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Abstract

Noisy marginals are a common form of confidentiality-protecting data release and1

are useful for many downstream tasks such as contingency table analysis, construc-2

tion of Bayesian networks, and even synthetic data generation. Privacy mechanisms3

that provide unbiased noisy answers to linear queries (such as marginals) are known4

as matrix mechanisms.5

We propose ResidualPlanner, a matrix mechanism for marginals with Gaussian6

noise that is both optimal and scalable. ResidualPlanner can optimize for many7

loss functions that can be written as a convex function of marginal variances (prior8

work was restricted to just one predefined objective function). ResidualPlanner can9

optimize the accuracy of marginals in large scale settings in seconds, even when the10

previous state of the art (HDMM) runs out of memory. It even runs on datasets with11

100 attributes in a couple of minutes. Furthermore ResidualPlanner can efficiently12

compute variance/covariance values for each marginal (prior methods quickly run13

out of memory, even for relatively small datasets).14

1 Introduction15

Marginals are tables of counts on a set of attributes (e.g., how many people there are for each16

combination of race and gender). They are one of the most common formats for the dissemination of17

statistical data [8, 2], studying correlations between attributes, and are sufficient statistics for loglinear18

models, including Bayesian networks and Markov random fields. For this reason, a lot of work in19

the differential privacy literature has considered how to produce a set of noisy marginals that is both20

privacy-preserving and accurate.21

One line of work, called the matrix mechanism [32, 52, 30, 53, 37, 51, 46, 18, 42] designs algorithms22

for answering linear queries (such as marginals) so that the privacy-preserving noisy answers are23

accurate, unbiased, and have a simple distribution (e.g., multivariate normal). These crucial properties24

allow statisticians to work with the data, model error due to data collection (sampling error) and25

error due to privacy protections. It enables valid confidence intervals and hypothesis tests and26

other methods for quantifying the uncertainty of a statistical analysis (e.g,. [20, 29, 50, 25, 26]).27

Incidentally, sets of noisy marginals are also used to generate differentially private synthetic data28

(e.g., [54, 4, 41, 10]).29

For the case of marginals, significant effort has been spent in designing optimal or nearly optimal30

matrix mechanisms for just a single objective function (total variance of all the desired marginals)31

[32, 49, 13, 52, 53, 31, 51] and each new objective function requires significant additional effort32

[6, 18, 42, 46]. However, existing optimal solutions do not scale and additional effort is needed to33

design scalable, but suboptimal, matrix mechanisms for marginals [37, 38]. Furthermore, computing34

the individual variances of the desired noisy marginals is a slow process and more difficult is35

computing the covariance between cells in the same marginal.36
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Contributions. Our paper addresses these problems with a novel matrix mechanisms called Resid-37

ualPlanner. It can optimize for a wide variety of convex objective functions and return solutions38

that are guaranteed to be optimal under Gaussian noise. It is highly scalable – running in seconds39

even when other scalable algorithms run out of memory. It also efficiently returns the variance and40

covariances of each cell of the desired marginals. It leverages the following insights. Since a dataset41

can be represented as a vector x of counts, and since a marginal query on a set A of attributes can be42

represented as a matrix QA (with QAx being the true answer to the marginal query), we find a new43

linearly independent basis that can parsimoniously represent both a marginal QA and the “difference”44

between two marginals QA and QA′ (subspace spanned by the rows of QA that is orthogonal to the45

rows of QA′ ). Using parsimonious linear bases, instead of overparametrized mechanisms, accounts46

for the scalability. Optimality results from a deep analysis of the symmetry that marginals impose on47

the optimal solution – the same linear basis is optimal for a wide variety of loss functions.48

2 Preliminaries49

A dataset D = {r1, . . . , rn} is a collection of records. Each record ri contains na attributes50

Att1, . . . , Attna and each attribute Attj can take values a(j)
1 , . . . , a

(j)
|Attj |. An attribute value a(j)

i for51

attribute Attj can be represented as a vector using one-hot encoding. Specifically, let e(j)
i be a row52

vector of size |Attj | with a 1 in component i and 0 everywhere else. In this way e(j)
i represents the53

attribute value a(j)
i . A record r with attributes Att1 = a

(1)
i1

, Att2 = a
(2)
i2

, . . . , Attna = a
(na)
ina

can54

thus be represented as the Kronecker product e(1)
i1
⊗e(2)

i2
⊗ · · ·⊗e(na)

ina
. This vector has a 1 in exactly55

one position and 0s everywhere else. The position of the 1 is the index of record r. With this notation,56

a dataset D can be represented as a vector x of integers. The value at index i is the number of times57

the record associated with index i appears in D. The number of components in this vector is denoted58

as d =
∏na
i=1 |Atti|. Given a subset A of attributes, a marginal query on A is a table of counts: for59

each combination of values for the attributes in A, it provides the number of records in D having60

those attribute value combinations. The marginal query can be represented as a Kronecker product61

QA = V1⊗ · · ·⊗Vna where Vi is the row vector of all ones (i.e, 1T|Atti|) if Atti /∈ A and Vi is the62

identity matrix I |Atti| if Atti ∈ A. The answer to the marginal query is obtained by evaluating the63

matrix-vector product QAx. For convenience, the notation introduced in this paper is summarized as64

a table in the supplementary material.65

EXAMPLE 2.1. As a running example, consider a dataset in which there are two attributes: Att166

with values “yes” and “no”, and Att2 with values “low”, “med”, “high”. The record (no, med)67

is represented by the kron product [ 0 1 ]⊗ [ 0 1 0 ] and the marginal query on the set A = {Att1} is68

represented as Q{Att1} = [ 1 0
0 1 ]⊗ [ 1 1 ]. Similarly, the marginal on attribute Att2 is represented as69

Q{Att2} = [ 11 ]⊗
[

1 0 0
0 1 0
0 0 1

]
. The query representing all one-way marginals is obtained by stacking70

them: Q1-way =
[
Q{Att1}
Q{Att2}

]
and Q1-wayx consists of the five query answers (number of records with71

Att1 = yes, number with Att1 = no, number with Att2 =low, etc.).72

2.1 Differential Privacy73

A mechanismM is an algorithm whose input is a dataset and whose output provides privacy protec-74

tions. Differential privacy is a family of privacy definitions that guide the behavior of mechanisms so75

that they can inject enough noise to mask the effects of any individual. There are many versions of76

differential privacy that support Gaussian noise, including approximate DP, zCDP, and Gaussian DP.77

DEFINITION 2.2 (Differential Privacy). LetM be a mechanism. For every pair of datasets D1,D278

that differ on the presence/absence of a single record and for all (measurable) sets S ⊆ range(M),79

• If P (M(D1) ∈ S) ≤ eεP (M(D2) ∈ S) + δ then M satisfies (ε, δ)-approximate differential80

privacy [17];81

• If Φ−1(P (M(D1) ∈ S)) ≤ Φ−1(P (M(D2) ∈ S)) + µ, where Φ is the cdf of the standard82

Gaussian distribution, thenM satisfies µ-Gaussian DP [15].83

• If the Rényi divergence Dα(M(D1)||M(D2)) between the output distributions ofM(D1) and84

M(D2) satisfies Dα(M(D1)||M(D2)) ≤ ρα for all α > 1, thenM satisfies ρ-zCDP [7].85
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Queries that are linear functions of the data vector x can be answered privately using the linear86

Gaussian mechanism, which adds correlated Gaussian noise to a linear function of x, as follows.87

DEFINITION 2.3 (Linear Gaussian Mechanism [46]). Given a m×d matrix B and m×m covariance88

matrix Σ, the (correlated) linear Gaussian mechanismM is defined asM(x) = Bx + N(0,Σ).89

The privacy cost matrix of M is defined as BTΣ−1B. The privacy cost of M, denoted by90

pcost(M), is the largest diagonal of the privacy cost matrix and is used to compute the privacy91

parameters:M satisfies ρ-zCDP with ρ = pcost(M)/2 [46], satisfies (ε, δ)-approximate DP with92

δ = Φ(
√
pcost(M)/2 − ε/

√
pcost(M)) − eεΦ(−

√
pcost(M)/2 − ε/

√
pcost(M)) (this is an93

increasing function of pcost(M) [5]), and satisfies µ-Gaussian DP with µ =
√
pcost(M) [15, 46].94

The use of a non-identity covariance matrix will help simplify the description of the optimal choices95

of B and Σ. We note that an algorithmM∗ that releases the outputs of multiple linear Gaussian96

mechanismsM1, . . . ,Mk (withMi(x) = Bix +N(0,Σi) ) is again a linear Gaussian mechanism.97

It is represented asM∗(x) = B∗x +N(0,Σ∗) with the matrix B∗ obtained by vertically stacking98

the Bi and with covariance Σ∗ being a block-diagonal matrix where the blocks are the Σi. Its privacy99

cost pcost(M∗) = pcost(M1, . . . ,Mk) is the largest diagonal entry of
∑k
i=1 BT

i Σ−1
i Bi.100

2.2 Matrix Mechanism101

The Matrix Mechanism [32, 52, 30, 53, 37, 38, 51, 46, 18, 42] is a framework for providing unbiased102

privacy-preserving answers to a workload of linear queries, represented by a matrix W (so that the103

true non-private answer to the workload queries is Wx). The matrix mechanism framework consists104

of 3 steps: select, measure, and reconstruct. The purpose of the select phase is to determine what we105

add noise to and how much noise to use. More formally, when a user’s preferred noise distribution is106

Gaussian, the select phase chooses a Gaussian linear mechanismM(x) ≡ Bx + N(0,Σ) whose107

noisy output can be used to estimate the true query answer Wx. Ideally,M uses the least amount108

of noise subject to privacy constraints (specified by a privacy definition and settings of its privacy109

parameters). The measure phase runs the mechanism on the data to produce (noisy) privacy-preserving110

outputs ω = M(x). The reconstruct step uses ω to compute an unbiased estimate of Wx. The111

unbiased estimate is typically W(BTΣ−1B)†BTΣ−1ω, where † represents the Moore-Penrose112

pseudo-inverse. This is the best linear unbiased estimate of Wx that can be obtained from ω113

[32]. This means that the goal of the select step is to optimize the choice of B and Σ so that the114

reconstructed answer is as accurate as possible, subject to privacy constraints. Ideally, a user would115

specify their accuracy requirements using a loss function, but existing matrix mechanisms do not116

allow this flexibility – they hard-code the loss function. The reason is each loss function requires117

significant research and new optimization algorithms [53, 46, 18]. On top of this, existing optimal118

matrix mechanism algorithms do not scale, while scalable matrix mechanisms are not guaranteed119

to produce optimal solutions [37]. Additionally, the reconstruction phase should also compute the120

variance of each workload answer. The variances are the diagonals of W(BTΣ−1B)†WT and121

making this computation scale is also challenging.122

3 Additional Related Work123

The marginal release mechanism by Barak et al. [6] predates the matrix mechanism [32, 52, 30, 53,124

13, 43, 37, 51, 46, 18, 42, 38] and adds noise to the Fourier decomposition of marginals. We add125

noise to a different basis, resulting in the scalability and optimality properties. The SVD bound [31]126

is a lower bound on total matrix mechanism error when the loss function is the sum of variances. This127

lower bound is tight for marginals and we use it as a sanity check for our results and implementation128

(note ResidualPlanner provides optimal solutions even when the SVD bound is infeasible to compute).129

Alternative approaches to the matrix mechanism can produce privcy preserving marginal query130

answers that reduce variance by adding bias. This is often done by generating differentially private131

synthetic data or other such data synopses from which marginals can be computed. State-of-the art132

approaches iteratively ask queries and fit synthetic data to the resulting answers [22, 34, 4, 19, 39, 35,133

44, 56]. For such mechanisms, it is difficult to estimate error of a query answer but recently AIM134

[39] has made progress in upper bounding the error. PGM [41] provides a connection between the135

matrix mechanism and this line of work, as it can postprocess noisy marginals into synthetic data. It136

3



is a better alternative to sampling a synthetic dataset from models fit to carefully chosen marginals137

[54, 11, 55, 10]. Synthetic data for answering marginal queries can also be created from random138

projections [48], copulas [33, 3], and deep generative models [23, 1, 35].139

With respect to the matrix mechanism, the reconstruction step is often one of the bottlenecks to140

scalability. While PGM [41] provides one solution, another proposal by McKenna et al. [40] is to141

further improve scalability by sacrificing some consistency (the answers to two different marginals142

may provide conflicting answers to submarginals they have in common). Work on differential privacy143

marginals has also seen extensions to hierarchical datasets, in which records form meaningful groups144

that need to be queried. That is, in addition to marginals on characteristics of people, marginals can145

be computed in different hierarchies such as geographic level (state, county, etc) and marginals on146

household composition (or other groupings of people) [2, 28, 36].147

4 ResidualPlanner148

ResidualPlanner is our proposed matrix mechanism for optimizing the accuracy of marginal queries149

with Gaussian noise. It is optimal and more scalable than existing approaches. It supports opti-150

mizing the accuracy of marginals under a wide variety of loss functions and provides exact vari-151

ances/covariances of the noisy marginals in closed-form. In this section, we first explain the loss152

functions it supports. We then describe the base mechanisms it uses to answer marginal queries. We153

next show how to reconstruct the marginal queries from the outputs of the base mechanisms and how154

to compute their variances in closed form. We then explain how to optimize these base mechanisms155

for different loss functions. The reason this selection step is presented last is because it depends on156

the closed form variance calculations. Then we analyze computational complexity.157

4.1 Loss Functions Supported by ResidualPlanner158

The loss functions we consider are based on the following principle: different marginals can have159

different relative importance but within a marginal, its cells are equally important. That is, a loss160

function can express that the two-way marginal on the attribute set {Race, Marital Status} is more161

important (i.e., requires more accuracy) than the 1-way marginal on {EducationLevel}, but all cells162

within the {Race, MaritalStatus} marginal are equally important. This is a commonly accepted163

principle for answering differentially private marginal queries (e.g., [32, 52, 30, 53, 37, 51, 46, 18,164

42, 39, 4, 34]) and is certainly true for the 2020 Census redistricting data [2].165

Let Wkload = {A1, . . . ,Ak} be a workload of marginals, where each Ai is a subset of attributes166

and represents a marginal. E.g., Wkload = {{Race, MaritalStatus}, {EducationLevel}} consists of167

2 marginals, a two-way marginal on Race/MaritalStatus, and a one-way marginal on Education. Let168

M be a Gaussian linear mechanism whose output can be used to reconstruct unbiased answers to169

the marginals in Wkload. For each Ai ∈Wkload, let V ar(Ai;M) be the function that returns the170

variances of the reconstructed answers to the marginal on Ai; the output of V ar(Ai;M) is a vector171

vi with one component for each cell of the marginal on Ai. A loss function L aggregates all of these172

vectors together: L(v1, . . . , vk). We have the following regularity conditions on the loss function.173

DEFINITION 4.1 (Regular Loss Function). We say the loss function L is regular if: (1) L is convex174

and continuous; (2) L(v1, . . . , vk) is minimized when all the vi are the 0 vectors; and (3) for any i,175

permuting just the components of vi does not affect the value of L(v1, . . . , vk). This latter condition176

just says that cells within the same marginal are equally important.177

Loss functions used on prior work are all regular. For example, weighted sum of variances178

[32, 52, 30, 53, 37, 51] can be expressed as L(v1, . . . , vk) =
∑
i ci1

T vi, where the ci are the179

nonnegative weights that indicate the relative importance of the different marginals. Another pop-180

ular loss function is maximum (weighted) variance [46, 18, 42], expressed as L(v1, . . . , vk) =181

max
{

max(v1)
c1

, . . . , max(vk)
ck

}
. Thus, the optimization problem that the selection step needs to solve182

is either privacy constrained: minimize loss while keeping privacy cost (defined at the end of Section183

2.1) below a threshold γ; or utility constrained: minimize privacy cost such that the loss is at most γ.184

Privacy constrained: arg min
M
L(V ar(A1;M), . . . , V ar(Ak;M)) s.t. pcost(M) ≤ γ (1)

Utility constrained: arg min
M

pcost(M) s.t. L(V ar(A1;M), . . . , V ar(Ak;M)) ≤ γ (2)
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4.2 Base Mechanisms used by ResidualPlanner185

As long as the loss function L is regular, we will show that an optimal mechanism can be constructed186

from a set of base mechanisms that we describe here. We define a subtraction matrix Subm to be an187

(m− 1)×m matrix where the first column is filled with 1, entries of the form (i, i+ 1) are -1, and all188

other entries are 0. For example, Sub3 =
[

1 −1 0
1 0 −1

]
and Sub2 = [ 1 −1 ]. We use these subtraction189

matrices to define special matrices called residual matrices that are important for our algorithm.190

For any subset A ⊆ {Att1, . . . , Attna} of attributes, we define the residual matrix RA as the191

Kronecker product RA = V1⊗ · · ·⊗Vna , where Vi = 1T|Atti| if Atti /∈ A and Vi = Sub|Atti| if192

Atti ∈ A. Continuing Example 2.1, we have R∅ = [ 1 1 ]⊗ [ 1 1 1 ], and R{Att1} = [ 1 −1 ]⊗ [ 1 1 1 ],193

and R{Att2} = [ 1 1 ]⊗
[

1 −1 0
1 0 −1

]
, and R{Att1,Att2} = [ 1 −1 ]⊗

[
1 −1 0
1 0 −1

]
.194

Using subtraction matrices, we also define the matrix ΣA as the Kronecker product195 ⊗
Atti∈A

(Sub|Atti|SubT|Atti|) and we note that it is proportional to RART
A. Σ∅ is defined as 1.196

Each subset A of attributes can be associated with a “base” mechanismMA that takes as input the197

data vector x and a scalar parameter σ2
A for controlling how noisy the answer is.MA is defined as:198

MA(x;σ2
A) ≡ RAx +N(0, σ2

AΣA) (3)

The residual matrices RA used by base mechanisms form a linearly independent basis that compactly199

represent marginals, as the next result shows.200

THEOREM 4.2. Let A be a set of attributes and let QA be the matrix representation of the marginal201

on A. Then the rows of the matrices RA′ , for all A′ ⊆ A, form a linearly independent basis of the202

row space of QA. Furthermore, if A′ 6= A′′ then RA′R
T
A′′ = 0 (they are mutually orthogonal).203

REMARK 4.3. To build an intuitive understanding of residual matrices, consider again Example204

2.1. Both R∅ and Q∅ are the sum query (marginal on no attributes). The rows of R{Att1} span the205

subspace of Q{Att1} that is orthogonal to Q∅ (and similarly for R{Att2}). The rows of R{Att1,Att2}206

span the subspace of Q{Att1,Att2} that is orthogonal to both Q{Att1} and Q{Att2}. Hence a residual207

matrix spans the subspace of a marginal that is orthogonal to its sub-marginals.208

Theorem 4.2 has several important implications. If we define the downward closure of a marginal209

workload Wkload = {A1, . . . ,Ak} as the collection of all subsets of the sets in Wkload (i.e.,210

closure(Wkload) = {A′ : A′ ⊆ A for some A ∈Wkload}) then the theorem implies that the211

combined rows from {RA′ : A′ ∈ closure(Wkload)} forms a linearly independent basis for the212

marginals in the workload. In other words, it is a linearly independent bases for the space spanned by213

the rows of the marginal query matrices QA for A ∈ Wkload. Thus, in order to provide privacy-214

preserving answers to all of the marginals represented in Wkload, we need all the mechanismsMA′215

for A′ ∈ closure(Wkload) – any other matrix mechanism that provides fewer noisy outputs cannot216

reconstruct unbiased answers to the workload marginals. This is proved in Theorem 4.4, which also217

states that optimality is achieved by carefully setting the σA noise parameter for eachMA.218

THEOREM 4.4. Given a marginal workload Wkload and a regular loss function L, suppose the219

optimization problem (either Equation 1 or 2) is feasible. Then there exist nonnegative constants220

σ2
A for each A ∈ closure(Wkload) (the constants do not depend on the data), such that the optimal221

linear Gaussian mechanismMopt releasesMA(x;σ2
A) for all A ∈ closure(Wkload). Furthermore,222

any matrix mechanism for this workload must release at least this many noise query answers.223

Algorithm 1: Efficient implementation ofMA(x;σ2
A) ≡ RAx +N(0, σ2

AΣA)

1 v← QAx// Evaluate the true marginal
2 m←

∏
Atti∈A |Atti|

3 H←
⊗

Atti∈A
Sub|Atti|// Use implicit representation, don’t expand

4 z← N(0, Im)// independent noise
5 return Hv + σAHz// use kron-product/vector multiplication from [37]
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MA can be evaluated efficiently, directly from the marginal of x on attribute set A, as shown in224

Algorithm 1. It uses the technique from [37] to perform fast multiplication between a Kronecker225

product and a vector. The privacy cost pcost(MA) of each base mechanismMA is also easy to226

compute and is given by the following theorem.227

THEOREM 4.5. The privacy cost ofMA with noise parameter σ2
A is 1

σ2
A

∏
Atti∈A

|Att1|−1
|Atti| and the228

evaluation ofMA given in Algorithm 1 is correct.229

4.3 Reconstruction230

Next we explain how to reconstruct unbiased answers to marginal queries from the outputs of the base231

mechanisms and how to compute (co)variances of the reconstructed marginals efficiently, without any232

heavy matrix operations (inversion, pseudo-inverses, etc.). Then, given the closed form expressions233

for marginals and privacy cost (Theorem 4.5), we will be able to explain in Section 4.4 how to234

optimize the σ2
A parameters of the base mechanismsMA to optimize regular loss functions L.235

Since the base mechanisms were built using a linearly independent basis, reconstruction is unique –236

just efficiently invert the basis. Hence, unlike PGM and its extensions [41, 40] our reconstruction237

algorithm does not need to solve an optimization problem and can reconstruct each marginal in-238

dependently, thus allowing marginals to be reconstructed in parallel, or as needed by users. The239

reconstructed marginals are consistent with each other (any two reconstructed marginals agree on240

their sub-marginals). Just as the subtraction matrices Subk were useful in constructing the base241

mechanismsMA, their pseudo-inverses Sub†k are useful for reconstructing noisy marginals from the242

noisy answers ofMA. The pseudo-inverses have a closed form. For example Sub4 =
[

1 −1 0 0
1 0 −1 0
1 0 0 −1

]
243

and Sub†4 = 1
4

[ 1 1 1
−3 1 1

1 −3 1
1 1 −3

]
. More generally, they are expressed as follows:244

LEMMA 4.6. For any Atti, let ` = |Atti|. The matrix Sub` has the following block matrix, with245

dimensions `× (`− 1), as its pseudo-inverse (and right inverse): Sub†` = 1
`

[
1T`−1

1`−11
T
`−1−`I`−1

]
.246

Each mechanismMA, for A ∈ closure(Wkload), has a noise scale parameter σ2
A and a noisy output247

that we denote by ωA. After we have obtained the noisy outputs ωA for all A ∈ closure(Wkload),248

we can proceed with the reconstruction phase. The reconstruction of an unbiased noisy answer for249

any marginal on an attribute set A ∈ closure(Wkload) is obtained using Algorithm 2. We note250

that to reconstruct a marginal on attribute set A, one only needs to use the noisy answers ωA′ for251

A′ ∈ closure(A). In other words, if we want to reconstruct a marginal on attribute set {Att1, Att2},252

we only need the outputs ofM∅,M{Att1},M{Att2}, andM{Att1,Att2} no matter how many other253

attributes are in the data and no matter what other marginals are in the Wkload. We emphasize again,254

the reconstruction phase does not run the base mechanisms anymore, it is purely post-processing.255

Algorithm 2: Reconstruct Unbiased Answers to the Marginal on A

Input: Noise scale parameters σ2
A′ and noisy answer vector ωA′ of mechanismMA′ for

every A′ ∈ closure(A).
Output: q is output as an unbiased noisy estimate of QAx.

1 q← 0

2 for each A′ ∈ closure(A) do

3 U←V1⊗ · · ·⊗Vna , where Vi =


Sub†|Atti| if Atti ∈ A′

1
|Atti|1|Atti| if Atti ∈ A/A′

[1] if Atti /∈ A

4 q← q + UωA′// use kron-product/vector multiplication from [37]
5 return q

THEOREM 4.7. Given a marginal workload Wkload and positive numbers σ2
A for each A ∈256

closure(Wkload), letM be the mechanism that outputs {MA(x;σ2
A) : A ∈ closure(Wkload)}257
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and let {ωA : A ∈ closure(Wkload)} denote the privacy-preserving noisy answers (e.g.,258

ωA = MA(x, σ2)). Then for any marginal on an attribute set A ∈ closure(Wkload), Algo-259

rithm 2 returns the unique linear unbiased estimate of QAx (i.e., answers to the marginal query)260

that can be computed from the noisy differentially private answers.261

The variances V ar(A;M) of all the noisy cell counts of the marginal on A is the vector262

whose components are all equal to
∑

A′⊆A

(
σ2
A′
∏
Atti∈A′

|Atti|−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

)
.263

The covariance between any two noisy answers of the marginal on A is264 ∑
A′⊆A

(
σ2
A′
∏
Atti∈A′

−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

)
.265

4.4 Optimizing the Base Mechanism Selection266

We now consider how to find the optimal Gaussian linear mechanismM∗ that solves the optimization267

problems in Equations 1 or 2. Given a workload on marginals Wkload, the optimization involves268

V ar(A;M∗) for A ∈Wkload (the variance of the marginal answers reconstructed from the output269

ofM∗) and pcost(M∗), from which the privacy parameters of different flavors of differential privacy270

can be computed.271

Theorem 4.4 says that M∗ works by releasing MA(x;σ2
A) for each A ∈ closure(Wkload) for272

appropriately chosen values of σ2
A. The privacy cost pcost(M∗) is the sum of the privacy costs of273

theMA. Theorem 4.5 therefore shows that pcost(M∗) is a positive linear combination of the values274

1/σ2
A for A ∈ closure(Wkload) and is therefore convex in the σ2

A values. Meanwhile, Theorem 4.7275

shows how to represent, for each A ∈ closure(Wkload), the quantity V ar(A;M∗) as a positive276

linear combination of σ2
A′ for A′ ∈ closure(A) ⊆ closure(Wkload). Therefore, the loss function L277

is also convex in the σ2
A values.278

Thus the optimization problems in Equations 1 and 2 can be written as minimizing a convex function279

of the σ2
A subject to convex constraints. In fact, in Equation 2, the constraints are linear when280

the optimization variables represent the σ2
A and in Equation 1 the constraints are linear when the281

optimization variables represent the 1/σ2
A. Furthermore, when the loss function is the weighted sum282

of variances of the marginal cells, the solution can be obtained in closed form (see supplementary283

material). Otherwise, we use CVXPY/ECOS [12, 14] for solving these convex optimization problems.284

4.5 Computational Complexity285

The time complexity of the steps of our framework is provided in the following theorem. It can be286

expressed in terms of the sizes of the marginals the user is asking for. Crucially, it does not depend287

on the universe size |Att1| × · · · × |Attna |, which accounts for the scalability.288

THEOREM 4.8. Let na be the total number of attributes. Let #cells(A) denote the number of cells in289

the marginal on attribute set A. Then:290

1. Expressing the privacy cost of the optimal mechanismM∗ as a linear combination of the 1/σ2
A291

values takes O(
∑

A∈Wkload #cells(A)) total time.292

2. Expressing all of the V ar(A;M∗), for A ∈Wkload, as a linear combinations of the σ2
A values293

can be done in O(
∑

A∈Wkload #cells(A)) total time.294

3. Computing all the noisy outputs of the optimal mechanism (i.e., MA(x;σ2
A) for A ∈295

closure(Wkload)) takes O
(
na
∑

A∈Wkload

∏
Atti∈A(|Atti|+ 1)

)
total time after the true an-296

swers have been precomputed (Line 1 in Algorithm 1). Note that the total number of cells on297

marginals in Wkload is O
(∑

A∈Wkload

∏
Atti∈A |Atti|

)
.298

4. Reconstructing marginals for all A ∈Wkload takes O(
∑

A∈Wkload |A|#cells(A)2) total time.299

5. Computing the variance of the cells for all of the marginals for A ∈ Wkload can be done in300

O(
∑

A∈Wkload #cells(A)) total time.301

To get a sense of these numbers, consider a dataset with 20 attributes, each having 3 possible values.302

If the workload consists of all 3-way marginals, there are 1,140 marginals each with 27 cells so303

ncells = 30, 780. The quantity inside the big-O for the selection step is 1, 459, 200 (roughly the304

number of scalar multiplications needed). These are all easily manageable on modern computers305

even without GPUs. Our experiments, under more challenging conditions, run in seconds.306
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5 Experiments307

We next compare the accuracy and scalability of ResidualPlanner against HDMM [38], including308

variations of HDMM with faster reconstruction phases [41]. The hardware used was an Ubuntu309

22.04.2 server with 12 Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz processors and 32GB of310

DDR4 RAM. We use 3 real datasets to evaluate accuracy and 1 synthetic dataset to evaluate scal-311

ability. The real datasets are (1) the Adult dataset [16] with 14 attributes, each having domain312

sizes 100, 100, 100, 99, 85, 42, 16, 15, 9, 7, 6, 5, 2, 2, respectively, resulting in a record domain size313

of 6.41 ∗ 1017; (2) the CPS dataset [9] with 5 attributes, each having domain size 100, 50, 7, 4, 2,314

respectively, resulting in a record domain size of 2.8 ∗ 105; (3) the Loans dataset [24] with 12315

attributes, each having domain size 101, 101, 101, 101, 3, 8, 36, 6, 51, 4, 5, 15, respectively, resulting316

in a record domain size of 8.25 ∗ 1015. The synthetic dataset is called Synth-nd. Here d refers to317

the number of attributes (we experiment from d = 2 to d = 100) and n is the domain size of each318

attribute. The running times of the algorithms only depend on n and d and not on the records in319

the synthetic data. For all experiments, we set the privacy cost pcost to 1, so all mechanisms being320

compared satisfy 0.5-zCDP and 1-Gaussian DP.321

5.1 Scalability of the Selection Phase322

We first consider how long each method takes to perform the selection phase (i.e., determine what323

needs noisy answers and how much noise to use). HDMM can only optimize total variance, which324

is equivalent to root mean squared error. For ResidualPlanner we consider both RMSE and max325

variance as objectives (the latter is a harder to solve problem). Each algorithm is run 5 times and the326

average is taken. Table 1 shows running time results; accuracy results will be presented later.327

Table 1: Time for Selection Step in seconds on Synth−nd dataset. n = 10 and the number of
attributes d varies. The workload consists of all marginals on ≤ 3 attributes each. Times for HDMM
are reported with ±2 standard deviations.

d HDMM
RMSE Objective

ResidualPlanner
RMSE Objective

ResidualPlanner
Max Variance Objective

2 0.013± 0.003 0.001± 0.0008 0.007± 0.001
6 0.065± 0.012 0.002± 0.0008 0.009± 0.001

10 0.639± 0.059 0.009± 0.001 0.018± 0.001
12 4.702± 0.315 0.015± 0.001 0.028± 0.001
14 46.054± 12.735 0.025± 0.002 0.041± 0.001
15 201.485± 13.697 0.030± 0.017 0.050± 0.001
20 Out of memory 0.079± 0.017 0.123± 0.023
30 Out of memory 0.247± 0.019 0.461± 0.024
50 Out of memory 1.207± 0.047 4.011± 0.112
100 Out of memory 9.913± 0.246 121.224± 3.008

As we can see, optimizing for max variance is more difficult than for RMSE, but ResidualPlanner328

does it quickly even for data settings too big for HDMM. The runtime of HDMM increases rapidly,329

while even for the extreme end of our experiments, ResidualPlanner needs just a few minutes.330

5.2 Scalability of the Reconstruction Phase331

We next evaluate the scalability of the reconstruction phase under the same settings. The reconstruc-332

tion speed for ResidualPlanner does not depend on the objective of the selection phase. Here we333

compare against HDMM [38] and a version of HDMM with improved reconstruction scalability334

called HDMM+PGM [38, 41] (the PGM settings used 50 iterations of its Local-Inference estimator,335

as the default 1000 was too slow). Since HDMM cannot perform the selection phase after a certain336

point, reconstruction results also become unavailable. Table 2 shows ResidualPlanner is clearly faster.337

5.3 Accuracy Comparisons338

Since ResidualPlanner is optimal, the purpose of the accuracy comparisons is a sanity check. For339

RMSE, we compare the quality of ResidualPlanner to the theoretically optimal lower bound known340
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Table 2: Time for Reconstruction Step in seconds on Synth−nd dataset. n = 10 and the number of
attributes d varies. The workload consists of all marginals on ≤ 3 attributes each. Times are reported
with ±2 standard deviations. Reconstruction can only be performed if the select step completed.

d HDMM HDMM + PGM ResidualPlanner
2 0.003± 0.0006 0.155± 0.011 0.005± 0.003
6 0.173± 0.011 4.088± 0.233 0.023± 0.004
10 Out of memory in reconstruction 20.340± 2.264 0.125± 0.032
12 Out of memory in reconstruction 39.162± 1.739 0.207± 0.004
14 Out of memory in reconstruction 69.975± 4.037 0.330± 0.006
15 Out of memory in reconstruction 91.101± 7.621 0.413± 0.006
20 Unavailable (select step failed) Unavailable (select step failed) 1.021± 0.011
30 Unavailable (select step failed) Unavailable (select step failed) 3.587± 0.053
50 Unavailable (select step failed) Unavailable (select step failed) 17.029± 0.212

100 Unavailable (select step failed) Unavailable (select step failed) 154.538± 15.045

as the SVD bound [31] (they match, as shown in Table 3). We note ResidualPlanner can provide341

solutions even when the SVD bound is infeasible to compute. Then we compare ResidualPlanner342

to HDMM when the user is interested in the maximum variance objective. This just shows that it343

is important to optimize for the user’s objective function and that the optimal solution for RMSE344

(the only objective HDMM can optimize) is not a good general-purpose approximation for other345

objectives (as shown in Table 4). Additional comparisons are provided in the supplementary material.346

Table 3: RMSE Comparisons to the theoretical lower bound SVD Bound [31]

Adult Dataset CPS Dataset Loans Dataset
Workload ResPlan SVDB ResPlan SVDB ResPlan SVDB

1-way Marginals 3.047 3.047 1.744 1.744 2.875 2.875
2-way Marginals 6.359 6.359 2.035 2.035 5.634 5.634
3-way Marginals 10.515 10.515 2.048 2.048 8.702 8.702
≤ 3-way Marginals 10.665 10.665 2.276 2.276 8.876 8.876

Table 4: Max Variance Comparisons with ResidualPlanner and HDMM (showing that being restricted
to optimizing only RMSE is not a good approximation of Max Variance optimization).

Adult Dataset CPS Dataset Loans Dataset
Workload ResPlan HDMM ResPlan HDMM ResPlan HDMM

1-way Marginals 12.047 41.772 4.346 13.672 10.640 33.256
2-way Marginals 67.802 599.843 7.897 47.741 52.217 437.478
3-way Marginals 236.843 5675.238 7.706 71.549 156.638 3095.997
≤ 3-way Marginals 253.605 6677.253 13.216 415.073 180.817 4317.709

6 Limitations, Conclusion, and Future Work.347

In this paper, we introduced ResidualPlanner, a matrix mechanism that is scalable and optimal for348

marginals under Gaussian noise, for a large class of convex objective functions. While these are349

important improvements to the state of the art, there are limitations.350

First, for some attributes, a user might not want marginals. For example, they might want range351

queries or queries with hierarchies (e.g., how many people drive sedans vs. vans; out of the sedans,352

how many are red vs. green, etc) [2, 28, 36]. In some cases, an attribute might have an infinite domain353

(e.g., a URL) and need to be handled differently [27, 45]. In other cases, the user may want other354

noise distributions, like the Laplace. These types of queries do not have the same type of symmetry355

as marginals that was crucial to proving the optimality of ResidualPlanner. For these situations, one356

of the key ideas of ResidualPlanner can be used – find a linear basis that compactly represents both357

the queries and “residual” (information provided by a query that is not contained in the other queries).358

Such a feature would result in scalability. It is future work to determine how to extend both scalability359

and optimality to such situations.360
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A Table of Notation555

Table 5: Table of Notation

D: Dataset
ri: ith record in D
na : number of attributes each record has
Attj : jth attribute.
|Attj |: size of the domain of attribute Attj .

a
(j)
1 , . . . , a

(j)
|Attj |: possible values (domain) of Attj .

d: Number of possible records: d =
na∏
j=1

|Attj |

x: Representation of D as a d-dimensional vector of counts (e.g., histogram)
A: (Sub)set of attributes

QA: Matrix representation of the marginal on A. The counts in the marginal are the result of
matrix-vector product QAx.

#cells(A): Number of cells in the marginal on A. Equals
∏
Atti∈A |Atti|

ei: one-hot encoding vector with entry i being 1 and the rest 0
ei,j : equal to ei − ej
1k: the k-dimensional vector whose entries are all 1.
Ik: the k × k identity matrix
M: A privacy mechanism.
ω: Output of a mechanism.
B: Query matrix of a Gaussian linear query mechanism:M(x) ≡ Bx +N(0,Σ)
Σ: Covariance matrix.

pcost(M): Privacy cost of a Gaussian linear mechanismM(x) ≡ Bx + N(0,Σ). It is defined as
the largest diagonal of BTΣ−1B. Differential privacy parameters can be computed from
pcost(M).

Wkload: A workload of marginals. Each element of Wkload is a set of attributes (representing the
marginal on those attributes).

ncells: Total number of cells in the marginals in the marginal workload (i.e., the output size).
closure(Wkload): The set of all subsets of Wkload. Formally defined as {A′ : A′ ⊆ A for some A ∈

Wkload}.
V ar(A,M): When the output ofM is used to reconstruct answers to the marginal on A, then V ar

returns the vector of variances of the marginal cells.
L: The loss function
†: The operator that gives the pseudo-inverse of a matrix

Subm: An (m− 1)×m subtraction matrix. The first column is filled with 1, entries of the form
(i, i+ 1) are -1, and all other entries are 0.

RA: Residual matrix. Given a set A ⊂ {Att1, . . . , Attna} of attributes, RA = V1⊗ · · ·⊗Vna ,
where Vi = 1|Atti| if Atti /∈ A and Vi = Sub|Atti| if Atti ∈ A.

ΣA: The covariance matrix used by the base mechanisms, formed as the kronecker product⊗
Atti∈A

(Sub|Atti|SubT|Atti|). Also Σ∅ = 1.

σA: Data-independent noise scale parameter
MA: The base mechanism defined as MA(x) ≡ RAx + N(0, σ2

AΣA). It uses a data-
independent noise parameter σ2

A
ωA: noisy output of mechanismMA
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B A Run-through of Residual Planner556

In this section, we provide a complete runthrough of ResidualPlanner using a small toy dataset.557

B.1 A Small Dataset and its Vectorized Representation558

In our example, we have a dataset with 3 attributes, so na = 3. Att1 takes values ‘a’ or ‘b’; Att2559

takes values ‘y’ or ‘n’; Att3 takes values 1 or 2 or 3.560

In this dataset, there are 5 people, and the tabular representation is shown in Table 6. For each

Att1 Att2 Att3
a n 2
b n 3
b y 3
a n 2
b y 3

Table 6: A Toy Dataset D

561
attribute, we can one-hot encode its attribute values as row vectors. So, for Att1, the attribute value562

’a’ is encoded as [1, 0] and ’b’ is encoded as [0, 1]. For Att2, the attribute value ’y’ is encoded as563

[1, 0] and ’n’ is encoded as [0, 1]. For attribute Att3, the attribute value ’1’ is encoded as [1, 0, 0], the564

value ’2’ is encoded as [0, 1, 0] and ’3’ is encoded as [0, 0, 1].565

The kronecker product representation of a record is the kronecker product of the one-hot encod-566

ing of each attributes. So, for example, the record ’an2’ is encoded as the kronecker product567

[1, 0]⊗[0, 1]⊗[0, 1, 0]. When this kronecker product is expanded, it has 12 components. One of the568

contains a 1 and the rest contain a 0. Thus the expanded kronecker product can be thought of as a569

one-hot encoding of the entire record.570

Indeed, in the expanded kronecker product, each dimension of the resulting vector is associated with571

a record. In table 7, we show the kronecker product representation of each record from Table 6. The572

left column of Table 7 shows the record and its kronecker representation. The next 12 columns show573

the resulting expansion. Each record becomes as 12-dimensional vector and the column labels in574

Table 7 show which record is associated with which index in the 12-dimensional vector.575

The sum of the kron representations of all the records is the data vector x. It is again a 12-dimensional576

vector. At each index i, x[i] is the number of people whose record is associated index i. For example,577

the 5th component is associated with the record ’an2’ and there are 2 people with that record. For578

mathematical convenience, x is treated as a column vector, but for display purposes, in Table 7 it is579

written as a row vector.

ay1 ay2 ay3 an1 an2 an3 by1 by2 by3 bn1 bn2 bn3

an2:[1, 0]⊗[0, 1]⊗[0, 1, 0] 0 0 0 0 1 0 0 0 0 0 0 0
bn3: [0, 1]⊗[0, 1]⊗[0, 0, 1] 0 0 0 0 0 0 0 0 0 0 0 1
by3: [0, 1]⊗[1, 0]⊗[0, 0, 3] 0 0 0 0 0 0 0 0 1 0 0 0
an2: [1, 0]⊗[0, 1]⊗[0, 1, 0] 0 0 0 0 1 0 0 0 0 0 0 0
by3: [0, 1]⊗[1, 0]⊗[0, 0, 3] 0 0 0 0 0 0 0 0 1 0 0 0

Vector of counts x: 0 0 0 0 2 0 0 0 2 0 0 1

Table 7: Kron product representations or each record and the whole dataset x. Nonzero components
are shown in bold red.

580

B.2 The Marginal Workload and its Representation as a Query Matrix.581

For this example, we set the marginal workload to consist of 3 marginals Wkload =582

{{Att1}, {Att1, Att2}, {Att2, Att3}}.583

The marginal on attribute set A = {Att1} has only two cells, which correspond to the number of584

people with Att1 = a (i.e., 3) and the number with Att1 = b (i.e., 3). This is called a one-way585
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A = {Att1}

a 2
b 3

A = {Att1, Att2}
y n

a 0 2
b 2 1

A = {Att2, Att3}
1 2 3

y 0 0 2
n 0 2 1

Table 8: True answers to the marginal queries in the marginal workload Wkload =
{{Att1}, {Att1, Att2}, {Att2, Att3}}.

marginal. The other marginals are two-way marginals because they involve two attributes. For586

example, the marginal on A = {Att2, Att3} has 6 cells. It represents the number of people for587

each combination of values for Att2 and Att3. For example, there are 2 people with Att2 = y and588

Att3 = 3.589

For each set A, the marginal on those attributes can be represented as a matrix QA such that590

calculating the marginal is equivalent to the matrix-vector multiplication QAx. The construction of591

the matrix QA is straightforward. It is a kronecker product of 3 matrices. Each matrix corresponds to592

an attribute. If the attribute is in A then the corresponding term is the identity matrix, otherwise is is593

the row vector full of ones. For example, Q{Att1} is a kron product of 3 matrices: the first matrix594

corresponds to Att1 and is the 2× 2 identity matrix. The second matrix is actually the vector full595

of ones because Att2 is not part of the marginal. This vector has 2 components because Att2 has 2596

possible values. Similarly, the third matrix is the vector full of ones with 3 components.597

For the marginals in Wkload, these are the the corresponding matrices:598

Q{Att1} =

[
1 0
0 1

]
⊗ [ 1 1 ]⊗ [ 1 1 1 ]

=

[
1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1

]
Q{Att1,Att2} =

[
1 0
0 1

]
⊗
[

1 0
0 1

]
⊗ [ 1 1 1 ]

=

 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1


Q{Att2,Att3} = [ 1 1 ]⊗

[
1 0
0 1

]
⊗

[
1 0 0
0 1 0
0 0 1

]

=


1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1



If we multiply Q{attr2,Att3} by the data vector x from Table 7, we get:599

Q{attr2,Att3}x =


0
0
2
0
2
1


Comparing it to the marginals shown in Table 8 we see that it is the flattened version of the marginal.600

That is, we take the first column of the {Att2, Att3}marginal of Table 8, then we put the next column601

below it, and the third column is placed at the bottom.602
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B.3 The Base Mechanisms603

Recall that our workload, the marginals we want privacy-preserving answers to, is Wkload =
{{Att1}, {Att1, Att2}, {Att2, Att3}}. Its closure, denoted by closure(Wkload) is all of its subsets.
So,

closure(Wkload) = { ∅, {Att1}, {Att2}, {Att3}, {Att1, Att2}, {Att2, Att3} }

For each A ∈ closure(Wkload) we need to form a base mechanismMA. EachMA has a free604

parameter σ2
A that we are free to choose. Each mechanism MA has the form MA(x;σ2

A) =605

RAx +N(0,ΣA). That is, on input x, the mechanism multiplies it by a special “residual” matrix606

RA and then adds correlated Gaussian noise, with zero mean and with covariance matrix σ2
AΣA.607

The residual and covariance matrices for each base mechanism are shown below.608

M∅ : R∅ = [ 1 1 ]⊗ [ 1 1 ]⊗ [ 1 1 1 ]

Σ∅ = [1]

M{Att1} : R{Att1} = [ 1 −1 ]⊗ [ 1 1 ]⊗ [ 1 1 1 ]

Σ{Att1} = [ 1 −1 ] ([ 1 −1 ])
T

= [2]

M{Att2} : R{Att2} = [ 1 1 ]⊗ [ 1 −1 ]⊗ [ 1 1 1 ]

Σ{Att2} = [ 1 −1 ] ([ 1 −1 ])
T

= [2]

M{Att3} : R{Att3} = [ 1 1 ]⊗ [ 1 1 ]⊗
[

1 −1 0
1 0 −1

]
Σ{Att3} =

[
1 −1 0
1 0 −1

]([
1 −1 0
1 0 −1

])T
=

[
2 1
1 2

]

M{Att1,Att2} : R{Att1,Att2} = [ 1 −1 ]⊗ [ 1 −1 ]⊗ [ 1 1 1 ]

Σ{Att1,Att2} =
(

[ 1 −1 ]⊗ [ 1 −1 ]
)(

[ 1 −1 ]⊗ [ 1 −1 ]
)T

= [4]

M{Att2,Att3} : R{Att2,Att3} = [ 1 1 ]⊗ [ 1 −1 ]⊗
[

1 −1 0
1 0 −1

]
Σ{Att2,Att3} =

(
[ 1 −1 ]⊗

[
1 −1 0
1 0 −1

])(
[ 1 −1 ]⊗

[
1 −1 0
1 0 −1

])T
=

[
4 2
2 4

]
Note that for any A, the residual matrix RA has a similar structure to QA except that where QA609

has an identity matrix in its kron product, RA has a subtraction matrix (e.g. [ 1 −1 ] or
[

1 −1 0
1 0 −1

]
).610

Meanwhile the covariance matrix ΣA looks like RART
A except that the vectors full of 1s have been611

first removed.612

How do we interpret the residual matrices? Well, R∅ is the sum query. In fact the matrix vector613

multiplication R∅x gives us the total number of people in the data.614

Next, R{Att1} tells us the information contained in the marginal on {Att1} that is not contained in615

the sum query. If we know the total number of people in the data, then the only new information the616

marginal gives us is the difference between the number of people with Att1 = a and the number of617

people with Att1 = b. In other words, R{Att1}x is this difference. Given this difference, and the618

total, once can recover the marginal on attribute Att1.619

Similarly, R{Att2} contains the information in the marginal on {Att2} that is not provided by the620

sum query. Finally R{Att3} contains the information in the marginal on {Att3} not provided in the621
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sum query, which is the number of people with Att3 = 1 minus the number with Att3 = 2, and622

also the number of people with Att3 = 1 minus the number with Att3 = 3. The product R{Att3}x623

returns those two differences as a vector with two components.624

Now, R{Att1,Att2} and R{Att2,Att3} are more complicated, but have the same idea. For example,625

R{Att1,Att2} represents new information that the marginal on {Att1, Att2} provides that is not626

captures by the sub-marginals (the marginal on {Att1} and the marginal on {Att2}.627

In general, the matrix RA represents the new information on that the marginal on A provides, which628

is not captured by the marginals on A′, for A′ ⊂ A (strict subsets).629

Now, Theorem 4.2 tells us that if we take all of the rows of all of the residual matrices, they will be630

linearly independent. Furthermore, given an attribute set A, the total number of rows of RA′ for all631

A′ ⊆ A is the number of rows in QA. Furthermore, the space spanned by those rows is the same as632

the space spanned by the rows of QA.633

This also means that if we know RA′x for all A′ ⊆ A then we can figure out QAx (and vice versa).634

Now, we want to get privacy-preserving (noisy) answers to the marginal queries in Wkload =635

{{Att1}, {Att1, Att2}, {Att2, Att3}} that are as accurate as possible subject to privacy constraints.636

We quantify accuracy using a regular (Definition 4.1) loss function (e.g., sum of the variances of637

the answers to the marginals) and we quantify privacy by setting privacy parameters for either638

(ε, δ)-differential privacy, ρ-zCDP, or µ-Gaussian differential privacy.639

Theorem 4.4 says that to maximize the accuracy subject to privacy con-640

straints, we need to take the closure of the workload, closure(Wkload) =641

{ ∅, {Att1}, {Att2}, {Att3}, {Att1, Att2}, {Att2, Att3} } and carefully choose positive642

numbers σ2
A for each A ∈ closure(Wkload) – so that is 6 numbers total. These numbers are chosen643

without looking at the data (we explain how in Section B.6). Once we have these numbers, we run644

the mechanismsMA(x;σ2
A) and return their outputs. In other words, we must release the outputs of:645

• M∅(x;σ2
∅) – produces 1 number (a vector with just one component)646

• M{Att1}(x;σ2
{Att2}) – produces 1 number (a vector with just one component)647

• M{Att2}(x;σ2
{Att2}) – produces 1 number (a vector with just one component)648

• M{Att3}(x;σ2
{Att3}) – produces 2 numbers (a vector with 2 components)649

• M{Att1,Att2}(x;σ2
{Att1,Att2}) – produces 1 number (a vector with 1 component)650

• M{Att2,Att3}(x;σ2
{Att2,Att3}) – produces 2 numbers (a vector with 2 components)651

Which gives us 8 total (noisy) numbers. In fact, any matrix mechanism for this workload must return652

at least 8 noisy numbers, by Theorem 4.4.653

From these outputs, one can reconstruct noisy answers to the marginals in Wkload (actually one can654

reconstruct noisy answers to any marginal in closure(Wkload)). We show how to do this in Section655

B.4. Then we show how to compute the privacy cost and variances of the algorithm in Section B.5.656

B.4 Reconstruction657

Let ωA denote the output ofMA. Thus, after running658

• M∅(x;σ2
∅)659

• M{Att1}(x;σ2
{Att1})660

• M{Att2}(x;σ2
{Att2})661

• M{Att3}(x;σ2
{Att3})662

• M{Att1,Att2}(x;σ2
{Att1,Att2})663

• andM{Att2,Att3}(x;σ2
{Att2,Att3})664
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we have the noisy answers665

ω∅, ω{Att1}, ω{Att2}, ω{Att3}, ω{Att1,Att2}, ω{Att2,Att3}666

From these noisy answers we can produce noisy answers for any marginal in Wkload or even667

closure(Wkload). To reconstruct a marginal on A, we need ωA′ for all A′ ⊆ A – this is not a lot as668

these vectors represent as many noisy numbers as there are cells in the desired histogram. So, for669

example, if we want to get noisy answers for the marginal on {Att2, Att3} (which has 6 cells), we670

need to use ω∅, ω{Att2}, ω{Att3}, and ω{Att2,Att3} (together these ω vectors represent a total of 6671

noisy numbers).672

In order to reconstruct the marginal on A, Algorithm 2 multiplies each ωA′ by a matrix that depends
on both A and A′. The algorithm calls this matrix U, but to make the notation precise for this
runthrough, we will call it UA←A′ (the U matrix that multiplies ωA′ when reconstructing A). It
turns out that:

QAx =
∑

A′⊆A

UA←A′RA′x

which means that the marginal on A could be recreated if we know the quantities RA′x (recall RA′673

are the matrices used to define our base mechanisms). Now, since ωA′ is a noisy version of RA′x,674

we can get noisy marginal answers by substituting in these noisy values into the above equation.675

For example, to reconstruct a noisy answer to the marginal on {Att2, Att3}, we do the following:676

Noisy Marginal on {Att2, Att3} = (U{Att2,Att3}←∅)ω∅

+ (U{Att2,Att3}←{Att2})ω{Att2}

+ (U{Att2,Att3}←{Att3})ω{Att3}

+ (U{Att2,Att3}←{Att2,Att3})ω{Att2,Att3}

where

U{Att2,Att3}←∅ =

(
1

2
12

)
⊗
(

1

3
13

)
=

[
1/2
1/2

]
⊗

[
1/3
1/3
1/3

]

U{Att2,Att3}←{Att2} =
(
Sub†2

)
⊗
(

1

3
13

)
=

[
1/2
−1/2

]
⊗

[
1/3
1/3
1/3

]

U{Att2,Att3}←{Att3} =

(
1

2
12

)
⊗
(
Sub†3

)
=

[
1/2
1/2

]
⊗

[
1/3 1/3
−2/3 1/3
1/3 −2/3

]

U{Att2,Att3}←{Att2,Att3})ω{Att2,Att3} =
(
Sub†2

)
⊗
(
Sub†3

)
=

[
1/2
−1/2

]
⊗

[
1/3 1/3
−2/3 1/3
1/3 −2/3

]

Note Sub†2 and Sub†3 are defined in Lemma 4.6.677

B.5 Privacy Cost and Marginal Variances678

Recall that for a marginal workload Wkload, we need to run a mechanism MA for each A ∈679

closure(Wkload). Theorem 4.5 shows how to compute the privacy cost pcost of each. In our680

running example, this means:681

• pcost(M∅(x;σ2
∅)) = 1

σ2
∅

682

• pcost(M{Att1}(x;σ2
{Att1})) = 1

σ2
{Att1}

∗ 1
2683

• pcost(M{Att2}(x;σ2
{Att2})) = 1

σ2
{Att2}

∗ 1
2684

• pcost(M{Att3}(x;σ2
{Att3})) = 1

σ2
{Att3}

∗ 2
3685

• pcost(M{Att1,Att2}(x;σ2
{Att1,Att2})) = 1

σ2
{Att1,Att2}

∗ 1
2 ∗

1
2686
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• and pcost(M{Att2,Att3}(x;σ2
{Att2,Att3})) = 1

σ2
{Att2,Att3}

∗ 1
2 ∗

2
3687

The total privacy cost is,688

1

σ2
∅

+
1

2

1

σ2
{Att1}

+
1

2

1

σ2
{Att2}

+
2

3

1

σ2
{Att3}

+
1

4

1

σ2
{Att1,Att2}

+
1

3

1

σ2
{Att2,Att3}

Thus this is a symbolic expression in terms of the (currently unknown) noise scale parameters σ2
A.689

According to Definition 2.3, we can convert the privacy cost to the ρ in ρ-zCDP by dividing by 2 and690

we can convert it to the µ from µ-Gaussian DP by taking the square root.691

For our running example, Wkload = {{Att1}, {Att1, Att2}, {Att2, Att3}} and we can express the692

variance of these marginals (after reconstruction from the noisy ωA answers) also in terms of the693

noise scale parameters. We do this with the help of Theorem 4.7.694

• Marginal on {Att1}. This marginal is reconstructed from the noisy answers ω∅ and ω{Att1}695

and so the variance of its cells depends only on σ2
∅ and σ2

{Att1}. Applying Theorem 4.7, get696

that the variance in each cell of this marginal is the same and equals.697 (
σ2
∅ ∗

1

22

)
+

(
σ2
{Att1} ∗

1

2

)
• Marginal on {Att1, Att2}. This marginal is reconstructed from ω∅, ω{Att1}, ω{Att2}, and698

ω{Att1,Att2} and hence the variance of the cells in the marginal depend on the corresponding699

4 noise scale parameters. The cell variance is700 (
σ2
∅ ∗

1

22
∗ 1

22

)
+

(
σ2
{Att1} ∗

1

2
∗ 1

22

)
+

(
σ2
{Att2} ∗

1

2
∗ 1

22

)
+

(
σ2
{Att1,Att2} ∗

1

2
∗ 1

2

)
• Marginal on {Att2, Att3}. Similarly, this marginal also depends on 4 noise scale parameters701

as follows:702 (
σ2
∅ ∗

1

22
∗ 1

32

)
+

(
σ2
{Att2} ∗

1

2
∗ 1

32

)
+

(
σ2
{Att3} ∗

2

3
∗ 1

22

)
+

(
σ2
{Att2,Att3} ∗

1

2
∗ 2

3

)
B.6 The Sum-of-Variances Loss Function703

Now we can express the overall privacy cost symbolically in terms of the noise scale parameters.704

We can also express the variance of each marginal cell symbolically. We can use these symbolic705

expressions to set up any regular loss function and then run it through a convex optimizer to solve it.706

In this section, we give an example for the weighted sum of variances, which is one of the most707

popular loss functions for the matrix mechanism in research settings (mostly because this loss function708

is easiest to work with).709

Each marginal has a weight, which we set to be 1 to avoid introducing more symbols, and the710

objective function is computed by adding up the cell variances in a marginal, multiplying by the711

weight, and adding up over the workload marginals. The marginal on {Att1} has two cells (so we712

multiply the cell variance for this marginal, computed in the previous section, by 2). The marginal on713

{Att1, Att2} has 4 cells, and the marginal on {Att2, Att3} has 6 cells. Thus, after the dust clears,714

the sum of the cell variances across the workload marginals is:715

=
11

12
σ2
∅ +

3

2
σ2
{Att1} +

5

6
σ2
{Att2} + σ2

{Att3} + σ2
{Att1,Att2} + 2σ2

{Att2,Att3}

Thus, we can set up the optimization problem: minimize the sum of variances subject to the privacy716

cost (computed in Section B.5) being less than some constant c:717

arg min
σ2
∅, σ

2
{Att1}

σ2
{Att2}

, σ2
{Att3}

σ2
{Att1,Att2}

, σ2
{Att2,Att3}

11

12
σ2
∅ +

3

2
σ2
{Att1} +

5

6
σ2
{Att2} + σ2

{Att3} + σ2
{Att1,Att2} + 2σ2

{Att2,Att3}
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such that
1

σ2
∅

+
1

2

1

σ2
{Att1}

+
1

2

1

σ2
{Att2}

+
2

3

1

σ2
{Att3}

+
1

4

1

σ2
{Att1,Att2}

+
1

3

1

σ2
{Att2,Att3}

≤ c

If we let the coefficient of σA be denoted by vA and the coefficient of 1/σ2
A be denoted by pA, then718

this optimization problem can be written as:719

arg min
σ2
A: A∈closure(Wkload)

∑
A∈closure(Wkload)

vAσ
2
A

s.t.
∑

A∈closure(Wkload)

pA
σ2
A

≤ c

Lemma G.1 in Section G shows that the optimal solution is obtained by computing:720

T =

(∑
A

√
vApA

)2

/c =

(√
11

12
∗ 1 +

√
3

2
∗ 1

2
+

√
5

6
∗ 1

2
+
√

2/3 +
√

1/4 +
√

2/3

)2

/c

≈ 21.18/c

σ2
A =

√
TpA/(cvA) ≈

√
21.18pA/vA/c

σ2
∅ ≈

√
21.18 ∗ 12/11/c ≈ 4.8/c

etc.721

C Optimality Proof of ResidualPlanner722

In this section, we prove the optimality of ResidualPlanner. It takes advantage of the symmetry723

inherent in marginals and regular loss functions.724

The proof sketch is the following. Given one optimal mechanismM, we can create a variation M̃ of725

that does the following. (1) M̃ modifies each input record by applying some invertible function fi to726

each attribute Atti (for example, if Atti is a tertiary attribute, we can modify the value of Atti for727

each record using a function fi where fi(1) = 3, fi(2) = 1, fi(3) = 2). This step can be viewed as728

simply renaming the attribute values within an attribute. (2) Then M̃ runsM on the resulting dataset.729

Note that marginals can be reconstructed from the output of M̃ by first running the reconstruction730

one would do forM and then inverting the fi functions on the resulting marginals (i.e., rearranging731

the cells in each marginal to undo the within-attribute renaming caused by the fi). This variation M̃732

has the same privacy properties asM and the same loss (due to the regularity condition on the loss).733

Hence M̃ is also optimal. Then we create yet another optimal privacy mechanismM∗ that splits734

the privacy budget across all variations ofM and returns their outputs. It turns out that the privacy735

cost matrix ofM∗ has eigenvectors that are equal to the rows of the residual matrices RA used by736

ResidualPlanner. Rewriting the privacy cost matrix ofM∗ using this eigendecomposition, we create737

another mechanism (the mechanism that runs the base mechanisms of ResidualPlanner) that has the738

same privacy cost matrix and the same value for the loss and hence is optimal.739

The rest of this section explains these steps in details with formal proofs and running commentary740

that helps to better understand the notation and constructs in the proof.741

C.1 Notation Review742

We first start with a review of key notation. Recall that a dataset D = {r1, . . . , rn} is a collection of743

records. Each record ri contains attributes Att1, . . . , Attna and each attribute Attj can take values744

a
(j)
1 , . . . , a

(j)
|Attj |.745

An attribute value a(j)
i for attribute Attj can be represented as a vector using one-hot encoding.746

Specifically, let e(j)
i be a row vector of size |Attj | with a one in component i and 0 everywhere else.747

In this way, e(j)
i is a representation of a(j)

i .748
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A record r with attributes Att1 = a
(1)
i1

, Att2 = a
(2)
i2

, . . . , Attna = a
(na)
ina

can thus be represented as749

the kron product e(1)
i1
⊗e(2)

i2
⊗ · · ·⊗e(na)

ina
. This vector has a 1 in exactly one position and 0s everywhere750

else. The position of the 1 is the index of record r.751

Thus, a data vector x is a vector of integers. The value at index i is the number of times the record752

associated with index i appears in D.753

C.2 Permutations754

For each attribute Atti, let Π(i) be the set of permutations on the numbers 1, . . . , |Atti|, so that each755

π ∈ Π(i) can be interpreted as a permutation (or renaming) of the attributes values of Atti. We can756

also view π as a function on vectors of size |Atti| that permutes their coordinates. That is, the ith757

coordinate of a vector y is the π(i)th coordinate of π(y).758

One can select a permutation for each attribute π(1) ∈ Π(1), . . . , π(na) ∈ Π(na) and use it to de-759

fine a permutation over records. This permutation maps a record represented by the kron product760

e
(1)
i1
⊗e(2)

i2
⊗ · · ·⊗e(na)

ina
into π(1)(e

(1)
i1

)⊗π(2)(e
(2)
i2

)⊗ · · ·⊗π(na)(e
(na)
ina

). We can think of this permu-761

tation π = (π(1), . . . , π(na)) as a function that independently renames each attribute value in a record.762

Thus this permutation can be extended to datavectors x. The value of x at the index associated with763

record r is the value of π(x) at the index associated with record π(r). Another way to look at it is764

that π(x) is the histogram associated with the dataset {π(r1), π(r2), . . . , π(rn)}. This permutation765

can be represented as a permutation matrix Wπ such that Wπx = π(x).766

We let Π = Π(1)×· · ·×Π(na) be the set of all such permutations. We call this the space of renaming767

permutations since each π ∈ Π renames the values of each attribute separately.768

Our first result is that permutation does not affect the privacy parameters of a mechanism.769

LEMMA C.1. LetM(x) ≡ Bx +N(0,Σ) be a mechanism that satisfies ρ-zCDP, (ε, δ)-approximate770

DP, and µ-Gaussian DP. Let π be a permutation of the indices of x and Wπ the corresponding771

permutation matrix. ThenMπ(x) ≡ BWπx +N(0,Σ) satisfies ρ-zCDP, (ε, δ)-approximate DP,772

and µ-Gaussian DP (i.e., with the same privacy parameters).773

Proof. The privacy cost pcost(M) of M is the largest diagonal of BTΣ−1B. The privacy cost774

pcost(Mπ) ofMπ is the largest diagonal of WT
πBTΣ−1BWπ . The effect of Wπ on both sides is775

to permute the rows and columns of BTΣ−1B in the same way. Thus the diagonals of BTΣ−1B776

and WT
πBTΣ−1BWπ are the same up to permutation and henceM andMπ have the same privacy777

cost and therefore the same privacy parameters.778

The next result is that a renaming permutation preserves the accuracy of a marginal derived from the779

answer to a mechanism.780

LEMMA C.2. Let Wkload = {A1, . . . ,Ak} be a workload on marginals. Let M(x) ≡ Bx +781

N(0,Σ) be a mechanism whose output can be used to provide unbiased estimates of those marginals.782

Let π ∈ Π be a renaming permutation and Wπ the corresponding permutation matrix. Define783

Mπ(x) ≡ BWπx +N(0,Σ). Then unbiased answers to Wkload can be obtained from the output784

ofMπ and for any regular loss function L (Definition 4.1), L(V ar(A1;M), . . . , V ar(Ak;M)) =785

L(V ar(A1;Mπ), . . . , V ar(Ak;Mπ))786

Proof. For each set of attributes Ai ∈ Wkload, let QAi
be the query matrix of the marginal787

(i.e., the true marginal is computed as QAi
x). Then the best linear unbiased estimate of788

the marginal on Ai from the output ω of M is QAi
(BTΣ−1B)†BTΣ−1ω and V ar(Ai;M)789

is the diagonal of the covariance matrix of this estimate, which is QAi
(BTΣ−1B)†QT

Ai
.790

Meanwhile, the best linear unbiased estimate of the marginal on Ai from the output ω′791

of Mπ is is QAi
(WT

πBTΣ−1BWπ)†WT
πBTΣ−1ω′ and V ar(Ai;M) is the diagonal of792

QAi
(WT

πBTΣ−1BWπ)†QT
Ai

= QAi
WT

π (BTΣ−1B)†WπQT
Ai

.793

We note that QAi
WT

π is a permutation of the rows of QAi
(computing a marginal on a dataset in794

which attribute values within the same attribute are renamed is the same as computing the marginal795
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on the original dataset and then renaming the marginal cells, which is permutation of the output of796

the marginal computation).797

Therefore the diagonals of QAi
(BTΣ−1B)†QT

Ai
and QAi

(WT
πBTΣ−1BWπ)†QT

Ai
are the same798

up to permutation. Hence the vector V ar(Ai;M) is the same as the vector V ar(Ai;Mπ) up to799

permutation of the components, and hence does not affect a regular loss function L.800

Finally, we show that there exists an optimal mechanism whose privacy cost matrix exhibits symme-801

tries defined by the set of permutaitons Π.802

LEMMA C.3. Let Wkload = {A1 . . . ,Ak} be a workload of marginal queries. Let L be a regular803

loss function. Let U be the set of all Gaussian linear mechanisms that can provide unbiased answers804

to the marginals in the Wkload. Let γ be a real number. Then whenever either of the following805

optimization problems are feasible,806

min
M∈U

pcost(M) s.t. L(V ar(A1;M), . . . , V ar(Ak;M)) ≤ γ

min
M∈U

L(V ar(A1;M), . . . , V ar(Ak;M)) s.t. pcost(M) ≤ γ

the feasible optimization problem is minimized by some mechanism of the form M(x) ≡ Bx +807

N(0,Σ) whose privacy cost matrix Γ ≡ B
T
Σ
−1

B has the following symmetries: for all renaming808

permutations π ∈ Π (with Wπ being the associated permutation matrix), we have Γ = WT
πΓWπ809

(in other words, permuting the rows has no effect as long as the columns are permuted in the same810

way).811

Proof. LetMopt(x) ≡ Boptx +N(0,Σopt) be an optimal mechanism to one of these problems. It812

may not have the required symmetries, but from it we will construct an optimal mechanism that does.813

For a permutation π (and corresponding permutation matrix Wπ) and a positive number λ, consider814

the mechanism Mπ,λ(x) ≡ BoptWπx + N(0, λΣopt). By Lemma C.2, this mechanism also815

answers the marginals in Wkload.816

Now consider the mechanismM which, on input x outputs the result ofMπ,|Π| for all π ∈ Π.817

The query matrix ofM is B =

 BoptWπ1

...
BoptWπ|Π|

 and the covariance matrix Σ is a block diagonal matrix818

with the scaled matrix |Π|Σopt in each block. Clearly, by Lemma C.2, it also provides unbiased819

answers to the marginals in Wkload.820

First, we claim that the pcost(M) ≤ pcost(Mopt) so that the privacy parameters are at least as good.821

Recall pcost(M) is the largest diagonal entry of:822

B
T
Σ
−1

B =
1

|Π|
∑
π∈Π

WT
πBT

optΣ
−1
optBoptWπ, (4)

Since the privacy cost pcost(Mπ,1) is the largest diagonal of WT
πBT

optΣ
−1
optBoptWπ and equals823

pcost(Mopt), Equation 4 (and convexity of the max function) shows that the pcost(M) ≤824

pcost(Mopt).825

Next we consider the loss function. Let Ai ∈ Wkload be a set of attributes and let QAi
be the826

corresponding query matrix for the marginal on Ai. Then the reconstructed variances of the answers827

to this marginal, based on the output ofM is:828

V ar(Ai;M) = diag
(
QAi

(B
T
Σ
−1

B)†QT
Ai

)
= diag

(
1

|Π|
∑
π∈Π

QAi

(
WT

πBT
optΣ

−1BoptWπ

)†
QT

Ai

)

=
1

|Π|
∑
π∈Π

V ar(Ai;Mπ,1)
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For any π ∈ Π, Lemma C.2 tells us that L(V ar(A1;Mopt), . . . , V ar(Ak;Mopt)) =829

L(V ar(A1;Mπ,1), . . . , V ar(Ak;Mπ,1)) and so regularity of L (which includes convexity), means830

that L(V ar(A1;M), . . . , V ar(Ak;M)) ≤ L(V ar(A1;Mopt), . . . , V ar(Ak;Mopt)).831

ThusM is no worse in privacy or utility thanMopt and hence is optimal.832

Thus we consider the symmetries of the privacy cost matrix ofM, which is given in Equation 4.833

Clearly it has the desired symmetry property that Γ = WT
πΓWπ for any π ∈ Π as the permutation834

space Π is an algebraic group.835

836

C.3 From permutations to interpretations837

LetMopt(x) ≡ Boptx +N(0,Σopt) be an optimal mechanism that has the symmetries guaranteed838

by Lemma C.3. Our goal is to use the symmetries in the privacy cost matrix Γopt ≡ BT
optΣ

−1
optBopt839

to examine the structure of Γopt.840

If γi,j is the (i, j)th entry of Γopt and if there is a renaming permutation that maps ri (the record841

associated with index i) to some ri′ (at index i′) and maps rj to some rj′ then γi,j = γi′,j′ . Note842

that if ri and rj have the same values for attributes Att1 and Att2 then ri′ and rj′ must match on the843

same attributes because renaming permutations just change the names of values within each attribute.844

Thus we introduce notation for the set of attributes on which two records match:845

DEFINITION C.4 (Common Attributes). Define ζ to be the function that takes two records and outputs846

the set of attributes on which they match We emphasize that ζ(ri, rj) is a set of attributes, not attribute847

values.848

This discussion leads to the following result which characterizes the privacy cost matrix of an optimal849

mechanism.850

LEMMA C.5. Under the same conditions as Lemma C.3, there exists an optimal mechanism with a851

privacy cost matrix Γopt for which the following holds. In addition to the symmetry guaranteed by852

Lemma C.3, for every subset of attributes S ⊆ {Att1, . . . , Attna}, there exists a number cS such853

that γi,j , the (i, j)th entry of Γopt, is equal to cζ(ri,rj). In other words, the (i, j)th entry is completely854

determined by the set ζ(ri, rj) (recall ri the record value associated with index i and rj is the record855

value associated with index j).856

Proof. By Lemma C.3, there exists an optimal mechanism with privacy cost matrix Γopt that is857

invariant under renaming permutations of its rows as long as the columns are permuted in the same858

way. Thus if ri is the record value corresponding to position i and rj is the record value corresponding859

to position j, there exists a renaming permutation that maps ri to some ri′ and rj to some r′j if860

and only if the attributes on which ri and rj match are the same as the attributes on which ri′861

and rj′ match each other (in symbols: ζ(ri, rj) = ζ(ri′ , rj′)). When there exists such a renaming862

permutation then γi,j = γi′,j′ . Thus the value of γi,j is completely determined by ζ(ri, rj) and the863

result follows.864

From Theorem 4.2, we know that the rows of the matrices of RA, for all A ⊆ {Att1, . . . , Attna} are865

a linearly independent basis for Rd, where d =
∏na
i=1 |Atti|. Thus we call the rows a residual basis.866

DEFINITION C.6. A row vector v is a residual basis vector if it is a row in RA for some A ⊆867

{Att1, . . . , Attna}.868

We now provide an interpretation of the residual bases. First, for an attribute Att`, define the vector869

e
(`)
i,j to be a vector of length |Att`| such that the element at position i is 1, the element at position j870

is -1 and everywhere else is 0. In other words, e(`)
i,j = e

(`)
i − e

(`)
j (recall e(`)

i is 1 in position i and 0871

everywhere else and is a one-hot encoding of the attribute a(`)
i ). Now, each element of the residual872

basis has the form v(1)⊗ · · ·⊗v(na) where, for each `, v(`) is either the vector 1T|Att`| or a vector873

e
(`)
1,i`

. When the vector for attribute Att` is the vector 1T|Att`|, we say that all attribute values of Att`874
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are selected. When the vector for Att` is e(`)
1,i`

, then we say attribute value a(`)
1 is positively selected875

and a(`)
i`

is negatively selected (the other attribute values of Att` are not selected at all). The attributes876

for which the kron term is not 1T|Att`| are called the discriminative attributes.877

As an example of this notation and terminology, consider Table 9. Suppose we have three attributes:878

Att1 takes values ‘a’ or ‘b’; Att2 takes values ‘y’ or ‘n’; Att3 takes values 1 or 2 or 3.879

ay1 ay2 ay3 an1 an2 an3 by1 by2 by3 bn1 bn2 bn3
bn1: [0, 1]⊗[0, 1]⊗[1, 0, 0] 0 0 0 0 0 0 0 0 0 1 0 0
[1, 1]⊗[1,−1]⊗[1,−1, 0] 1 -1 0 -1 1 0 1 -1 0 -1 1 0
[1,−1]⊗[1, 1]⊗[1, 0,−1] 1 0 -1 1 0 -1 -1 0 1 -1 0 1

Table 9: Kron product representations.

In this case, the data vector x would have 12 components. The first component corresponds to the880

number of appearances of record “a,y,1” in the dataset, the second component corresponds to record881

“a,y,2” and so on. The records corresponding to each index of x are listed in order as the column882

headings in Table 9. The first row shows the representation of record “b,n,1” which is composed of883

the second value (b) for Att1, the second value (n) for Att2 and the first value (1) for Att3. Hence884

its kron representation is [0, 1]⊗[0, 1]⊗[1, 0, 0] and when the kron product is evaluated, the resulting885

vector has a 1 in the index corresponding to “bn1” (10th column) and 0 everywhere else.886

The second and third rows show the expansions of two residual basis vectors [1, 1]⊗[1,−1]⊗[1,−1, 0]887

(its discriminative attributes are Att2 and Att3) and [1,−1]⊗[1, 1]⊗[1, 0,−1] (its discriminative888

attributes are Att1 and Att3). Consider again the kron product [1, 1]⊗[1,−1]⊗[1,−1, 0]. Note that889

the first part of the kron product, [1, 1] refers to the first attribute and selects both of its values (sets890

them to 1). The second part of the kron product [1,−1] refers to the Att2 and positively selects the891

first attribute value ’y’ (sets it to 1) and negatively selected the second attribute value ’n’ (sets it to892

-1). The third part is [1,−1, 0] and it positively selects the first attribute value, negatively selects the893

second, but the third attribute value is not selected at all (i.e., the 3rd position is 0). These attribute894

selections can help us determine what the kron product looks like when it is expanded as follows. For895

the residual basis vector v(1)⊗ · · ·⊗v(na) the value at the index associated with a record r is896

• 0 if r has an attribute whose value is not selected by the residual basis vector’s kron product.897

In this case we say the residual basis vector assigns a 0 to record r. For example, in the898

residual basis vector corresponding to kron product [1, 1]⊗[1,−1]⊗[1,−1, 0], the third899

value of the third attribute is not selected. For any record that assigns the attribute value 3 to900

Att3, this residual basis vector assigns a 0 to such a record.901

• 1 if for every attribute, the value assigned to it by r is selected (posititvely or negatively), and902

the number of negatively selected attribute values is even. In this case we say the residual903

basis vector assigns a 1 to record r.904

• -1 if the attribute value for each attribute is selected, and the number of negatively selected905

attribute values is odd. In this case we say the residual basis vector assigns a −1 to record r.906

For example, for the residual basis vector [1, 1]⊗[1,−1]⊗[1,−1, 0], the attribute value 3 for Att3 is907

not selected. Hence the value at indices corresponding to records an3,bn3,ay3,by3 are all 0 (see Table908

9). Next, consider the record an2. The value “a” is positively selected, “n” is negatively selected,909

and “2” is negatively selected. Hence all attributes are selected and an even number of attributes are910

negatively selected. Therefore the value at the index associated with an2 is 1. Now for the record by2.911

The “b” is positively selected, “y” is positively selected, and “2” is negatively selected. Hence there912

are an odd number of negative selections and so the value at the index associated with by2 is -1.913

With this discussion and associated notation, we can now show that each residual basis vector is an914

eigenvector of the optimal privacy cost matrix, and the eigenvalue only depends on which attributes915

are discriminative.916

THEOREM C.7. Under the same conditions as Lemma C.3, there exists an optimal mechanism such917

that the eigenvectors of its privacy cost matrix Γ are the residual basis vectors (Definition C.6).918

Furthermore, if two residual basis vectors v(1)⊗ · · ·⊗v(na) and w(1)⊗ · · ·⊗w(na) have the same919

discriminative attributes (i.e., for all i, w(i) 6= 1T|Atti| if and only v(i) 6= 1T|Atti|) then the two residual920
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basis vectors have the same eigenvalues (in other words, all rows of the same residual matrix have921

the same eigenvalues).922

Proof. Recall from Definition C.4 that ζ(ri, rj) is the set of attributes on which ri and rj are equal.923

Let Γ be the privacy cost matrix guaranteed by Lemma C.5 with the properties guaranteed by Lemma924

C.5, namely that for every subset of attributes S ⊆ {Att1, . . . , Attna}, there exists a number cS such925

that γi,j , the (i, j)th entry of Γ, is equal to cζ(ri,rj) – the constant associated with the set ζ(ri, rj),926

where ri the record value associated with index i and rj is the record value associated with index j.927

Let r` be a record associated with index `. We consider the dot product between a residual basis vector928

v = v(1)⊗ · · ·⊗v(na) and the `th row of Γ. Since the entries of the `th row are cζ(r`,r1), . . . , cζ(r`,rd)929

and the entries of v are 0,1,-1, this dot product can be expressed as:930 ∑
r assigned

value 1 by v

cζ(r`,r) −
∑

r assigned
value -1 by v

cζ(r`,r) (5)

We analyze this in three cases.931

Case 1: v assigns a 0 to r`. In this case, there is an attribute for which r` has a value that is not932

selected. Without loss of generality, we may assume this is the first attribute Att1 so that v(1) = e1,i933

(the vector with a 1 at the first index and -1 at the ith index for some i and 0 everywhere else) and934

the value of Att1 for r` is therefore not a(1)
1 or a(1)

i (because r` got assigned 0 by v due to attribute935

Att1). Now, if a record r appears in the left summation of Equation 5 then its value for Att1 is either936

a
(1)
1 or a(1)

i and it does not match r` on the first attribute. But this means that we can transform937

r into a record r′ by replacing a(1)
1 and a(1)

i with each other. This r′ would be on the right hand938

side of the summation (because we are flipping the sign of the selection by v of attribute Att1 in939

r′). Furthermore r′ also does not match r` on Att1 and therefore r matches r` on exactly the same940

attributes as r′ matches r`. Thus ζ(r`, r) = ζ(r`, r
′). Thus the summation term from record r is941

cancelled out by r′ in Equation 5. Using the same argument, we see that every term in the left942

summation is canceled out by a unique term in the right summation, and vice versa. Hence, if v943

assigns a 0 to record r` (i.e., has a 0 in index ` when its kron product representation is expanded)944

then the dot product between v and the `th row of Γ is 0.945

Case 2: v assigns a 1 to r`. In this case, every attribute of r` has a value that is (either positively or946

negatively) selected by v and an even number are negatively selected. Our goal is to show that if947

some other record rt is also assigned a 1 by v, then the dot product between v and `th row of Γ is the948

same as the dot product between v and the tth row of Γ. That is, we want to show:949

∑
r assigned

value 1 by v

cζ(r`,r) −
∑

r assigned
value -1 by v

cζ(r`,r) =
∑

r assigned
value 1 by v

cζ(rt,r) −
∑

r assigned
value -1 by v

cζ(rt,r) (6)

Let S be the set of attributes on which r` and rt disagree. Now define a mapping φ between records950

such that φ only modifies attributes in S. For each attribute Att in S, it maps the value that record951

r` has into the value that rt has an vice versa. (For example, suppose S = {Att1, Att2} and r`952

has values a(1)
2 and a(2)

3 for those attributes, respectively, and suppose that rt has values a(1)
4 and953

a
(2)
5 for those attributes. Then φ changes a(1)

2 in Att1 to a(1)
4 and changes a(1)

4 into a(1)
2 ; for Att2954

it changes a(2)
3 into a(2)

5 and changes a(2)
5 into a(2)

3 . Thus φ(r`) = rt and φ(rt) = r` and φ is its955

own inverse. Furthermore, for any record r, ζ(r`, r) = ζ(φ(r`), φ(r)) = ζ(rt, φ(r)) since renaming956

attribute values the same way in two records does not affect the set of attributes on which they match957

(and the last equality is because φ(r`) = rt).958

We next note that since rt and r` are both assigned 1 by v, then they must differ on an even number959

of discriminative attributes of v (if they differ on a discriminative attribute, one must have a value960

that is positively selected and the other must have a value that is negatively selected – there cannot be961
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a 0 because r` and rt are not assigned a 0 by v). Therefore, due to its definition, φ modifies an even962

number of discriminative attributes and therefore for any record r, both r and φ(r) get assigned the963

same value by v.964

Putting these facts together, we get:965 ∑
r assigned

value 1 by v

cζ(r`,r) −
∑

r assigned
value -1 by v

cζ(r`,r)

=
∑

φ(r) assigned
value 1 by v

cζ(r`,r) −
∑

φ(r) assigned
value -1 by v

cζ(r`,r) since φ doesn’t change the summation set

=
∑

φ(r) assigned
value 1 by v

cζ(φ(r`),φ(r)) −
∑

φ(r) assigned
value -1 by v

cζ(φ(r`),φ(r)) since φ preserves the outcome of ζ

=
∑

φ(r) assigned
value 1 by v

cζ(rt,φ(r)) −
∑

φ(r) assigned
value -1 by v

cζ(rt,φ(r)) since φ(r`) = rt

=
∑

r′ assigned
value 1 by v

cζ(rt,r′) −
∑

r′ assigned
value -1 by v

cζ(rt,r′) renaming the summation variable from φ(r) to r′

and that proves Equation 6966

Case 3: v assigns a −1 to r`. In this case, every attribute of r` has a value that is (either positively967

or negatively) selected by v and an odd number are negatively selected. Our goal is to show that if968

some other record rt is assigned a 1 by v, then the dot product between v and `th row of Γ is the969

negative of the dot product between v and the tth row of Γ. That is, we want to show:970

∑
r assigned

value 1 by v

cζ(r`,r) −
∑

r assigned
value -1 by v

cζ(r`,r) = −
∑

r assigned
value 1 by v

cζ(rt,r) +
∑

r assigned
value -1 by v

cζ(rt,r) (7)

As in the previous case, we define φ in the same way and reasoning as before we see that for any971

record r, ζ(r`, r) = ζ(φ(r`), φ(r)) = ζ(rt, φ(r)) and since now φ must change an odd number of972

discriminative attributes (since r` and rt are assigned -1 and 1 by v) then for any record r, the value973

assigned to r by v is the negative of the value assigned to φ(r) by v. Thus we have:974

∑
r assigned

value 1 by v

cζ(r`,r) −
∑

r assigned
value -1 by v

cζ(r`,r)

=
∑

φ(r) assigned
value -1 by v

cζ(r`,r) −
∑

φ(r) assigned
value +1 by v

cζ(r`,r) since φ flips the summation sets

=
∑

φ(r) assigned
value -1 by v

cζ(φ(r`),φ(r)) −
∑

φ(r) assigned
value +1 by v

cζ(φ(r`),φ(r)) since φ preserves the outcome of ζ

=
∑

φ(r) assigned
value -1 by v

cζ(rt,φ(r)) −
∑

φ(r) assigned
value +1 by v

cζ(rt,φ(r)) since φ(r`) = rt

=
∑

r′ assigned
value -1 by v

cζ(rt,r′) −
∑

r assigned
value +1 by v

cζ(rt,r′) renaming the summation variable from φ(r′) to r′
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and that proves Equation 7.975

Thus what these 3 cases show us are that there exists some constant β such that:976

• If the ith position of the expansion of v is 0 (i.e., ri is assigned 0 by v), then the ith position977

of Γv is also 0 (the dot product between the ith row and v is 0).978

• If the ith position of the expansion of v is 1 (i.e., ri is assigned 1 by v), then the ith position979

of Γv is β (the dot product between the ith row and v is β).980

• If the ith position of the expansion of v is -1 (i.e., ri is assigned -1 by v), then the ith position981

of Γv is −β (the dot product between the ith row and v is −β).982

Thus v is an eigenvector of Γ with eigenvalue β. That proves the first part of the theorem.983

The next part of the theorem is to show that if two residual basis vectors have the same dis-984

criminative attributes, then they have the same eigenvalue. So let v = v(1)⊗ · · ·⊗v(na) and985

w = w(1)⊗ · · ·⊗w(na) be two residual basis vectors that have the same discriminative attributes.986

Define a renaming permutation π as follows:987

• For an attribute Att` that is not discriminative for v (and hence also not for w), π does not988

rename its values (i.e., it acts as the identity for those attribute values).989

• For a discriminative attribute Att`, let e1,i` be the kron component for v (i.e., v(`) = e1,i` )990

and let e1,j` be the kron component for w. Note the indices i` and j` are not equal to 1. In991

this case, we make π do the following renamings:992

– ai` → aj`993

– aj` → ai`994

– The remaining attribute values are unchanged.995

By considering which records are assigned 1,-1 and 0 by v and w, it is clear that π converts v into996

w (and vice versa). Let W be the matrix representation of the renaming permutation π, so that997

Wv = w and WTw = v (a permutation matrix is orthogonal, so its inverse is its transpose). Thus,998

letting β denote the eigenvalue of v with respect to Γ, we have:999

βv = Γv

= ΓWTw

= WTΓWWTw due to the symmetry from Lemma C.3

= WTΓw,

since WT is the inverse of W and so1000

βw = βWv = WWTΓw = Γw

and thus w has the same eigenvalue as v.1001

Thus each residual basis matrix RA has a useful property: its rows are linearly independent and are1002

part of the same eigenspace (linear space of vectors with the same eigenvalue) of the privacy cost1003

matrix Γ of an optimal mechanism. This allows us to prove the main result:1004

THEOREM 4.4. Given a marginal workload Wkload and a regular loss function L, suppose the1005

optimization problem (either Equation 1 or 2) is feasible. Then there exist nonnegative constants1006

σ2
A for each A ∈ closure(Wkload) (the constants do not depend on the data), such that the optimal1007

linear Gaussian mechanismMopt releasesMA(x;σ2
A) for all A ∈ closure(Wkload). Furthermore,1008

any matrix mechanism for this workload must release at least this many noise query answers.1009
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Proof of Theorem 4.4. Let ALL represent closure({Att1, . . . , Attna}) – all possible subsets of at-1010

tributes. Theorem C.7 guarantees that there is an optimal mechanism whose privacy cost matrix Γ1011

has eigenvectors equal to the rows of the residual matrices. Rows within the same residual matrix1012

have the same eigenvalues. Since privacy cost matrices are symmetric positive semidefinite, this1013

means that for every A ∈ ALL, there exists a nonnegative number βA such that:1014

ΓRT
A = βART

A

By Theorem 3.5 of [47], if two Gaussian linear mechanisms have the same privacy cost matrix then1015

each can be obtained by linearly processing the other. Thus they have the same privacy properties1016

(under any postprocessing invariant privacy definition) and can be used to answer the same queries1017

with the same exact accuracies (under any measure of accuracy). Thus we just need to construct the1018

appropriate mechanism having privacy cost matrix Γ.1019

For each A, let ZA be a matrix with orthonormal rows that span the row space of RA. Thus the rows1020

of ZA are also eigenvectors of Γ (having common eigenvalue βA) and the rows of ZA are orthogonal1021

to the rows of ZA′ for A 6= A′ (a consequence of Theorem 4.2). Thus the set of rows of the ZA for1022

all A ∈ ALL are a complete list of the eigenvecotrs of Γ (the are linearly independent and span Rd).1023

Thus the (symmetric positive semidefinite) privacy cost matrix Γ can be expressed as:1024

Γ =
∑

A∈ALL

βAZTAZA

and one mechanism that achieves this privacy cost matrix is the one that releases ZAx +N(0, 1
βA
I)1025

for each A ∈ ALL for which βA 6= 0 (i.e., we can drop the eigenvectors with eigenvalue equal to 01026

as they make no difference to the privacy cost matrix).1027

Now, since the rows of RA and ZA are independent linear bases of the same subspace, then there1028

exists an invertible matrix YA such that RA = YAZA. Furthermore, RART
A is invertible and1029

ZAZTA = I by orthonormality of its rows. Therefore1030

RT
A(RART

A)−1RA = ZTAYT
A(YAZAZTAYT )−1YAZA

= ZTAYT
AY−TA (ZAZTA)−1Y−1

A YAZA

= ZTA(ZAZTA)−1ZA

= ZTAZA by orthonormality of the rows of ZA

Thus we have1031

Γ =
∑

A∈ALL

βART
A(RART

A)−1RA

and a mechanism that achieves this privacy cost matrix is the one that releases RAx +1032

N(0, 1
βA

RART
A) for each A for which βA 6= 0.1033

We next note that each covariance matrices we propose to use, ΣA, is proportional to RART
A (they1034

are equal up to positive rescaling). If we define the positive constants κA such that RART
A = κAΣA1035

then we note that the σ2
A in the theorem statement are equal to κA/βA.1036

Next, we show that the eigenvalues βA > 0 for A ∈ closure(Wkload) and 0 otherwise, so that the1037

optimal mechanism would not make use of any submechanismMA for A /∈ closure(Wkload).1038

First, by Theorem 4.2, the rows of RA, for A ∈ closure(Wkload) form an independent linear1039

basis for the space spanned by the rows of the marginals QA for A ∈ Wkload. If a noisy RAx1040

is not released for some A ∈ closure(Wkload), then an unbiased noisy answer to at least one1041

of the workload marginals could not be computed. Hence, they must all be part of the optimal1042

mechanism (and thus, because of linear independence, any mechanism needs to get at least as many1043

scalar noisy answers as this). This shows that βA > 0 for all A ∈ closure(Wkload). On the1044

other hand since the rows of RA are orthogonal to the rows of RA′ for A 6= A′, getting answers1045

to RA′x, for A′ /∈ closure(Wkload), cannot help estimate the answers to the marginals QA for1046

A ∈ Wkload (by Theorem 4.2, RA′ are orthogonal to the matrices representing these marginals1047

when A′ /∈ closure(Wkload)). Hence an optimal privacy mechanism cannot waste privacy budget1048

on these irrelevant queries. This shows that βA′ = 0for A′ /∈ closure(Wkload) and concludes the1049

proof.1050

30



D The other proofs about base mechanisms1051

THEOREM 4.2. Let A be a set of attributes and let QA be the matrix representation of the marginal1052

on A. Then the rows of the matrices RA′ , for all A′ ⊆ A, form a linearly independent basis of the1053

row space of QA. Furthermore, if A′ 6= A′′ then RA′R
T
A′′ = 0 (they are mutually orthogonal).1054

Proof of Theorem 4.2. Consider two sets A′ 6= A′′ and represent there respective residual matrices1055

as:1056

RA′ = V′1⊗ · · ·⊗V′na
RA′′ = V′′1⊗ · · ·⊗V′′na

RA′R
T
A′′ = (V′1(V′′1 )T )⊗ · · ·⊗(V′na(V′′na)T )

Since A′ 6= A′′ then one of them contains an attribute, sayAtti, that the other doesn’t have. Therefore1057

either V′i or V′′i is the vector 1T|Atti| and the other is Sub|Atti|. However, 1T|Atti|SubT|Atti| = 0 and1058

Sub|Atti|1|Atti| = 0 and hence RA′R
T
A′′ = 0.1059

Next, for any set A′, it is clear that the row space of RA′ is contained in the row space of the1060

marginal matrix QA′ . It is also clear that if A′ ⊆ A then the row space of the marginal matrix QA′1061

is contained in the row space of QA (because QA′ represents a sub-marginal of QA). Thus the rows1062

of the matrices RA′ , for all A′ ⊆ A, are contained in the rowspace of QA. Thus we just need to1063

show that the combined rows of RA′ , for all A′ ⊆ A, are linearly independent and that the number1064

of rows is the same as the number of rows of QA.1065

First, each RA′ is a kronecker product of matrices with full row rank, and so RA′ has full row rank1066

(therefore its rows are linearly independent). Furthermore, since RA′R
T
A′′ = 0 whenever A′ 6= A′′1067

this means that the row space of RA′ is orthogonal to the row space of RA′′ . Hence the combined1068

rows of the RA′ , for all A′ ⊆ A, are linearly independent.1069

Next, the number of rows in R∅ is 1 and the number of rows in RA′ is equal to
∏

Atti∈A′
(|Atti| − 1)1070

for A′ 6= ∅ and so the total number of rows in the residual matrices is 1 +
∑

A′⊆A
A′ 6=∅

∏
Atti∈A′

(|Atti| − 1).1071

By the distributive property of multiplication, this is exactly the same as the product:1072 ∏
Atti∈A

((|Atti| − 1) + 1) =
∏

Atti∈A

|Atti|

which is the number of rows in QA and that proves that the combined rows of RA′ , for all A′ ⊆ A,1073

form a linearly independent basis for the row span of QA.1074

LEMMA D.1. For any i, SubT|Atti|(Sub|Atti|SubT|Atti|)
−1Sub|Atti| = I |Atti|− 1

|Atti|1|Atti|1
T
|Atti|1075

Proof of Lemma D.1. For the moment, let Y denote SubT|Atti|(Sub|Atti|SubT|Atti|)
−1Sub|Atti|.1076

Then we know:1077

• Y is symmetric.1078

• Y is an |Atti| × |Atti| matrix and its rank is |Atti| − 1 since the rank of Sub|Atti| is1079

|Atti| − 1.1080

• Sub|Atti|YSubT|Atti| = Sub|Atti|SubT|Atti|.1081

Now, one symmetric solution to the equation Sub|Atti|XSubT|Atti| = Sub|Atti|SubT|Atti| is X =1082

I |AttI | and if X1 is another symmetric solution then Sub|Atti|(I |Atti| −X1)SubT|Atti| = 0.1083
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This means that Sub|Atti|v = 0 for each eigenvector v of the symmetric matrix I |Atti| − X11084

that has a nonzero eigenvalue. Since the rank of Sub|Atti| is |Atti| − 1, the only vectors v for1085

which Sub|Atti|v = 0 are proportional to 1|Atti| (the null space has rank 1) and so I |Atti| −X1 =1086

−c1|Atti|1T|Atti| for some constant c.1087

This means that Y (and any other symmetric solution) has the form I |Atti| + c1|Atti|1
T
|Atti|. To find1088

c, we note that Y is not full rank.1089

By the Sherman-Morrison-Woodbury inversion formula, if I |Atti| + c1|Atti|1
T
|Atti| is invertible, then1090

its inverse is I |Atti| − c1|Atti|
(

1 + c1T|Atti|1|Atti|

)−1

1T|Atti| = I |Atti| − c
1|Atti|1

T
|Atti|

1+c|Atti| . Thus, to1091

prevent invertibility, we must have c = −1/|Atti|.1092

Therefore Y = I |Atti| − 1
|Atti|1|Atti|1

T
|Atti|.1093

THEOREM 4.5. The privacy cost ofMA with noise parameter σ2
A is 1

σ2
A

∏
Atti∈A

|Att1|−1
|Atti| and the1094

evaluation ofMA given in Algorithm 1 is correct.1095

Proof of Theorem 4.5. Without loss of generality (and to simplify notation), assume A =1096

{Att1, . . . , Att`} consists of the first ` attributes.1097

By definition, pcost(MA(·;σ2
A)) is the largest diagonal of 1

σ2 RT
AΣ−1

A RA. Thus we can write:1098

RA =

(⊗̀
i=1

Sub|Atti|

)
⊗

 na⊗
j=`+1

1T|Attj |


RT

A =

(⊗̀
i=1

SubT|Atti|

)
⊗

 na⊗
j=`+1

1|Attj |


H =

(⊗̀
i=1

Sub|Atti|

)
⊗

 na⊗
j=`+1

[ 1 ]

 (rightmost krons use 1× 1 matrices)

ΣA = HHT =

(⊗̀
i=1

(Sub|Atti|SubT|Atti|)

)
⊗

 na⊗
j=`+1

[ 1 ]


Σ−1

A =

(⊗̀
i=1

(Sub|Atti|SubT|Atti|)
−1

)
⊗

 na⊗
j=`+1

[ 1 ]


RT

AΣ−1
A RA =

(⊗̀
i=1

SubT|Atti|(Sub|Atti|SubT|Atti|)
−1Sub|Atti|

)
⊗

 na⊗
j=`+1

1|Attj | [ 1 ] 1T|Attj |


(8)

Now, by Lemma D.1,1099

SubT|Atti|(Sub|Atti|SubT|Atti|)
−1Sub|Atti| = I |Atti| −

1

|Atti|
1|Atti|1

T
|Atti| (9)

Since its diagonals are |Atti|−1
|Atti| , then combined with Equation 8 it proves the result for1100

pcost(MA(·, σ2
A)).1101

We next consider the correctness of Algorithm 1. First, we need to show that for the matrix H defined1102

in Line 3 in Algorithm 1, HQAx = RAx. Then we can write:1103

RA =

(⊗̀
i=1

Sub|Atti|

)
⊗

 na⊗
j=`+1

1T|Attj |


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QA =

(⊗̀
i=1

I |Atti|

)
⊗

 na⊗
j=`+1

1T|Attj |

 rightmost product is a matrix with 1 row

H =

(⊗̀
i=1

Sub|Atti|

)
⊗ [ 1 ] (rightmost term is a 1× 1 matrix)

HQA =

(⊗̀
i=1

(
Sub|Atti|I |Atti|

))
⊗

[ 1 ]

 na⊗
j=`+1

1T|Attj |


= RA

Next, we note that if z is distributed as N(0, Im) (Line 4 in Algorithm 1) then σAHz has the1104

distribution N(0, σ2HHT ) = ΣA and hence the algorithm is correct.1105

E Proofs related to the reconstruction step1106

LEMMA 4.6. For any Atti, let ` = |Atti|. The matrix Sub` has the following block matrix, with1107

dimensions `× (`− 1), as its pseudo-inverse (and right inverse): Sub†` = 1
`

[
1T`−1

1`−11
T
`−1−`I`−1

]
.1108

Proof of Lemma 4.6. First, if a matrix has a right inverse then that is the pseudo-inverse. Hence we1109

just need to show that Sub`Sub†` = I`−1.1110

Note that the jth row of Sub` has a 1 in position 1, -1 in position j + 1, and is 0 everywhere else.1111

Meanwhile, the ith column of our claimed representation of Sub†` has a −(`− 1)/` in position i+ 11112

and 1/` everywhere else.1113

Hence if j 6= i then the dot product between row j of Sub` and column i of Sub†` is 0 since the1114

nonzero elements of the row from Sub` are being multiplied by 1/` and 1/`.1115

If i = j then the corresponding first elements that are multiplied are 1 and 1/` while the elements at1116

position i+ 1 being multiplied are −1 and −(`− 1)/`. Furthermore, 1(1/`) + (−1)(−(`− 1)/`) =1117

1.1118

LEMMA E.1. For any attribute Atti, let ` = |Atti|. Then Sub†`(Sub`SubT` )Sub†T` = I`− 1
`1`1

T
`1119

Proof of Lemma E.1. Because Sub` has linearly independent rows, the pseudo-inverse of it can be1120

expressed as,1121

Sub†` = SubT` (Sub`SubT` )−1

From lemma D.1 we get,1122

Sub†`Sub` = SubT` (Sub`SubT` )−1Sub`

= I` −
1

`
1`1

T
`

Therefore,1123

Sub†`(Sub`SubT` )Sub†T` =(Sub†`Sub`)(Sub†`Sub`)
T

=(I` −
1

`
1`1

T
` )(I` −

1

`
1`1

T
` )

=I` −
1

`
1`1

T
` −

1

`
1`1

T
` +

1

`2
1`(`)1

T
`

=I` −
1

`
1`1

T
`

1124
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THEOREM E.2. Let A be a set of attributes and let QA be the matrix representation of the marginal1125

on A. Given the matrices RA′ , for all A′ ∈ closure(A), we have QA =
∑

A′∈closure(A)

QAR†A′RA′ .1126

Proof of Theorem E.2.

QA =

na⊗
i=1

Ki where, for each i, Ki =

{
I |Atti| if Atti ∈ A

1T|Atti| if Atti /∈ A

RA′ =

na⊗
i=1

Vi where, for each i, Vi =

{
Sub|Atti| ifAtti ∈ A′

1T|Atti| ifAtti /∈ A′

It is straightforward to verify that the following is a right inverse (and hence pseudo-inverse) of RA′

R†A′ =

na⊗
i=1

V†i where, for each i, V†i =

{
Sub†|Atti| ifAtti ∈ A′

1
|Atti|1|Atti| ifAtti /∈ A′

QAR†A′RA′ =

na⊗
i=1

KiV
†
iVi where, for each i, KiV

†
iVi =


Sub†|Atti|Sub|Atti| ifAtti ∈ A′

1
|Atti|1|Atti|1

T
|Atti| ifAtti ∈ A/A′

1T|Atti| ifAtti /∈ A

Because Sub|Atti| has linearly independent rows, the pseudo-inverse of it can be expressed as,1127

Sub†|Atti| = SubT|Atti|(Sub|Atti|SubT|Atti|)
−1

From lemma D.1 we get,1128

Sub†|Atti|Sub|Atti| = SubT|Atti|(Sub|Atti|SubT|Atti|)
−1Sub|Atti|

= I |Atti| −
1

|Atti|
1|Atti|1

T
|Atti|

Therefore,1129

QAR†A′RA′ =

na⊗
i=1

Ti where, for each i, Ti =


I |Atti| − 1

|Atti|1|Atti|1
T
|Atti| ifAtti ∈ A′

1
|Atti|1|Atti|1

T
|Atti| ifAtti ∈ A/A′

1T|Atti| ifAtti /∈ A

Without loss of generality (and to simplify notation), assume A = {Att1, . . . , Att`} consists of the1130

first ` attributes,1131

QA =

(⊗̀
i=1

I |Atti|

)
⊗

(
na⊗

i=`+1

1T|Atti|

)
∑

A′∈closure(A)

QAR†A′RA′ =
∑

A′∈closure(A)

(
na⊗
i=1

Ti

)

=
∑

A′∈closure(A)

((⊗̀
i=1

Ti

)
⊗

(
na⊗

i=`+1

1T|Atti|

))

=

 ∑
A′∈closure(A)

(⊗̀
i=1

Ti

)⊗( na⊗
i=`+1

1T|Atti|

)

where, for each i ≤ `, Ti =

{
I |Atti| − 1

|Atti|1|Atti|1
T
|Atti| ifAtti ∈ A′

1
|Atti|1|Atti|1

T
|Atti| ifAtti ∈ A/A′

34



Because of the distributive property of the Kronecker product,1132 ⊗̀
i=1

I |Atti| =
⊗̀
i=1

((
I |Atti| −

1

|Atti|
1|Atti|1

T
|Atti|

)
+

1

|Atti|
1|Atti|1

T
|Atti|

)

=
∑

A′∈closure(A)

(⊗̀
i=1

Ti

)

Therefore, combining everything together,1133

∑
A′∈closure(A)

QAR†A′RA′ =

 ∑
A′∈closure(A)

(⊗̀
i=1

Ti

)⊗( na⊗
i=`+1

1T|Atti|

)

=

(⊗̀
i=1

I |Atti|

)
⊗

(
na⊗

i=`+1

1T|Atti|

)
= QA

1134

THEOREM 4.7. Given a marginal workload Wkload and positive numbers σ2
A for each A ∈1135

closure(Wkload), letM be the mechanism that outputs {MA(x;σ2
A) : A ∈ closure(Wkload)}1136

and let {ωA : A ∈ closure(Wkload)} denote the privacy-preserving noisy answers (e.g.,1137

ωA = MA(x, σ2)). Then for any marginal on an attribute set A ∈ closure(Wkload), Algo-1138

rithm 2 returns the unique linear unbiased estimate of QAx (i.e., answers to the marginal query)1139

that can be computed from the noisy differentially private answers.1140

The variances V ar(A;M) of all the noisy cell counts of the marginal on A is the vector1141

whose components are all equal to
∑

A′⊆A

(
σ2
A′
∏
Atti∈A′

|Atti|−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

)
.1142

The covariance between any two noisy answers of the marginal on A is1143 ∑
A′⊆A

(
σ2
A′
∏
Atti∈A′

−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2

)
.1144

Proof of Theorem 4.7. We first verify the correctness and uniqueness of the reconstruction in1145

Algorithm 2. Uniqueness follows from the fact that the rows from all the matrices RA (for1146

A ∈ closure(Wkload)) are linearly independent.1147

Consider Line 3 from Algorithm 2. It uses a U matrix that depends on both the attributes A1148

of the marginal one wants to compute and a subset A′ of it. So, for notational dependence, we1149

write it as UA←A′ . It is straightforward to verify that UA←A′ = QAR†A′ . From Theorem E.2,1150

QAx =
∑

A′⊆A QAR†A′RA′x =
∑

A′⊆A UA←A′RA′x, and so Algorithm 2 is correct because1151

each ωA′ is an unbiased noisy version of RA′x.1152

Having established that the q returned by Line 5 in Algorithm 2 is an unbiased estimate of the1153

marginal query answer QAx, the next step is to compute the covariance matrix E[qqT ].1154

E[qqT ] = E

 ∑
A′⊆A

UA←A′
(
ωA′ω

T
A′
)
UT

A←A′


=
∑

A′⊆A

UA←A′
(
σ2
A′ΣA′

)
UT

A←A′

Without loss of generality (and to simplify notation), assume A = {Att1, . . . , Att`} consists of1155

the first ` attributes, A′ = {Att1, . . . , Attt} consists of the first t ≤ ` attributes, then A/A′ =1156

{Attt+1, . . . , Att`}.1157
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By definition, V ar(A;M) is the diagonal of E[qqT ] =
∑

A′∈closure(A) σ
2
A′UA←A′ΣA′U

T
A←A′ .1158

Thus we can write:1159

QA =

(
t⊗
i=1

I |Atti|

)
⊗

 ⊗̀
j=t+1

I |Attj |

⊗( na⊗
k=`+1

1T|Attk|

)

RA′ =

(
t⊗
i=1

Sub|Atti|

)
⊗

 ⊗̀
j=t+1

1T|Attj |

⊗( na⊗
k=`+1

1T|Attk|

)

R†A′ =

(
t⊗
i=1

Sub†|Atti|

)
⊗

 ⊗̀
j=t+1

1

|Attj |
1|Attj |

⊗( na⊗
k=`+1

1

Attk
1|Attk|

)

UA←A′ = QAR†A′ =

(
t⊗
i=1

Sub†|Atti|

)
⊗

 ⊗̀
j=t+1

1

|Attj |
1|Attj |

⊗( na⊗
k=`+1

[1]

)

UT
A←A′ =

(
t⊗
i=1

Sub†T|Atti|

)
⊗

 ⊗̀
j=t+1

1

|Attj |
1T|Attj |

⊗( na⊗
k=`+1

[1]

)

ΣA′ =

(
t⊗
i=1

Sub|Atti|SubT|Atti|

)
⊗

 ⊗̀
j=t+1

[ 1 ]

⊗( na⊗
k=`+1

[ 1 ]

)

UA←A′ΣA′U
T
A←A′ =

(
t⊗
i=1

Sub†|Atti|Sub|Atti|SubT|Atti|Sub†T|Atti|

)

⊗

 ⊗̀
j=t+1

1

|Attj |2
1|Attj | [ 1 ] 1T|Attj |

⊗( na⊗
k=`+1

[ 1 ]

)
(10)

Now, by Lemma E.1,1160

Sub†|Atti|Sub|Atti|SubT|Atti|Sub†T|Atti| = I |Atti| −
1

|Atti|
1|Atti|1

T
|Atti| (11)

So the diagonals of UA←A′ΣA′U
T
A←A′ can be computed by multiplying |Atti|−1

|Atti| for each Atti ∈1161

A′ and 1/|Attj | for each Attj ∈ A \A′. Meanwhile, the off diagonals are all the same and can be1162

computed by multiplying −1
|Atti| for each Atti ∈ A′ and 1

|Attj |2 for each Attj ∈ A \A′.1163

Computing the variance and covariance of the marginal query answer is therefore the summation of1164

these quantities for all A′ ⊆ A and is what the theorem states.1165

1166

F Computational Complexity Proofs1167

THEOREM 4.8. Let na be the total number of attributes. Let #cells(A) denote the number of cells in1168

the marginal on attribute set A. Then:1169

1. Expressing the privacy cost of the optimal mechanismM∗ as a linear combination of the 1/σ2
A1170

values takes O(
∑

A∈Wkload #cells(A)) total time.1171

2. Expressing all of the V ar(A;M∗), for A ∈Wkload, as a linear combinations of the σ2
A values1172

can be done in O(
∑

A∈Wkload #cells(A)) total time.1173

3. Computing all the noisy outputs of the optimal mechanism (i.e., MA(x;σ2
A) for A ∈1174

closure(Wkload)) takes O
(
na
∑

A∈Wkload

∏
Atti∈A(|Atti|+ 1)

)
total time after the true an-1175

swers have been precomputed (Line 1 in Algorithm 1). Note that the total number of cells on1176

marginals in Wkload is O
(∑

A∈Wkload

∏
Atti∈A |Atti|

)
.1177
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4. Reconstructing marginals for all A ∈Wkload takes O(
∑

A∈Wkload |A|#cells(A)2) total time.1178

5. Computing the variance of the cells for all of the marginals for A ∈ Wkload can be done in1179

O(
∑

A∈Wkload #cells(A)) total time.1180

Proof of Theorem 4.8. First we establish that |closure(Wkload)| ≤
∑

A∈Wkload #cells(A). Given1181

an set A ∈ Wkload, we note that it has 2|A| subsets, so that |closure(A)| = 2|A|. However,1182

#cells(A) is at least 2|A| (because each attribute has at least 2 attribute values). We also note that1183

closure(Wkload) =
⋃

A∈Wkload

closure(A). Hence1184

|closure(Wkload)| ≤
∑

A∈Wkload

|closure(A)| =
∑

A∈Wkload

#cells(A)

To analyze the time complexity of symbolically representing the privacy cost, as a linear combi-1185

nation of the 1/σ2
A values (for all A ∈ closure(Wkload)) we note that the coefficient of 1/σ2

A1186

is
∏

Atti∈A

|Atti|−1
|Atti| . Thus computing the coefficient 1/σ2

∅ takes O(1) time. Then, computing the1187

coefficient of 1/σ2
{Atti} can be computed from the coefficient of 1/σ2

∅ in O(1) additional time. Thus,1188

we if go level by level, first computing the coefficients of 1/σ2
A with |A| = 1 then for |A| = 2, etc.1189

then computing the coefficient for each new A takes incremental O(1) time. Thus the overall time is1190

O(|closure(Wkload)|) and therefore is O(
∑

A∈Wkload #cells(A)).1191

Let ncells =
∑

A∈Wkload #cells(A) To express the variance symbolically as a linear function of1192

the σ2
A values via Theorem 4.7, we note from the previous part that computing

∏
Atti∈A′

|Atti|−1
|Atti| for1193

all A′ ∈ closure(Wkload) can be done in total O(ncells) time. Similarly, computing
∏

Atti∈A′
1

|Atti|21194

for all A′ ∈ closure(Wkload) also take total O(ncells) time. Once this is pre-computed, then1195

for any A′ ⊆ A ∈ closure(Wkload), the product
∏
Atti∈A′

|Atti|−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |21196

can be computed in O(1) time since A \ A′ ∈ closure(Wkload). Now, V ar(A;M∗) =1197 ∑
A′⊆A

σ2
A′
∏
Atti∈A′

|Atti|−1
|Atti| ∗

∏
Attj∈(A/A′)

1
|Attj |2 . This is a linear combination of 2|A| terms1198

(one term for each variable σ2
A′ for A′ ⊆ A). Each term is computed in O(1) time after the pre-1199

computation phase. Thus the symbolic representation of V ar(A;M∗) takes O(2|A|) time (which1200

is at most the number of cells in the marginal on A) time after precomputation. Thus computing1201

V ar(A;M∗) for all A ∈ Wkload can be done in total O(ncells) time after precomputation, but1202

precomputation also takes O(ncells) time. Thus the overall total time is O(ncells).1203

We next analyze the time it takes to generate noisy answers once the true answers have been1204

precomputed (Line 1 in Algorithm 1). This involves (1) computing the product Hv in the algorithm,1205

(2) generating one Gaussian random variable for each column of H and (3) computingHz. Now, the1206

first and third steps take the same amount of time. The second step generates one Gaussian for each1207

row of H and hence, for eachMA takes time ΠAtti∈A(|Atti| − 1).1208

For the first step, the fast kronecker-product multiplication algorithm (Algorithm 1 of [38]) has the1209

following complexity. Given a kronecker product of `matrices of sizes (m1−1)×m1, . . . , (m`−1)×1210

m` and a vector withm1×· · ·×m` components, their algorithm has ` iterations. In iteration i, the ith1211

matrix (with sizemi−1×mi) is multiplied by a matrix with shape (mi,
∏i−1
j=1mj ∗

∏`
j=i+1(mj−1)).1212

In our case, each mi is a subtraction matrix with two nonzero elements in each row. Thus, in each1213

iteration, the product makes 2
∏i−1
j=1mj ∗

∏`
j=i(mj − 1) scalar multiplication operations. There are1214

` iterations, so the multiplication algorithm uses O(`
∏`
i=1mi) multiplications.1215

Now, to run algorithmMA, the number of kron products ` is |A| and each mi is |Atti| for Atti ∈ A.1216

Hence the running time ofMA is O(|A|
∏
Atti∈A |Atti|) which is at most |A| times the number1217

of cells in the marginal on A. Note that the constant in the big-O notation is bounded across all A.1218
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Next, when adding up the complexity across all A′ ∈ closure(A), we can replace |A′| with |A|, and1219

then the summation looks like the product
∏

Atti∈A
(|Atti|+ 1) when this product is expanded. Hence1220

the time to run all QA′ for all A′ ∈ closure(A) is O(|A|
∏

Atti∈A
(|Atti| + 1)). Adding up over all1221

A ∈Wkload gets the results.1222

Next we consider the reconstruction phase. Using the same analysis of the fast kron-product1223

vector multiplication, we see that in each iteration of Algorithm 2, there is a kron product vector1224

multiplication. Using similar reasoning as for the previous item, each such multiplication takes1225

O(|A|
∏
Atti∈A)|Atti| = O(|A|#cells(A)) time. The number of iterations in the algorithm is1226

2|A| ≤ #cells(A). Thus the overall runtime is O(
∑

A∈Wkload |A|#cells(A)2).1227

Finally, the variance computation is no harder than expressing the V ar(A;M∗) as linear combina-1228

tions of the optimization variables and we have shown this to be O(ncells).1229

G Closed Form Solution to the Weighted Sum of Variances Loss1230

By Theorem 4.5, the privacy cost is a linear combination of the 1/σ2
A values. By Theorem 4.7, each1231

reconstructed marginal’s cell variances are a linear combination of the σ2
A values. Thus, minimizing1232

the weighted sum of reconstructed marginal variances subject to the privacy cost being ≤ c can be1233

formulated as a problem of the following type:1234

arg min
σ2
A: A∈closure(Wkload)

∑
A∈closure(Wkload)

vAσ
2
A (12)

s.t.
∑

A∈closure(Wkload)

pA
σ2
A

≤ c

where the vA are the linear coefficients of the σ2
A and the pA are the linear coefficients of the 1/σ2

A1235

in the privacy cost. The closed form solution is given by hte following lemma.1236

LEMMA G.1. Given the optimization problem in Equation 12 The optimal objective function value is1237

T =
(∑

A

√
vApA

)2
/c, the optimal value of each noise scale parameter is σ2

A =
√
TpA/(cvA).1238

Proof. Clearly, for the optimal solution, the inequality constraint must be tight (i.e., = c) because if1239

it is not tight, we can lower variance while increasing privacy cost by dividing each σ2
A by a number1240

> 1. Thus we just need to solve the problem subject to
∑

A pA/σ
2
A = c.1241

From Cauchy-Schwarz inequality,1242

∑
A

vAσ
2
A =

(∑
A

vAσ
2
A

)(∑
A

pA
σ2
A

)
/c ≥

(∑
A

√
vApA

)2

/c = T

Equality holds when vA
pA
σ4
A = t for all A (for some constant t). Since c =

∑
A
pA
σ2
A

=1243 ∑
A

√
vApA/t, then we must have t = T/c. Plugging this into the definition of t, we get1244

σ2
A =

√
TpA/(cvA).1245

Thus, if the loss function is the weighted sum of variances, ResidualPlanner does not need any1246

optimization steps. The selection of the noise scales and the reconstruction phase are direct algorithms.1247

H Additional Experiments1248

In this section, we present additional experiments. Following [37], the experiments use the following1249

type of workloads:1250

• All k-way marginals.1251
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• All ≤ 3-way marginals. This includes all 0-way marginal (the total sum), all 1-way1252

marginals, all 2-way marginals, and all 3-way marginals.1253

• Small marginals. This includes any k-way marginal that has at most 5000 cells.1254

We also use these metrics:1255

• RMSE: The total variance is the sum of the variances of the reconstructed cells in each1256

marginal in the workload. Root Mean Squared Error is obtained by taking the total variance,1257

dividing by the total number of cells in the workload marginals, then taking the square root.1258

The SVD Bound (SVDB for short) [31] provides a theoretical lower bound on RMSE for any1259

matrix mechanism. For marginals, the SVDB is tight, but its computation is not scalable.1260

• MaxVar: compute the variance of each reconstructed cell for each marginal in the workload,1261

then take the maximum of these.1262

• Running time (in seconds) of the different stages of the algorithms (select and reconstruct).1263

Unless otherwise stated, ResidualPlanner uses the open-source ECOS optimizer [14] for solving the1264

optimization problem it generates for the select step.1265

For all experiments, we require all mechanisms to have privacy cost pcost(M) = 1. By definition1266

2.3,M satisfies ρ-zCDP with ρ = 1/2 [46] and satisfies µ-Gaussian DP with µ = 1 [15, 46].1267

Each experiment is repeated 5 times, we report the mean value of these 5 results and a confidence1268

interval consisting of ±2 standard deviations. This is most useful for running time, as the variance1269

loss metrics have negligible variance across all algorithms.1270

H.1 Scalability1271

In this section, we study the scalability of ResidualPlanner. This is done using the Synth−nd dataset,1272

where d is the number of attributes and n is the domain size of each attribute. We use all ≤ 3-1273

way marginals as a fixed workload and vary n or d to get the computation time for HDMM and1274

ResidualPlanner.1275

H.1.1 Varying Attribute Domain Size n in the Selection Step.1276

This experiment considers what happens when the attribute domain size n get larger. We fix the1277

number of attributes d = 5 and vary the domain size n for each attribute, where n ranges from 2 to1278

1024. We evaluate the running time and accuracy of the selection step1279

Table 10 shows the running time for the selection step of HDMM and ResidualPlanner. The RMSE on1280

the workload that the selection step guarantees is also measured. Both HDMM and ResidualPlanner1281

have no trouble here. HDMM is nearly optimal in RMSE and ResidualPlanner is optimal, as shown1282

by agreement with the SVD Bound. ResidualPlanner is faster, but both methods are fast in this1283

experiment setting.1284

Table 10: Selection step on Synth−nd dataset where d = 5 and n varies. The workload is all ≤
3-way marginals. Metrics are running time and RMSE.

n TimeHDMM TimeResPlan RMSEHDMM RMSEResPlan SVDB
2 0.069± 0.018 0.001± 0.000 1.903 1.890 1.890
4 0.064± 0.006 0.001± 0.000 2.685 2.681 2.681
8 0.070± 0.021 0.001± 0.000 3.156 3.156 3.156
16 0.076± 0.020 0.001± 0.000 3.367 3.366 3.366
32 0.105± 0.020 0.001± 0.000 3.422 3.423 3.423
64 0.114± 0.033 0.001± 0.000 3.408 3.407 3.407

128 0.137± 0.048 0.001± 0.000 3.371 3.367 3.367
256 0.187± 0.050 0.001± 0.000 3.331 3.322 3.322
512 0.183± 0.020 0.001± 0.000 3.294 3.283 3.283

1024 0.353± 0.058 0.001± 0.000 3.328 3.251 3.251
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Table 11 shows the running time and Max Variance comparison for the selection step. HDMM can1285

only optimize for RMSE, not max variance, so this table shows that RMSE is not a good substitute1286

when one needs to optimize for Max Variance.

Table 11: Selection step on Synth−nd dataset where d = 5 and n varies. The workload is all ≤
3-way marginals. Metrics are running time and Max Variance.

n TimeHDMM TimeResPlan MaxV arHDMM MaxV arResPlan
2 0.069± 0.018 0.008± 0.001 8.091 4.148
4 0.064± 0.006 0.008± 0.001 44.693 9.760
8 0.070± 0.021 0.008± 0.001 180.343 15.643

16 0.076± 0.020 0.008± 0.001 588.115 20.067
32 0.105± 0.020 0.008± 0.001 1649.341 22.811
64 0.114± 0.033 0.008± 0.001 5560.807 24.345
128 0.137± 0.048 0.008± 0.001 12229.480 25.157
256 0.187± 0.050 0.008± 0.001 8168.716 25.574
512 0.183± 0.020 0.008± 0.001 32159.958 25.786

1024 0.353± 0.058 0.008± 0.001 277825.955 25.893

1287

H.1.2 Impact of varying the number of attributes in the Selection Step.1288

Next, we fix the domain size of each attribute to be n = 10 and vary the number of attributes d,1289

where d ranges from 2 to 200. This experiment can test some of the limits of ResidualPlanner. While1290

HDMM cannot perform selection when the number of attributes is 20 or larger, ResidualPlanner has1291

no trouble optimizing RMSE even for 200 attributes. However, optimizing for Max Variance is much1292

more difficult. ResidualPlanner can do this for d = 100 but the underlying optimization took more1293

than 1 hour for d = 200 and we killed the process.1294

Table 12 shows the running time and RMSE comparison for the selection step. The running time of1295

HDMM increases sharply and it quickly runs out of memory. At the same point, the SVD Bound can1296

no longer be computed. Meanwhile, ResidualPlanner continues to run efficiently.1297

Table 12: Selection step on Synth−nd dataset where n = 10 and d varies. The workload is all ≤
3-way marginals. Metrics are running time and RMSE.

d T imeHDMM TimeResPlan RMSEHDMM RMSEResPlan SVDB
2 0.013± 0.003 0.001± 0.0008 1.379 1.379 1.379
4 0.028± 0.007 0.002± 0.001 2.346 2.345 2.345
6 0.065± 0.012 0.002± 0.0008 4.278 4.275 4.275
8 0.167± 0.019 0.004± 0.001 6.726 6.638 6.638
10 0.639± 0.059 0.009± 0.001 9.629 9.348 9.348
12 4.702± 0.315 0.015± 0.001 12.904 12.359 12.359
14 46.054± 12.735 0.025± 0.002 16.506 15.642 15.642
15 201.485± 13.697 0.030± 0.017 18.421 17.378 17.378
20 Out of memory 0.079± 0.017 Out of memory 26.916 Out of memory
30 Out of memory 0.247± 0.019 Out of memory 49.713 Out of memory
50 Out of memory 1.207± 0.047 Out of memory 107.258 Out of memory

100 Out of memory 9.913± 0.246 Out of memory 303.216 Out of memory
200 Out of memory 80.120± 1.502 Out of memory 855.330 Out of memory

Table 13 shows the running time and Max Variance comparison on the Selection step. Optimizing1298

for Max Variance is much harder for ResidualPlanner compared to RMSE and we killed the process1299

for d = 200. Meanwhile, HDMM is not able to run at d = 20 (we emphasize again, it optimizes for1300

RMSE even if one cares about Max Variance). There is an interesting phenomenon with HDMM that1301

takes place for d between 8 and 15. In this case, HDMM always produces a max variance of 1000.1302

This maximum is always achieved for the sum query (a zero-dimensional marginal) for the following1303

reason. For d beween 8 and 15, HDMM decides to add noise to all 3-way marginals and nothing else1304

(even though the workload is all ≤ 3 marginals). The privacy loss budget is split equally among them.1305

Thus, each of the
(
d
3

)
marginals it measures gets N(0,

(
d
3

)
) noise. The sum query gets reconstructed1306
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as follows. For any single noisy 3-way marginal, one can estimate the sum by adding up the cells in1307

the marginal. Since each cell has variance
(
d
3

)
and there are n3 = 1, 000 cells, the sum estimate from1308

a single 3-way marginal has a variance of 1000
(
d
3

)
. But one can obtain an independent estimate to1309

the sum query from each of the
(
d
3

)
noisy 3-way marginals. By averaging these noisy estimates, one1310

can obtain an estimate of the sum query with variance 1, 000.1311

Table 13: Selection step on Synth−nd dataset where n = 10 and d varies. The workload is all ≤
3-way marginals. Metrics are running time and Max Variance.

d T imeHDMM TimeResPlan MaxV arHDMM MaxV arResPlan
2 0.013± 0.003 0.007± 0.001 13.745 3.306
4 0.028± 0.007 0.010± 0.005 132.620 10.480
6 0.065± 0.012 0.009± 0.001 461.132 26.904
8 0.167± 0.019 0.015± 0.003 1000.000 56.961

10 0.639± 0.059 0.018± 0.001 1000.000 105.031
12 4.702± 0.315 0.028± 0.001 1000.000 175.496
14 46.054± 12.735 0.041± 0.001 1000.000 272.738
15 201.485± 13.697 0.050± 0.001 1000.000 332.769
20 Out of memory 0.123± 0.023 Out of memory 768.941
30 Out of memory 0.461± 0.024 Out of memory 2540.440
50 Out of memory 4.011± 0.112 Out of memory 11597.037

100 Out of memory 121.224± 3.008 Out of memory 91960.917

H.1.3 Scalability of the Reconstruction Step.1312

We conduct similar experiments, but now we measure the time in the reconstruction step. To com-1313

plement the reconstruction scalability experiments from the main paper on the Synth−nd synthetic1314

dataset, we first fix the number of attributes d = 5 and vary the domain size n for each attribute,1315

where n ranges from 2 to 512. The reconstruction time for ResidualPlanner does not depend on the1316

metric that the select step was optimized for. Again we compare with HDMM [38] and a version of1317

HDMM with improved reconstruction scalability called HDMM+PGM [38, 41] (the PGM settings1318

used 50 iterations of its Local-Inference estimator, as the default 1000 was too slow). Table 14 shows1319

the results. Again, at some point HDMM runs out of memory while ResidualPlanner runs efficiently.1320

HDMM runs of out memory because of choices it had made in the selection step. When n = 128 it1321

decided to measure a 5-way marginal, which is so large (requiring 1285 space) that it caused HDMM1322

and HDMM+PGM to have memory issues.

Table 14: Running time (in seconds) of the reconstruction step on Synth−nd dataset where d = 5
and n varies. The workload is all ≤ 3-way marginals.

n HDMM HDMM + PGM ResPlan
2 0.005± 0.002 2.466± 0.278 0.008± 0.002
4 0.005± 0.000 1.894± 0.146 0.011± 0.008
8 0.008± 0.000 1.871± 0.122 0.011± 0.008

16 0.064± 0.036 1.936± 0.131 0.016± 0.001
32 1.924± 0.060 3.211± 0.220 0.045± 0.007
64 56.736± 1.460 12.574± 0.512 0.217± 0.021
128 Out of memory Out of memory 1.244± 0.059
256 Out of memory Out of memory 12.090± 0.504
512 Out of memory Out of memory 166.045± 13.803

1323

We next fix n = 3 and vary d. Table 15 shows ResidualPlanner is clearly faster. Furthermore, HDMM1324

and HDMM+PGM are hampered by the failure of the selection step (when selection fails, there is1325

nothing to reconstruct). It is interesting to compare HDMM+PGM behavior when n = 3 in Table1326

15 with n = 10 in Table 2 from the main paper. Clearly HDMM+PGM is faster for n = 10 than1327

n = 3. This counterintuitive result can be explained by the complex workings of HDMM as follows.1328

When n = 3, the selection step in HDMM returns some 4-way marginals. But when n = 10, HDMM1329
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only returns ≤ 3-way marginals. The 4-way marginals make the reconstruction step harder for both1330

HDMM and HDMM + PGM.1331

Table 15: Time for Reconstruction Step in seconds on Synth−nd dataset. n = 3 and the number of
attributes d varies. The workload consists of all marginals on ≤ 3 attributes each. Times are reported
with ±2 standard deviations. Reconstruction can only be performed if the select step completed.

d HDMM HDMM + PGM ResidualPlanner
2 0.001± 0.0001 0.256± 0.030 0.005± 0.002
6 0.009± 0.001 3.293± 0.253 0.020± 0.004

10 0.334± 0.010 51.568± 3.391 0.086± 0.004
12 3.882± 0.101 180.708± 5.437 0.153± 0.002
14 55.856± 0.361 314.252± 3.991 0.280± 0.072
15 231.283± 0.554 713.526± 4.957 0.307± 0.005
20 Unavailable (select step failed) Unavailable (select step failed) 0.758± 0.023
30 Unavailable (select step failed) Unavailable (select step failed) 2.700± 0.200
50 Unavailable (select step failed) Unavailable (select step failed) 12.480± 0.208

100 Unavailable (select step failed) Unavailable (select step failed) 99.787± 2.113

H.2 Comparison on Real Datasets.1332

In this section, we compare RMSE and Max Variance on the real datasets: CPS, Adult, and Loans.1333

The different workloads are 1-way, 2-way, 3-way, 4-way, 5-way marginals, all ≤ 3-way marginals,1334

and Small Marginals.1335

H.2.1 RMSE Comparisons1336

We provide an expanded comparison of RMSE on the 3 real datasets from the main paper. Here we1337

add more workloads. Table 16, 17 and 18 show the comparison of RMSE on the CPS, Adult, and1338

Loans datasets respectively.1339

We notice that ResidualPlanner matches the theoretical SVD Bound while HDMM is slightly worse,1340

but still accurate. We conclude that when optimizing RMSE, the main advantage of ResidualPlanner1341

is superior scalability.1342

Table 16: Comparison of RMSE on CPS(5D) dataset.

Workload HDMM ResPlan SVDB
1-way Marginals 1.756 1.744 1.744
2-way Marginals 2.103 2.035 2.035
3-way Marginals 2.089 2.048 2.048
4-way Marginals 1.648 1.627 1.627
5-way Marginals 1.000 1.000 1.000
≤ 3-way Marginals 2.301 2.276 2.276

Small Marginals 2.525 2.525 2.525

Table 17: Comparison of RMSE on Adult(14D) dataset.

Workload HDMM ResPlan SVDB
1-way Marginals 3.081 3.047 3.047
2-way Marginals 6.504 6.359 6.359
3-way Marginals 11.529 10.515 10.515
4-way Marginals 16.618 14.656 14.656
5-way Marginals 20.240 17.844 17.844
≤ 3-way Marginals 11.555 10.665 10.665

Small Marginals 10.006 9.945 9.945
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Table 18: Comparison of RMSE on Loans(12D) dataset.

Workload HDMM ResPlan SVDB
1-way Marginals 2.903 2.875 2.875
2-way Marginals 5.747 5.634 5.634
3-way Marginals 9.478 8.702 8.702
4-way Marginals 12.537 11.267 11.267
5-way Marginals 14.872 12.678 12.678
≤ 3-way Marginals 9.406 8.876 8.876

Small Marginals 8.262 8.206 8.206

H.2.2 Max Variance1343

The next comparison is on optimization for Max Variance. We repeat that HDMM only optimizes for1344

RMSE and this shows that optimizing for RMSE is highly suboptimal when one cares about max1345

variance.1346

In contrast to RMSE, where the optimization problem generated by ResidualPlanner’s selection step1347

can be solved in closed form, for Max Variance, the optimization needs a convex solver. Hence we in-1348

clude comparisons between the open source ECOS [14] optimizer to the commercial Gurobi optimizer1349

[21]. Thus, our results have columns labeled ResidualPlanner+ECOS and ResidualPlanner+Gurobi.1350

Tables 19, 20 and 21 show the results for the CPS, Adult, and Loans datasets, respectively. There is1351

one item to note about numerical stability. Although Gurobi is generally faster and more numerically1352

stable, the differences do not matter much. Situations where EOCS was worse are highlighted in red.1353

For example, in Table 19 for the CPS dataset, the dataset has only 5 attributes, so a 5-way marginal is1354

basically the entire dataset. The optimal mechanism for 5-way marginals simply adds N(0, 1) noise1355

to each cell and optimizing for RMSE is equal to optimizing Max Variance for this special case. As1356

we see, the Max Variance for ResidualPlanner+ECOS is 1.008 which is 0.8% worse than optimal.1357

The reason for this is the numerical precision with which ECOS can solve the optimization problem1358

that ResidualPlanner gives it. In general, however, it looks like open source optimizers should work1359

fairly reliably for them to be used in real applications of ResidualPlanner.1360

Table 19: Comparison of Max Variance on CPS(5D) dataset.

Workload HDMM ResPlan + ECOS ResPlan + Gurobi
1-way Marginals 13.672 4.346 4.346
2-way Marginals 47.741 7.897 7.897
3-way Marginals 71.549 7.706 7.706
4-way Marginals 15.538 4.142 4.141
5-way Marginals 1.000 1.008 1.000
≤ 3-way Marginals 415.073 13.216 13.216

Small Marginals 223.579 11.774 11.774

Table 20: Comparison of Max Variance on Adult(14D) dataset.

Workload HDMM ResPlan + ECOS ResPlan + Gurobi
1-way Marginals 41.772 12.047 12.047
2-way Marginals 599.843 67.802 67.802
3-way Marginals 5675.238 236.843 236.843
4-way Marginals 26959.322 575.213 575.213
5-way Marginals 79817.002 1030.948 1030.948
≤ 3-way Marginals 6677.253 253.605 253.605

Small Marginals 2586.980 126.902 126.902
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Table 21: Comparison of Max Variance on Loans(12D) dataset.

Workload HDMM ResPlan + ECOS ResPlan + Gurobi
1-way Marginals 33.256 10.640 10.640
2-way Marginals 437.478 52.217 52.217
3-way Marginals 3095.997 156.638 156.638
4-way Marginals 13776.417 320.778 320.778
5-way Marginals 26056.289 474.244 474.243
≤ 3-way Marginals 4317.709 180.817 180.817

Small Marginals 2330.883 89.873 89.873
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