Published as a conference paper at ICLR 2024

APPENDIX

A NOTATION TABLE
Table 2: Table of Notation

Notations of Continuous Functions

F £ family of c-Lipschitz continuous functions
¢ £ Lipschitz constant of the continuous function

X £ input space, a bounded domain of the function
Y £ output space, a bounded range of the function

dx £ distance metrics in the input space X

dy £ distance metrics in the output space Y’

{(zs, f(x;)} £ collection of function samples.
m 2 dimensionality of the input space X.
Notations of HDFE
e 2 receptive field of HDFE.
F £ N-dimensional complex vector. Encoding of the explicit function f.
Fi_o £ N-dimensional complex vector. Encoding of the implicit function
f(x) = 0.
N £ dimensionality of the function encoding.
Ex,Ey £ the input and output mapping from X, Y to the encoding space C".
® £ binding operation.
©® £ unbinding operation.
A

cosine similarity between two complex vectors.

B POINTNET AS FUNCTION ENCODER

In this section, we present empirical evidence highlighting PointNet’s limitations in generating de-
codable function encodings. Our designed pipeline, following the popular style of training recon-
struction networks, demonstrates PointNet’s inability to produce even reasonable reconstructions.
Consequently, we infer that without substantial modifications, PointNet is unlikely to acquire the
necessary capability for effective function encoding.

Specifically, we generate random functions by

4
1 1 .
flx)= 3+ 3 kgl ay, sin(2mkz)

where a, ~ Uniform(0, 1) are the parameters controlling the generation and f(x) € (0,1). We
randomly sample {x;,y; }3%9° where y; = f(z;) + €, #; ~ Uniform(0,1) and ¢; is white noise
with variance 1e-4. Then we stack x; and y; into a (5000, 2) matrix and feed it to a standard PointNet
to generate a 1024-dimensional vector. After encoding the function samples, we introduce a decoder
that retrieves the function values from the encoding when receiving function inputs. We optimize
the PointNet encoder and the decoder by minimizing the reconstruction loss. The procedure can be

summarized as:
n
F =pointNet ({(z;,¥:i)}{—1), ¥; =Decoder(F,z;), L= Z lys — 0>
i=1

The decoder is designed as followed: x; is lifted to a 1024-dimensional vector x; through sequential
layers of Linear (1, 64), Linear (64,128), Linear (128, 1024) with BatchNorm and

14

Published as a conference paper at ICLR 2024

ReLU inserted between the linear layers. The retrieved function value g; is computed by the dot
product between F and x;. Figure] (Left) plots the training curve and Figure [] (Right) visualizes
the reconstruction, which shows PointNet fails to learn a decodable representation.

—— PointNet training loss 0.70 function samples
—-= HDFE error = original function
0.65 —— PointNet encoder reconstruction

Mean Absolute Error

0.1

0.0

0 100 200 300 400 500 600 700 0.30
Epochs 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: PointNet fails to learn an effective function encoder. Left: Training curve of the PointNet
function encoder. The error is still significantly higher than HDFE though training for 700 epochs.
Right: The PointNet function encoder does not produce a reasonable reconstruction.

C VECTOR FUNCTION ARCHITECTURE

In this section, we will give a brief introduction of VFA and its relation and comparison with HDFE.

Vector Function Architecture (VFA) A function of the form

f(x) :Zak~K(x,xk) (7
k

is represented by F = >, oy, - E(xy), where the kernel K(-,-) and the encoder E(-) satisfy
K(z,y) = (E(z), E(y)). Given the function encoding F, the function value at a query point

o can be retrieved by f(z¢) = (F, E(x)).

VFA satisfies the four desired properties: VFA can encode an explicit function into a fixed-length
vector, where the encoding is sample invariant and decodable. Besides, the function encoding will
preserve the overall similarity of the functions: (F,G) = [f(x)g(x)dz. Note that when encoding
multiple functions, the kernel K (-, -) and the encoder E(-) must be the same. Otherwise, the function
encoding generated by VFA will be meaningless.

However, it is a strong assumption that a function can
be approximated by equation In other words, under
a fixed selection of K (-,-) and E(+), equation[/|can only
approximate a small set of functions. There are a large
set of functions that cannot be approximated by equa-
tion[7} In Fig. 5] we show a failure case of VFA. We
generate a function f(z) = 0.1 + 2,160:1 oy - K(x, o),
where 2, ~ N(0,1), ar ~ Uniform(0,1). K(z,y) =
exp[—20(z — y)?] is an RBF kernel. We generate 1000
function samples and add white noise to the output values
to form the training set. The experiment shows that VFA
fails to reconstruct the function but HDFE succeeds. 00 02 o os o8 1o

251 . function samples

In this paper, HDFE is applicable for all c-Lipchitz func- Fjgyre 5: VFA fails to reconstruct the
tion, without compromising the four desired properties. function but HDFE succeeds.

Thanks to the improvement, we can apply function en-

coding to real-world applications. The first application,

PDE solving, cannot be solved by VFA because the input and output functions cannot be approxi-
mated by equation[7} The second application, local geometry prediction, has to deal with implicit
function encoding, which cannot be solved by VFA either because VFA only encodes explicit func-
tions.

15

Published as a conference paper at ICLR 2024

D SuUITABLE INPUT TYPES FOR HDFE

We mentioned HDFE can encode Lipschitz functions. In this section, we will discuss several data
types that exhibits Lipschitz continuity, making them well-suited as inputs for HDFE. This enu-
meration is not exhaustive of all potential suitable inputs for HDFE. Our objective is to furnish a
conceptual understanding of the characteristics that define a suitable input, thereby guiding future
considerations in this domain.

Point Cloud Local Geometry In many 3D vision problems, point cloud local features are important,
such as point cloud registration (Huang et al., 2021)), scene matching (Han et al.,|2023). The local
geometry around a point in a point cloud is usually a continuous surface, which inherently exhibits
Lipschitz continuity. This characteristic makes HDFE suitable for encoding this type of data.

Meteorological Measurements In the field of meteorology, machine learning plays a pivotal role
in various applications, including pollutant estimation (Lu et al., 2020) and weather forecasting
(Chen et al., 2022). A standard practice in these applications involves inputting meteorological
measurements from neighboring areas (for instance, windows of 100 km?) into machine learning
models. HDFE is a suitable tool for encoding these neighboring meteorological measurements,
primarily due to the inherent physical constraints that ensure these measurements do not rapidly
change over time and space.

Time Series Data: Some time series data, especially in fields like event logging (Chen et al., [2021])
or network traffic (Abbasi et al., 2021), are sparse in nature. Such sparse events can be treated as
implicit functions and therefore HDFE is well-suited for it.

E DERIVATION OF DECODING

In this section, we complete the details why F © Ex(xo) can be decomposed into the summation
of Ey (f(xo)) and noises. This is an immediate outcome from the similarity preserving property.
When dx (xo, ;) is large, (Ex (z0) ® Ey (f(z0)), Ex (z;) ® Ey (f(2;))) = 0. Since the unbinding
operation is similarity preserving, we have (Ey (f(z0)), Ex(z;) ® Ey(f(x;)) @ Ex(xo)) =~ 0.
Therefore, F @ Ex (x() can be decomposed into Ey (f(x¢)) and the sum of vectors that are orthog-
onal to it. Consequently, when we search for the y to maximize the (F @ Ex(z¢), Ey (y)), those
orthogonal vectors will not bias the optimization.

F GRADIENT DESCENT FOR DECODING FUNCTION ENCODING

In equation [3] HDFE decodes the function encoding by a similarity maximization. Given the func-
tion encoding F € C¥, and a query point 2y € X, the function value g is reconstructed by:

Yo = argmax, v (F @ Ex(v0), By (y))

When Ex and Ey are chosen as the fractional power encoding (equation[6), the optimization can be
solved by gradient descent. In this section, we detail the gradient descent formulation. We assume
the output space Y = R.

By setting Fy as the fractional power encoding, the optimization can be rewritten as:
Jo = argmax,¢ o1y (F © Ex (20), exp(iUy))MI

where U € R¥ is a random fixed vector where all elements are drawn from the normal distribution.
Since F @ Ex () is a constant vector, the optimization can be further simplified as:

Yo = argmax,¢ 1 (z, exp(i¥y)) 8

where z = F © Ex (o) € C. We write z into its polar form:

zZ= [alewl,age“%, e ,aNewN]

'In equation@ Ey (y) = exp(i8¥y). Since 8 and n are two constant numbers, we rewrite S as ¥ for
notation purpose.

16

Published as a conference paper at ICLR 2024

where aj, € [0,400) and 6y, € [0,27). We first simplify equationand then compute its gradient
with respect to y.

1. .
WHZ ~exp(i¥y)||?

1 a ; ; 2
= all S owetemrv|
k=1

1 g
N2 Z Zapaqei[(gp_eq)_(‘l’p—‘l’q)y}

p=1g¢=1

(z,exp(iVy)) =

| NN
=Nz Z Z apaq cos [(6, — 0,) — (¥, — Ug)y]

p=1g=1

The gradient can be computed easily by taking the derivative:

d 1 LY
@<Z7 exp(i‘lly)> = N2 Zzapaq(\pp - \Pq) sin [(91, - aq) - (\Pp - Wq)y] 9

p=1g=1

In practice, N can be a large number like 8000. Computing the gradient by equation [9] can be
expensive. Fortunately, since W is a random fixed vector, where all elements are independent of
each other, we can unbiasedly estimate the gradient by sampling a small number of entries in the
vector. The decoding can be summarized by the pseudo-code below.

Algorithm 2 Gradient Descent for Decoding Function Encoding

Input: F, ¢, Ex, ¥ > F is the function encoding. z is the query point.
> Ex is the input mapping. W is the parameter in Ey-.
z=F @ Ex(x)

7= [alewl ,aget?2 ... ,aNeieN] > Convert z into its polar form.
while (z, exp(iUy)) still increases do

Randomly select a subset of [0, V) N Z. Denote as S. > We choose | S| = 500.

g=157*- > pges Apag(Vp — ¥g) sin [(6p — 04) — (¥ — ¥y)y]

Yy<—y—a-g > « is the learning rate.
end while

G RELATION BETWEEN FPE AND RBF KERNEL

In the main paper, we mention that we adopt fractional power encoding (FPE) as the mapping for
the input and output space. In this section, we explain the rational behind our choice by revealing
its close relationship between the radial basis function (RBF) kernel. For explanation purpose, we
discuss the single-variable case. It is straight-forward to generalize to multi-variable scenarios.

RBF kernel is a similarity measure defined as K (x,y) = exp (—y(z — y)2). The feature space of
the kernel has an infinite number of dimensions:

o Nk
exp (= 1z = 9) = 3 (G o =) = (60),0(0)
k=0

where ¢(z) = =7 [1, VIRV RYE TS } |

We will then show a theorem that tells that FPE maps real numbers into finite complex vectors, where
the similarity between the vectors can approximate a heavy-tailed RBF kernel. However, the feature
space of the heavy-tailed RBF kernel still has an infinite number of dimensions and therefore inherits
all the blessings of the RBF kernel. Notably, FPE provides a finite encoding, while approximating
an infinite dimensional feature space.

17

Published as a conference paper at ICLR 2024

Theorem 3. Let 7,y € R, E(z) = €797, where © € RY and V6 € ©,0 ~ N(0, 3), then as

N — o0,
, , 2 (=1)k
(B@). B = (7%,) 3 i (o = 9% = (0(a),0(0)
— 1"
where ¢(z) = e’ [1, s ‘/;*!2!9527 v/ g—;x?’, . }
Proof.
, , 1 ‘ ‘
(797, eOY) = w2l exp(i7Oz) - exp(—iyQy)||?
1 ol 2
— 7” Zeiwk(w—y)u
N? k=1
| X
— 72[14 Zemwp—eqxz—y)}
p=1 p7#q
1
= N + N2 ZCOS [’7(917 ‘gq)(aj - y)]
P#q
BRI I o T (D Gl
N 2 fwytart (2k)!
1 < (6p = 04)°% 1 7> (& — y)**
— + _1 k p q
N kz:;() [; @
o0 2k 2%
=) (=1)F2k - 1! @]
k=0
o~ (=1)F o 2%k
=> (@ —y)
— (2k)!!
Since 6,0, ~ N(0,3), 6, — 6, ~ N(0,1), and therefore, E[(6, — 0,)*"] = (2n — 1)!l. So
riz"zn converges to (2n — 1)!. O
Y ges to (2n — 1)!

H PROOF OF THE HDFE’S PROPERTIES

H.1 ASYMPTOTIC SAMPLE INVARIANCE

In the main paper, we claim that the iterative refinement (Algorithm[T)) will converge to the center of
the smallest ball containing all the sample encodings and therefore, HDFE leads to an asymptotic
sample invariant representation. In this section, we detail the proof of the argument. To facilitate
the understanding, Figure 6] sketches the proof from a high-level viewpoint. Recall the definition of
asymptotic sample invariance (definition|[T)):

Definition (Asymptotic Sample Invariance). Let f : X — Y be the function to be encoded, p :
X — (0,1) be a probability density function (pdf) on X, {z;}?; ~ p(X) be n independent
samples of X. Let F, be the representation computed from the samples {x;, f(z;)}I,, asymptotic
sample invariance implies ¥, converges to a limit F o independent of the pdf p.

Proof. We begin by showing the iterative refinement converges to

F,, = argmax||, | IIl_l{l(Z,E(l‘“ flz) (10)
where E(z, f(x)) is defined at equation [6] in the original paper. It maps a function sample to a
high-dimensional space C*.

18

Published as a conference paper at ICLR 2024

o Sn =Uiy Bz, f(zi))
8 = U ex E(z, f(2:))
() :Baili(S,)
(O :Bal(s)

Figure 6: Proof of asymptotic sample invariance (overview). Ball(S) and Ball(S,,) are the smallest
ball containing S and S,,. As n — oo, the Hausdorff distance between the two balls goes to
zero with probability one. From elementary geometry, ||center(Ball(S,,)) — center(Ball(S))|] <
dp(Ball(Sy), Ball(S)). So the distance between the centers of the two balls goes to 0.

To show the convergence of the iterative refinement, it follows from the gradient descent: since
V[—min,(z, E(z;, f(z;))] = —argmin, (z, E(x;, f(z;)), the gradient descent is formulated as z <
z 4+ « - argmin;(z, E(x;, f(x;))), which aligns with the iterative refinement in the paper.

Then we will prove equation 10| produces a sample invariant encoding by proving F',, converges to

Fo = argmax|,|— gg(l(Z»E(l”v f(@))) an

Throughout the proof, we use the following definitions:

SCCV & U,y B f(2))
Soce 2 U B, f(z)
[[-]] = L2-norm of a complex vector.
dg £ max,eqmingep ||p — g||. Hausdorff distance between two compact
sets PC Q ¢ CV,
Ball(P) % the smallest solid ball that contains the compact set P.
center(Ball(-)) £ center of the ball.
Recall from equation% E(z,y) = F~H(e®*+¥)) 5o ||E(x,y)|| = 1 for all 2 and y. Since
121 = 22]* = [[z1]” +]|2][* = 2(21, 22), we have (z, E(z,y)) = 1—3llz— E(z,y)[[* if [|2[]* = 1.

Therefore, equation [10]is equivalent to

F,, = argmin =, I?EilXHZ — E(xy, f(z:))]| (12)

Note that equation [I2]implies F,, is the center of the smallest ball containing S,,:

F,, = center(Ball(Sy,)) (13)

because if we were to construct balls containing S,, with a center F/ # F,,, the radius of the ball
must be larger than the radius of Ball(S,,).

When n — oo, the Hausdorff distance between Ball(.S,,) and Ball(S) goes to 0 with probabil-
ity one. First, it is easy to see that dgy (Ball(Sy,), Ball(S)) is a decreasing sequence and is positive,
so the limit exists. Assume the limit is strictly positive, then there exists a point p’ € S such that
minges, ||p’ — ¢|| > ¢ for some constant ¢ > 0 as n — oo. This means no sample is drawn from
the ball B..(p’). This is contradictory to the definition of p : X — (0,1): p is positive over the input
space X.

Finally, we conclude by ||F,, —F .|| < di(Ball(Sy,), Ball(S)). Since Ball(S,) C Ball(S), from
elementary geometry, if A C B are two balls, then ||center(B) — center(A)|| < radius(B) —
radius(A) < dg(B,A). Therefore, we have [|center(Ball(Sy)) — center(Ball(S))| <
dp(Ball(Sy), Ball(S)). Therefore, ||F,, — Fool|| < dg(Ball(Sy), Ball(S)), which decays to
0asn — oo. O

19

Published as a conference paper at ICLR 2024

H.2 ISOMETRY

In this section, we complete the proof that HDFE is an isometry.

Theorem. Let f,g: X — Y be both c-Lipschitz continuous, then their L2-distance is preserved in
the encoding. In other words, HDFE is an isometry:

17— glles :/ (@) — g(2)*dz = b — a(F, G)
rxeX
Lemmad. (zQy,z® z) = (y, 2).

Proof. Letx = e,y =¢e", z = €'%,

(rRy,r®z) = <ei(x+y)), ei(x+z)>
= ei(x+y) -e_i("""z)

= (e, e)

= <y, Z>

Proof.
" / / Ex(v) @ By (f(2)), Ex(a') @ By (g(2')))da’dx
B /| o \Bx(@) © By (@), Ex(o') © By (o(a/)))da’da
“f, o Ex@)© Ex(f(@). Ex(a') @ By (o(o')))do'd
= [(Bx(@)® By (7). Px (o) © By a(a)))do + noise

~ / (By(f(2)), By (9(x)))dz by Lemmafl

= [CH @) ~ o) i by Theorem

k=0

~b—a / |f(x z)|?dx by taking the first and second order terms

The second line holds because when dx (x,z’) is larger than the receptive field ¢y, Ex(x) and
Ex () will be orthogonal, so the similarity between Ex (z) ® Ey (f(y)) and Ex(z') ® Ey (g(y))
will be close to zero and they will be summed as noise. O

I EMPIRICAL EXPERIMENT OF HDFE

In this section, we verify the properties claimed in Sec. [2.4] with empirical experiments.

1.1 SAMPLE INVARIANCE

In Fig. [/} we demonstrate that the function encoding produced by HDFE remains invariant of both
the sample distribution and sample density. Specifically, we sample function values from three
distinct input space distributions, namely left-skewed, right-skewed, and uniform distribution, each
with sample sizes of either 5000 or 1000. We then calculate the similarity between the function
vectors generated from these six sets of function samples. Before tuning the function vectors, the
representation is influenced by the sample distributions (Fig. [/] Mid). However, after the tuning
process, the function vector becomes immune to the sample distribution (Fig. |[7|Right).

20

Published as a conference paper at ICLR 2024

= left-skewed distribution
== right-skewed distribution
== uniform distribution

N
o
Uniform | Left-Tailed |

y
o

|Right-TaiIed| Uniform | Left-Tailed |

Probability Density Function

8|x|0.49 049
el
5|
£|=[0.50 0.51
00 sk [1k
0.0 0.25 0.5 0.75 1.0 Left-Tailed I Uniform IRight-Tailedl | Left-Tailed | Uniform |RighI-Tailed|

Figure 7: HDFE is invariant of sample distribution and sample size. Left: Three distributions where
the function samples are drawn from. For each distribution, the sample size is either 5000 or 1000.
Mid, Right: Similarity among the function vectors generated by the six sets of function samples,
before and after the function vector tuning process, respectively.

1.2 ISOMETRY

In Fig. [8] we generate pairs of random functions and compute their function encodings through
HDFE. We plot the L2-distance between the functions and the similarity between their encodings.
We discover a strong correlation between them. This coincides the isometric property claimed in
Theorem 21

o
©

[o

similarity between function vectors

o
w
o"

°

¢

00 0.2 0.4 0.6
distance between functions

Figure 8: HDFE is a distance preserving transformation. The L2-distance between functions is
proportional to the negative similarity between their encodings.

1.3 PRACTICAL CONSIDERATION OF ITERATIVE REFINEMENT

In Algorithm [T} we propose one implementation of iterative refinement, which iteratively adds the
sample encoding that has the minimum similarity with the function encoding. This implementation
is a conservative implementation that guarantees asymptotic sample invariance. However, in practi-
cal applications, strict sample invariance may not be necessary. For example, achieving a similarity
threshold of 0.99 when constructing with different samples might not be required. This relaxation
is viable because the downstream neural network possesses an inherent ability to handle some level
of inconsistency. Therefore, we consider a practical adaptation of Algorithm[T|by introducing slight
modifications to accommodate these real-world considerations.

One-Shot Refinement In Algorithm [T} the motivation of the iterative refinement is to balance the
weights between dense and sparse samples. By iterative refinement, we adjust the function encoding
so that the sparse samples also contribute to the encoding. Such motivation can be achieved by
another cheaper one-shot refinement. After obtaining the initial function encoding by averaging
the sample encoding, we compute the similarity between this initial encoding and all the sample
encodings. The similarity can serve as a rough estimation of the sample density at a particular point.

21

Published as a conference paper at ICLR 2024

Therefore, if we were to balance the weights between dense and sparse samples, we can simply
recompute the weights by the inverse estimated density. Algorithm |3|illustrates the procedure.

Algorithm 3 One-Shot Refinement

z; < Ex(z;) ® Ey (f(x;)) for all .
F=>3 2z

forido
w; = (F, z;) > w; is an estimation of the density at (x;, f(x;)).
w; = max(e, w;) > Ensure numerical stability.
w; = w; '/ > w;! > Compute inverse density.
end for

Although one-shot refinement is not strictly sample distribution invariant, it is a quite good
approximation of the sample invariant function encoding and is very cheap to compute. We
perform a comparison among no refinement, one-shot refinement and iterative refinement with syn-
thetic data, where we encode the same function sampled with two different distributions and com-
pute the similarity between the two encodings. Specifically, we generate a random function by

4
flz) = % + é Z ay sin(2mkz) (14)
k=1

where a, ~ Uniform(0, 1) are the parameters controlling the generation and f(z) € (0,1). We
construct the encoding of the function by samples from two different sample distributions. The
first distribution is computed by z; ~ Uniform(0,1) and z; < z2. The second distribution
is computed by z; ~ Uniform(0,1) and x; < 1 — x2. Consequently, the first distribution is
left-tailed, and the second distribution is right-tailed. Then we compare the similarity of function
encodings generated by no iterative refinement, one-shot refinement, and iterative refinement. Figure
[9)shows the comparison, which demonstrates that one-shot refinement is a quite good approximation
of the sample invariant function encoding (the similarity increases from ~ 0.5 to 0.98 after one-shot
refinement). In Appendix Table 3] we also compare the effectiveness of the three refinement

schemes in a synthetic regression problem.

Iy
)

—— iterative refinement
—-— no refinement
—-— one-shot refinement

14
©

o
@

e
<

o
o

o
o
|

Similarity between Function Encodings

0 25 50 75 100 125 150 175 200
Number of Iterations

Figure 9: When encoding the same function under two different sample distributions, one-shot
refinement can approximate the sample invariant function encoding well. It takes 75/90/1500 ms to
encode 5000 samples on a CPU, and 7.5/8.0/250 ms on an NVIDIA Titan-X GPU when performing
no refinement/one-shot refinement/200-step iterative refinement.

1.4 EFFECTIVENESS OF SAMPLE INVARIANCE
In this section, we examine the effectiveness of HDFE’s sample invariance property through an

synthetic function regression problem. We first generate random functions by equation [T4} where
ar ~ Uniform(0,1) are the parameters controlling the generation. The task is to regress the

22

Published as a conference paper at ICLR 2024

Table 3: Performance of function parameters regression. PointNet fails when sample distribution
varies between training and testing phases, while HDFE is robust to the sample distribution variation.

PointNet HDFE
No Refinement One-Shot Refinement 200-Step Iter. Ref.
No Distr. Var. MSE | 0.0037 < 0.0005 < 0.0005 < 0.0005
R? 0.978 > 0.9975 > 0.9975 > 0.9975
Distr. Var MSE | 0.0717 0.003 < 0.0005 0.001
B R? 0.513 0.982 > 0.9975 0.992

coefficients [a1, as, as, a4] from the function samples {z;, f(z;)}. Regarding the sample size, the
number of function samples is 5000 in the training phase and 2500 in the testing phase. Regarding
sample distribution, we consider two different settings:

Setting 1 (No Sample Distribution Variation): The sample distribution is consistent between train-
ing phase and testing phase. We let z; ~ Uni form(0,1) in both training phase and testing phase.

Setting 2 (Sample Distribution Variation): The sample distribution is different between the train-
ing phase and testing phase. Specifically, in the training phase, we let z; ~ Uniform(0,1) and
x; < 2. In the testing phase, we let x; ~ Uniform(0,1) and x; + 1 — z2. Consequently, the
sample distribution in the training phase is left-tailed, while in the testing phase is right-tailed.

We compare our HDFE with PointNet in terms of mean squared error (MSE) and the R-squared
(R?) metrics. For HDFE, we compare the performance among no refinement, one-shot refinement
(introduced in Appendix [[.3)), and 200-step iterative refinement. Table [3|shows the comparison.

In Setting 1, when there is no distribution variation, HDFE achieves significantly lower error than
PointNet. This is because HDFE is capable of capturing the entire distribution of functions, while
PointNet seems to struggle on that.

In Setting 2, when there is distribution variation, PointNet fails miserably, while HDFE, even without
iterative refinement, already achieves fairly good estimation, and even better than the PointNet in
Setting 1. In addition, the experiment also shows that both the one-shot refinement and the iterative
refinement are effective techniques to improve the robustness to distribution variation.

1.5 INFORMATION Loss oF HDFE

In this section, we analyze the information loss when encoding continuous objects with HDFE. It
is intuitive that a larger encoding dimensionality induces smaller information loss, and encoding a
function changing more rapidly induces larger information loss. We attempt to quantify the relation
through empirical experiments. We generate random functions and we measure the “function com-

plexity” by the integral of the absolute gradient: complexity(f) = f01 |f'(x)|dz. Consequently,
functions changing more rapidly yield a higher complexity(f).

We study the relation between the reconstruction mean absolute error (MAE) / R-squared (R?) and
the function complexity under different encoding dimensions. Figure[T0|reveals the MAE exhibits a
linear relation with the input function complexity, while the R-squared seems not to be affected by
the function complexity when the dimension is large enough.

14
o
2
S
-
o

e dim=500 L] °
dim=1000 °
e dim=2000

0.035

0.9

0.030

0.025

0.020

0.015

0.6 " o

e dim=500 °
dim=1000 °

e dim=2000 ®

0.010

0.005

Mean Absolute Reconstruction Error

05
2.0 0.0 0.5 1.0 15
Complexity of Input Function

0.5 1.0 15 2.0
Complexity of Input Function

Figure 10: Empirical information loss when encoding functions of different complexities.

23

Published as a conference paper at ICLR 2024

1.6 LowW-RANK HIGH-DIMENSIONAL SCENARIOS

We generate random functions by first randomizing x;, € R? and oy, € R, the random function is
constructed by:

fz) = Zak - K(x,z1)
k=1

where n can measure the complexity of the function, and d is the dimension of the function input.
The testing samples are generated by xy, + noise for all k € [n].

In Fig. [T1] the reconstruction error increases as n increases, which indicates the encoding quality
is negatively correlated to the complexity of the function. However, the reconstruction error does
not change as d increases, which indicates that the encoding quality does not depend on the explicit
dimension of the function input.

This empirical experiment shows that HDFE has the potential to operate on high-dimensional data,
because the encoding quality of HDFE does not depend on the dimension of the function input, but
only depends on the complexity of the function.

Relative Error

10 50 100 500 1000 5000
n

Figure 11: The reconstruction error of HDFE is negatively correlated to the complexity of the func-
tion, but does not depend on the dimension of the function input.

J EXPERIMENT DETAILS

J.1 PDE SOLVER

The PDE and the solution are encoded into two embedding vectors with length N. A
deep complex network is trained to learn the mapping between two vectors. The ar-
chitecture is a sequence of layers: [ComplexLinear (N,256), ComplexRelLU(),
ComplexLinear (256,256), ComplexRelLU(), ComplexLinear (256,256),
ComplexReLU(), ComplexLinear (256, N)].The network is trained with Adam optimizer
with a learning rate of 0.001 for 20,000 iterations. The « value in equation @ is 15, 25, 42, 45 for
N = 4000, 8000, 16000, 24000 and the (3 value is 2.5.

J.2 SURFACE NORMAL ESTIMATION

The architecture is a sequence of layers: [ComplexLinear (N, 256),
ComplexBatchNorm() ComplexReLU(), ComplexLinear (256,256),
ComplexBatchNorm (), ComplexReLU(), ComplexLinear (256,128),
ComplexBatchNorm (), ComplexReLU()]. After the sequence of layers, it will pro-
duce a 128-dimensional complex vector z. Since we desire a 3-dimensional real vector output
(normal vector in R3), we use two ReallLinear (128, 3) layers L_.real and L_imag. The
final output normal vector is L_real (z.real) + L._imag(z.imag). The network is trained
with Adam optimizer with learning rate 0.001 for 270 epochs. The « is chosen as 20 and the
dimensionality is chosen as 4096.

24

Published as a conference paper at ICLR 2024

J.3 ADDING HDFE MODULE TO HSURF-NET

Denote the input local patch as P with shape (B, N, 3), where B is the batch size, N is the
number of points in a local patch. HSurf-Net uses their novel space transformation module to
extract n keypoints and their K nearest neighbors. The resulting data is denoted as P_sub with
shape (B, n, K,3). HSurf-Net uses a PointNet to process P_sub, by first lifting the dimension to
(B,n, K,C) and then doing a maxpooling to shape the data into (B, n,C). We add our HDFE
module here: we use HDFE to shape the data from (B, n, K, 3) to (B, n,C), by first lifting the
dimension from (B,n, K, 3) to (B, n, K,512) using equation [6| and then average the embedding
across the neighbors to shape it into (B, n,512). Then we use a fully-connected layer to map the
data into (B,n,C), which becomes the HDFE feature. Then we sum the features generated by
HSurf-Net and HDFE into a (B, n, C') matrix and pass to the output layer as HSurf-Net does.

K ABLATION STUDIES OF SURFACE NORMAL ESTIMATION

Table 4: Ablation Studies on the PCPNet dataset.

Dimension 2048 4096

Noise Level | None Low Med High Stripe Gradient Average | None Low Med High Stripe Gradient Average
a=10 898 10.80 17.40 22.18 10.62 9.92 13.32 9.00 10.60 17.40 22.48 10.50 9.87 13.31
a=15 898 11.02 17.73 2272 10.85 9.46 13.46 829 1077 1746 22.63 10.17 9.10 13.07
a =20 8.14 1053 17.86 23.07 9.93 8.81 13.06 797 1072 17.69 2276 947 8.67 12.88
a=25 8.86 1143 17.94 2285 1042 9.33 13.47 840 1123 17.66 22.74 9.89 8.95 13.15

Table 5: Ablation Studies on the FamousShape dataset.

Dimension 2048 4096
Noise Level | None Low Med High Stripe Gradient Average | None Low Med High Stripe Gradient Average
a=10 15.12 1843 30.86 38.66 15.52 13.82 22.07 1506 18.15 30.61 3850 16.81 13.71 22.14

a=15 1442 1797 3045 3892 1547 13.81 21.84 13.68 17.77 31.17 3879 14.83 13.06 21.55
a =20 13.37 1843 3140 39.03 13.92 12.54 2145 | 13.04 17.99 31.23 3857 14.01 12.13 21.16
a=25 1470 19.71 31.52 3895 15.04 13.56 22.25 1403 19.16 3139 38.65 14.38 13.22 21.81

In general, when the dimensionality is higher, the error is lower. When the receptive field is large («
is small), HDFE performs better when the noise level is high. When the receptive field is small («
is large), HDFE performs better when the noise level is low. This coincides with the analysis in Fig.
A large receptive field tends to filter out the perturbations and therefore is more robust to noise.
A small receptive field can capture the high-frequency details and therefore is more accurate.

L NOISE ROBUSTNESS

In this section, we further analyze why HDFE is robust to point perturbations. For visualization
purposes, we perform the analysis on 2d data, while the analysis generalizes well to higher dimen-
sions. We randomly sample 1000 points from the unit circle 22 + y? = 1 and add Gaussian noises
to the samples. Then we encode the points into vectors using HDFE with different receptive fields
(a = 10, 15, 20, 25) and reconstruct the implicit function. The pseudo-color plot in Fig. [I2] visual-
izes the likelihood that a point lies on the unit circle.

When « is small, the visualization shows that the reconstructions under different noise levels are
similar, which tells that the encodings under different noise levels are similar. So it demonstrates
a robustness to point perturbations. On the other hand, when « is large, the reconstruction is more
refined and captures the high-frequency details, but as a price, it is more sensitive to the point
perturbations.

25

Published as a conference paper at ICLR 2024

o2 =0.01
o2 =0.05
0?2 =0.1

Figure 12: Reconstruction of implicit functions sampled with noisy inputs under different choices
of receptive field.

26

	Introduction
	Problem Definition and Methodology
	Explicit Function Encoding
	Implicit Function Encoding
	Vector-Valued Function Encoding
	Properties of HDFE

	Experiment
	PDE Solver
	Unoriented Surface Normal Estimation

	Related Work
	Mesh-grid-based framework
	Sparse framework

	Conclusion
	Acknowledgement
	Notation Table
	PointNet as Function Encoder
	Vector Function Architecture
	Suitable Input Types for HDFE
	Derivation of Decoding
	Gradient Descent for Decoding Function Encoding
	Relation between FPE and RBF Kernel
	Proof of the HDFE's Properties
	Asymptotic Sample Invariance
	Isometry

	Empirical Experiment of HDFE
	Sample Invariance
	Isometry
	Practical Consideration of Iterative Refinement
	Effectiveness of Sample Invariance
	Information Loss of HDFE
	Low-Rank High-Dimensional Scenarios

	Experiment Details
	PDE Solver
	Surface Normal Estimation
	Adding HDFE Module to HSurf-Net

	Ablation Studies of Surface Normal Estimation
	Noise Robustness

