4, 12, 11]. DeepSDF
[4] creates a new latent code in 800 iterations while freezing the decoder. MetaSDF [12] performs
5 gradient steps. Notably, both methods use ground truth signed distance values for refinement.
MetaSDF [12] showed some experiments of fitting only on point clouds, but reconstructions lack
detail especially for intricate shapes.

The proposed self-supervised method allows us to perform test-time refinement on only the point
cloud and no additional input. We sample 5,000 points per input point cloud. Sampling more points
here, such as 15,000, leads to more detailed reconstruction outputs though the difference is not
significant. Sampling size can be adjusted based on availability of data.

Using the 5,000 points, we then sample 20 queries per point as well as an additional 30,000 queries
from the cube using the same method as in Sec. 1.1. Again, we emphasize that all these points are
generated from the input point cloud and the process does not involve additional ground truths or
annotations. Similar to DeepSDF [4], we perform refinement for 800 iterations. Each iteration, we
randomly sample 5,000 query points. We set the learning rate to 1× 10−4. Finally, as we discuss in
more detail in Sec. 5, we set the reconstruction level set to 0.005 due to inaccuracies in the unlabeled
proxies (we set to 0.0 without refinement).

Our model is also capable of reconstructing any target point cloud directly, that is without refinement,
and in the main paper we report numbers without refinement. We sample 1,024 points per point
cloud, the same number we use during training. We show visualizations of reconstructions without
refinement in Fig. 4. Our method still reconstructs details well although refinement is optimal for
intricate shapes.

2 Additional Results

In the main paper we report numerical results of testing on 166 unseen categories. In supplemental
Fig. 1, 2, and 3 we provide additional visualization results. Our testing method for both seen and
unseen categories is the same as in Fig. 4 and 5 from the main paper but here we show a more diverse
set of classes and shapes, including thin and hollow structures.

3 Alternative Network Architectures

We experiment with other network architectures and show visualizations in Fig. 4. First, we use
the SIREN [13] architecture for our decoder. Since our point clouds only contain 3D coordinates
and no normals, we exclude the loss term that requires normals. We also experiment with encoding
coordinates with Fourier Features [14]. These experiments validate that our learning method is indeed
applicable to different architectures, and, at the same time, validates the proposed architecture choice
in our specific method.

4 Single-Object Methods

We next discuss single object methods which have been recently popular. We note that single object
methods [15, 16, 17] solve a different problem than the proposed method. These methods focus on
reconstructing single objects and scenes with detail, rather than generalization to multiple objects.

Nevertheless, we include an example of Ma et al. [17] and show results in Fig. 5. This method
(Predictive Context Priors) reconstructs a single unlabeled point cloud with fine detail, including the
gaps between the launchers at the side of the helicopter, but comes at the expense of learning shape
priors and generalization capabilities. For completeness, we show a reconstruction of training three
point clouds at once, though we note that this is not an intended setting for single object methods
such as this method.
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Figure 1: Additional reconstruction results on seen objects.
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Figure 2: Additional reconstruction results on objects from unseen categories.
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Figure 3: Even more reconstruction results on objects from unseen categories.

However, even for a single point cloud, Predictive Context Priors takes 30,000 input points and more
than 10,000 iterations to train. On the other hand, our method reconstructs with high quality after just
800 iterations and 5,000 input points.

The main focus of Predictive Context Priors [17] and many other recent papers [15, 16] is different but
complementary to ours. We leave the exploration of jointly achieving fine details with generalization
across shapes as potentially exciting future work.

5 Unsupervised Methods for Training Unlabeled Data

Next, we analyze reconstructions of unlabeled data using our self-supervised method in comparison
to existing unsupervised baselines: NeuralPull [5] and SAL [11]. The top row of Fig. 6 shows results
of training and reconstructing objects from a single QueenBed class with 5 meshes. As a result of the
explicit sign penalty, our method is able to reconstruct sharper details from irregular surfaces such
as pillows. On the other hand, existing methods produce low losses for close approximations to the
absolute values of the signed distances, rather than accurate sign predictions. Therefore, they tend to
reconstruct a smoother curvature on shapes.

Using this experiment, we dive into a deeper comparison between our self-supervised loss and
the approach described in NeuralPull [5]. First, we report accuracies of sign predictions between
NeuralPull and our self-supervised method. We run inference on 130,000 points near the surface of
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Figure 4: Testing on alternative architectures, including encoding coordinates using Fourier Features
[14] and using the decoder of SIREN [13]. Results are without optimization or test-time refinement.
These experiments validate that our learning method is applicable to different architectures.
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Figure 5: Comparing results to Predictive Context Priors (PCP) from Ma et al. [17]. PCP is designed
to fit to a single object or scene with detail, taking 30,000 input points and 10,000 iterations. Our
proposed method performs refinement using 5,000 input points and 800 iterations. PCP is not
intended for training on multiple objects; we include PCP (multiple) which is trained on 3 objects
only for completeness.

each of the five QueenBed point clouds (130,000 * 5 = 650,000 total). While both methods produced
low ℓ2 losses, in Tab. 3 our method achieves higher accuracy in sign prediction.

Table 3: Confusion matrices for NeuralPull and our self-supervised loss sign predictions on five point
clouds of the QueenBed class. Of the five point clouds, there are a total of 650,000 points to predict,
with 449,650 being positive and 200,350 being negative.

NeuralPull Pred Positive Pred Negative

449,650 Pos 37,779 (0.974) 11,871 (0.026)

200,350 Neg 37,986 (0.190) 162,363 (0.810)

Our SSL Pred Positive Pred Negative

449,650 Pos 449,245 (0.999) 405 (0.001)

200,350 Neg 2,765 (0.014) 197,585 (0.986)

Despite good reconstruction results with small amounts of data, no purely self-supervised method
works well when training on multiple classes. We randomly select 4 classes and 352 meshes and
find that both NeuralPull [5] and the purely self-supervised variant of our method degrade quickly
as the number of meshes increases. Interestingly, in this setting we found that the errors of using
nearest neighbors rather than ground truth signed distance values accumulate and distort the original
surface boundary. For fair comparison, we follow NeuralPull and use 0.005 level-set (rather than zero
level-set) to represent the surface of the object. We assume the deviation in the positive direction a
result of more training samples that are outside the surface since most surfaces we train on are convex.
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Figure 6: Comparing self/unsupervised methods. Our self-supervised loss penalizes incorrect signs
and leads to sharper details from irregular surfaces such as pillows. Neither method works well when
multiple categories are introduced. Our full proposed method includes labeled data for supervision
which allows for scalability to multiple classes. All results are without test-time refinement.

This issue occurs also in Predictive Context Priors [17] which is unsupervised. Slight deviation from
the zero level-set seems to be a problem with self/unsupervised methods; we leave this for future
work. When trained with labeled data in our two-stage approach, we were able to reconstruct based
on the zero level-set. However, after test-time refinement, the 0.005 level-set was required.

This supports our finding that methods without supervision are insufficient for tackling large-scale
operations and are unable to take advantage of the availability of large amounts of unlabeled data.
However, empirically we found that using our self-supervised method compared to existing unsuper-
vised methods was more robust when trained along labeled data in our two-stage approach. When
using NeuralPull [5] for unlabeled data, the model could not converge.

6 Effectiveness of Meta-Learning a Prior

In the main text, we mention there are a few advantages of meta-learning a prior. Compared to directly
training on labeled and unlabeled data, our meta-learning process provides additional flexibility as we
can tune the split frequency and ratio of labeled and “pseudo-unlabeled” data. The model repeatedly
sees the same point clouds with and without labels, so shape features generated during labeled splits
are shared with “pseudo-unlabeled” splits. In contrast, we find that semi-supervised training from
scratch is unstable because errors in unlabeled data accumulate. Here, we provide two experiments to
illustrate the effectiveness and limitations of our meta-learning approach.

Training on diverse vs similar classes We train two models on our meta-learning first stage. The
first trains on the following six diverse shape classes, with a mix of small, large, planar, convex, and
concave surfaces: ’Bench’, ’QueenBed’, ’EndTable’, ’FloorLamp’, ’Monitor’, ’PottedPlant.’ The
second trains on six classes that are semantically and geometrically similar, large planar shapes:
‘EndTable’, ’AccentTable’, ’CoffeeTable’, ’DiningTable’, ’RoundTable’, ’Table.’ Then we evaluate
on 166 unseen classes. The first model outperforms the second in reconstruction quality, validating
that the diversity in the training set is more important than the raw number of classes. We do note
that the difference in CD is noticeable but not very significant. This validates the effectiveness of our
meta-learning approach: even with less diverse data, our model can still produce generalized priors.
We provide quantitative results in Tab. 4.

Table 4: Results of training on six diverse and six similar classes. Mean/median Chamfer Distance
(CD) of 166 unseen classes, scale is 10−4.

Six Diverse Classes Six Similar Classes

CD 0.972 / 0.657 1.321 / 0.934
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Training only with the supervised loss We train two separate models for a prior. Both train on
six classes: ’Bench’, ’QueenBed’, ’EndTable’, ’FloorLamp’, ’Monitor’, ’PottedPlant,’ with a total of
600 meshes. The first model is trained using our two-stage learning approach. The second model is
trained with only the supervised loss, but introduces dropout (20%) and small amounts of Gaussian
noise perturbations to the point clouds to reduce overfitting.

Then, we use both priors to train our second stage in exactly the same fashion. With our prior, our
model performs significantly better when reconstructing unseen classes. We provide quantitative
results on 166 unseen classes in Tab. 5. We highlight that after training stage 1, both methods perform
on par on unseen classes. However, our prior that emulates semi-supervised training is able to
significantly outperform in the second stage, where we introduce true unlabeled data samples.

Table 5: Comparison of our approach to a prior trained only with the supervised loss. Mean/median
Chamfer Distance (CD) of 166 unseen classes, scale is 10−4.

Proposed Supervised Prior (Augmentation + Dropout)

After stage 1 0.972 / 0.657 1.027 / 0.697
After stage 2 0.420 / 0.316 0.851 / 0.568

7 Reproductions and Licenses

All datasets we use and existing methods we compare to have released their code as open source.
For fair comparison, we make no changes to released code except for the dataloader for loading our
datasets. We test on the same hardware platform. We will also release our own code as open source
under the MIT license.

8 Limitations

There are a few limitations of our work that we would like to address in future work. First, we need
multiple categories to learn a diverse set of geometry. Training on just one category (e.g., chairs) will
not allow the model to generalize to multiple intricate shapes. Each category should also contain a
certain number of representative objects. We did not run experiments to determine the number of
categories required, but in our work we choose 20 categories, each with at least 80 objects, which
worked out well.

Second, for intricate details, test-time refinement is required. The downside of test-time refinement is
that each object requires more time to reconstruct. Fortunately, our self-supervised method allows for
refinement without additional inputs other than the point cloud.

Finally, our method trains and tests on full-view point clouds. In future work, we would experiment
with single or partial-view point clouds for shape completion tasks.

9 Broader Impact

Our method has no direct ethical impact, but potentially could be used for 3D reconstruction tasks in
face recognition and human reconstruction, which could result in privacy issues or gender and racial
biases.
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