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APPENDIX

NUMERICAL EXPERIMENT DETAILS

We demonstrate the convergence of our algorithm in a continuous bandit problem that is a multi-
agent extension of the experiment in Section 5.1 of Silver et al. (2014). Each agent chooses
an action a¢* € R™. We assume all agents have the same reward function given by R'(a) =

— (Zl al — a*)T C (Zl al — a*). The matrix C is positive definite with eigenvalues chosen from
{0.1,1},and a* = [4,...,4]". We consider 10 agents and action dimensions m = 10, 20, 50. Note
that there are multiple possible solutions for this problem, requiring the agents to coordinate their
actions to sum to a*. We assume a target policy of the form j1g: = 6° for each agent i and a Gaussian
behaviour policy 8(-) ~ N (67, a/%) where 03 = 0.1. We use the Gaussian behaviour policy for both
Algorithms 1 and 2. Strictly speaking, Algorithm 1 is on-policy, but in this simplified setting where
the target policy is constant, the on-policy version would be degenerate such that the () estimate does
not affect the TD-error. Therefore, we add a Gaussian behaviour policy to Algorithm 1. Each agent
maintains an estimate Q%" (a) of the critic using a linear function of the compatible features a — ¢
and a bias feature. The critic is recomputed from each successive batch of 2m steps and the actor
is updated once per batch. The critic step size is 0.1 and the actor step size is 0.01. Performance
is evaluated by measuring the cost of the target policy (without exploration). Figure [2| shows the
convergence of Algorithms 1 and 2 averaged over 5 runs. In all cases, the system converges and the
agents are able to coordinate their actions to minimize system cost. The jupyter notebook will be
made available for others to use. In fact, in this simple experiment, we also observe convergence
under discounted rewards.
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Figure 2: Convergence of Algorithms 1 and 2 on the multi-agent continuous bandit problem.

ASSUMPTIONS

Assumption 1 (Linear approximation, average-reward). For eacp agent 1, the average-reward func-
tion R is parameterized by the class of linear functions, i.e., Ryi g(s,a) = wp(s,a) - \' where
wy(s,a) = [wy1(s,a),...,wo K(s,a)] € RE is the feature associated with the state-action pair
(s, a). The feature vectors wy(s,a), as well as Vw1 (s, a) are uniformly bounded for any s € S,
a € A,k € [1, K]. Furthermore, we assume that the feature matrix W, € RISI*X has full column
rank, where the k-th column of W 4 is [fA m(a|s)we i (s,a)da, s € S| forany k € [1, K].

Assumption 2 (Linear approximation, action-value). For each agent i, the action-value func-
tion is parameterized by the class of linear functions, i.e., Qui(s,a) = @(s,a) - w' where
d(s,a) = [¢1(s,a),...,¢Kk(s,a)] € R is the feature associated with the state-action pair
(s,a). The feature vectors ¢(s,a), as well as V¢ (s, a) are uniformly bounded for any s € S,
a € Ak € {1,...,K}. Furthermore, we assume that for any § € ©, the feature matrix
®y € RISI¥K hag full column rank, where the k-th column of ® is [¢x(s, 1e(s)), s € S| for
any k € [[1, K]. Also, for any u € RE, ®pu # 1.

Assumption 3 (Bounding ¢)). The update of the policy parameter 6% includes a local projection by
[ : R™ — ©° that projects any ¢; onto a compact set ©" that can be expressed as {0°|¢;(0') <
0, j =1,...,s'} C R™, for some real-valued, continuously differentiable functions {q;—}lgjgsi
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defined on R™¢. We also assume that © = Hfil ©' is large enough to include at least one local
minimum of .J(6).

We use {F;} to denote the filtration with 7, = o(s,,Cr—1,a7—1,77-1,7 < t).

Assumption 4 (Random matrices). The sequence of non-negative random matrices {C; = (cf;j )ij}
satisfies:

1. Cy is row stochastic and E(C}|F3) is a.s. column stochastic for each ¢, i.e., C;1 = 1 and
ITIE(Ct|}'t) = IT a.s. Furthermore, there exists a constant 7 € (0, 1) such that, for any
¢ >0, we have ¢ > 7.

2. C; respects the communication graph Gy, i.e., ¢/ = 0if (i, ) ¢ &.
3. The spectral norm of E[C}| - (I — 117 /N)) - Cy] is smaller than one.

4. Given the o-algebra generated by the random variables before time ¢, Cy, is conditionally
independent of s¢, a; and r}_ ; forany i € N.

Assumption 5 (Step size rules, on-policy). The stepsizes 5., ¢, Bo,+ satisfy:

Zﬂw,t = Z/Be,t =
t t

Z( 3),t + 5§,t> < o0

t

Z |B6,t4+1 — ﬁ(),t‘ < 00.
t

In addition, g+ = 0o(B,,¢) and limy_, o0 Bes 141/ Buw,t = 1.

Assumption 6 (Step size rules, off-policy). The step-sizes 3y ¢, B+ satisfy:

ZﬂA,t = Zﬁe,t = 09, Zﬁit + 6g,t <00
t t t

Bo,t = 0(Bxt)s tl_ifgoﬁk,t-'rl/ﬁz\,t =1

PROOF OF THEOREM 1]

The proof follows the same scheme as Sutton et al.| (2000a)), naturally extending their results for a
deterministic policy 19 and a continuous action space \A.

Note that our regularity assumptions ensure that, for any s € S, Vy(s), VoVu(s), J(0), Vo J(0),
d?(s) are Lipschitz-continuous functions of 6 (since g is twice continuously differentiable and ©
is compact), and that Qg (s, a) and V,Qy(s, a) are Lipschitz-continuous functions of a (Marbach &
Tsitsiklis| (2001).

We first show that Vg J(0) = E,a0 [Vore(5)Va Qo(s,0)] 4=y (s)-

The Poisson equation under policy pg is given by [Puterman| (1994)

Qo(s,a) = R(s,a) — J(0) + Z P(s'|s,a)Vy(s).

s'eS
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So,
VoVy(s) = VoQo(s, 1o (s))
= Vo [R(s,pa(s)) — J(0) + Z P(s'[s, 1o (s))Va(s")]

s’eS
= Vopuo(s) VoR(s,a)| _ sy — Vo (0) + Vg Z P(s']s, ug(s))Va(s")
s’eS
= Voug(s) Vo R(s, a)|a:#9(s) —VoJ(6)
+ Z v@u@(s) VGP(S/‘S7G’)|CL e s) Z |S /1/9 vG%(S/)
s'eS s'eS

= Vono(s)Va |[R(s,a) + 3 Plsls’,a)Va(s)]

s'€S a=16(s)
—VoJ(0) + > P(s'|s, 10(s))VaVa(s)
s'eS
= Voro(s)Va Qo(5,0)| 4y + Y P(5|s,10(5))VaVa(s') — VoI (6)
s'eS
Hence,
VoJ(0) = Vouo(s)Va Qo(s,a)| sy (s + Z P(s']s, 19(3))VeVa(s') — VoVa(s)
s'eS
> d(5)Ve I (0) = d?(s)Vapo(s)Va Qa(5,0)| o e
seES seS
+ > d'(s) Y P(5'|s, po(5)) VaVa(s') = > d’(s)VoVi(s
s€S s’eS s€ES

Using stationarity property of d?, we get
S5 P s )Vl = 3 Tl
seSs’'eS s'eS

Therefore, we get

Vo (8) = d’(s)Vons(s) VaQo(s,a)luepys) = Bomar [Voro(s) VaQo(s,0)] oy s))-

seS

Given that Vi ji)(s) = 0if i # j, we have Vopug(s) = Diag(Vor i, (5), - .., Vovpd', (s)), which
implies

Vi J(0) = Eqogo [Voip1gi (5)Var Qo(s, 15”1 (s),a")| ] (15)

ai=pi, (s)
PROOF OF THEOREM [3]

We extend the notation for off-policy reward function to stochastic policies as follows. Let 3 be a
behavior policy under which {s;};>¢ is irreducible and aperiodic, with stationary distribution d°.
For a stochastic policy 7 : S — P(A), we define

= d(s / |s)R(s,a)da.

sES
Recall that for a deterministic policy p : S — A, we have

= " a2 () R(s, u(s)).

seS

We introduce the following conditions which are identical to Conditions B1 from Silver et al.|(Jan-
uary 2014al).
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Conditions 1. Functions v, parametrized by o are said to be regular delta-approximationon R C A
if they satisfy the following conditions:

1. The distributions v, converge to a delta distribution: lim, o [, v5(a',a)f(a)da = f(a’)
for @’ € R and suitably smooth f. Specifically we require that this convergence is uniform
in ' and over any class F of L-Lipschitz and bounded functions, |V, f(a)||< L < oo,
sup, f(a) < b < oo, ie.

lim  sup ‘/A ve(a',a)f(a)da — f(a')| = 0.

ol0 feFa’erR

2. Foreacha' € R, v,(d,-) is supported on some compact C,; C A with Lipschitz boundary
bd(C,/), vanishes on the boundary and is continuously differentiable on C,;.

3. Foreach o’ € R, for each a € A, the gradient Vv, (a’, a) exists.

4. Translation invariance: for all a € A,a’ € R, and any § € R™ such that a + § € A,
a+de A v, (d,a)=v,(a +da+9).
The following lemma is an immediate corollary of Lemma 1 from [Silver et al|(January 2014a).

Lemma 1. Let v, be a regular delta-approximation on R C A. Then, wherever the gradients exist

Varv(d,a) = -Vv(d,a).

Theorem [3]is a less technical restatement of the following result.

Theorem 8. Let pg : S — A. Denote the range of g by Rg C A, and R = UgRy. For each 0,
consider Ty , a stochastic policy such that wg »(als) = vs(ue(s), a), where v, satisfy Conditions
on R. Then, there exists v > 0 such that, for each § € ©, 0 — Jr, (T95), 0 = Jr, (o),
o+ Vo, (7o), and o — VoJr, (1g) are properly defined on [0,7] (with Jx, ,(m90) =
Jﬂe,o (Me) = Jus (/’69) and V9J7Te,o (7(9,0) = V9J7T9,0 (MG) = V9JM9 (Me))’ and we have:

1;1% Vodry . (To0) = 1;1% Vodrg , (10) = Vodu, (10)-

To prove this result, we first state and prove the following Lemma.

Lemma 2. There exists r > 0 such that, for all § € © and o € [O, r], stationary distribution d™°.c
exists and is unique. Moreover, for each 6 € ©, o — d™= and o — V¢d™ = are properly defined
on [0, r] and both are continuous at 0.

Proof of Lemma|2] For any policy 3, we let (PSB S,) be the transition matrix associated to the
’ ‘,S' €S

Markov Chain {s; };>0 induced by 8. In particular, foreach§ € ©,0 > 0, s,s’ € S, we have
PrY, = P(s'|s. po(s)).

PLy = [ moalals)P($1sa)da = [ volua(s). ) P(s s,
A A
Letd € ©,s,5' €8, (0,) € O such that 6, — 6 and (03,),,cy € RN o, 1 0:

Plu’gn _ PHG

s,s’ s,s"|*

TOn,on __ PHO
P phe,

s,s’

+

TOp ,on M6y,
é ’Ps,s’ Ps,s’

Applying the first condition of Conditions[I|with f : a — P(s'|s, a) belonging to F:

P’Ten On Pp‘gn

’ ’
s,8 S,8

= | [ o0 0,90 0P 5,000 P, 5)

— 0.

n— oo

< sup
feF,a’eR

/ Vo (', a) f(a)da — f(a)
A
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By regularity assumptions on 6 — pg(s) and P(s|s, ), we have

o
P& — Pl

s,s’

= |P(s'|s, o, () — P(s'|s, po(5))| —> 0.

Hence,
P""Gn on _ pHe 0

s,s’ s,8’ s 50
Therefore, for each s,s" € S, (6,0) — P;Z;", with P:Z;O = Ps*fz,, is continuous on © x {0}. Note
that, foreachn € N, P — HS o (P”)S « 1s a polynomial function of the entries of P. Thus, for
eachn € N, f, : (0,0) — Hsjs, (P“9v<’7")s,s,, with f,,(0,0) = [[, ., (P#*"),  is continuous on
© x {0}. Moreover, for each § € ©,0 > 0, from the structure of P™-, if there is some n* € N
such that f,,-(6,0) > 0 then, for all n > n*, f,,(0,0) > 0.

Now let us suppose that there exists (6,,) € ©N" such that, for each n > 0 there is a o, < n~! such

that f,,(6,,,0,) = 0. By compacity of ©, we can take (6,,) converging to some § € ©. For each

n* € N, by continuity we have f,~(6,0) = lim f,+«(0,,0,) = 0. Since P*¢ is irreducible and
n— o0

aperiodic, there is some n € N such that for all s, s’ € S and for all n* > n, (P”Q"*> > 0, i.e.

s,S

fnx(0,0) > 0. This leads to a contradiction.

Hence, there exists n* > 0 such that forall € © and o < n* !, fn(0,0) > 0. Weletr = MR [
follows that, forall € © ando € [O, r] , P™¢. is a transition matrix associated to an irreducible and
aperiodic Markov Chain, thus d™:< is well defined as the unique stationary probability distribution
associated to P™%.=. We fix 6 € O in the remaining of the proof.

Let /3 a policy for which the Markov Chain corresponding to P? is irreducible and aperiodic. Let
s« € 8, as asserted in|Marbach & Tsitsiklis|(2001)), considering stationary distribution dP as a vector
(df )s cs € RISI, dP is the unique solution of the balance equations:

S dlrl, =dl, s eS\{s.},

seS

Sy odl =1

seS

Hence, we have A” an |S| x |S| matrix and a # 0 a constant vector of RIS! such that the balance
equations is of the form
APdP =a (16)

with A” depending on PSB, . in an affine way, for each s, s’ € S. Moreover, AP is invertible, thus

s,s’

d? is given by

1
C— A
d det( ﬁ>adJ(A) a.

Entries of adj(A”) and det(A”) are polynomial functions of the entries of P”.

Thus, o +— d70° adj(A™ =) " a is defined on [0, 7] and is continuous at 0.

_ 1
= det(A™00)

Lemmaand integration by parts imply that, for s, s’ € S, 0 € [O, r} :
/ Varve(a'sa)| gz, s) P85, a)da = 7/ Vave(pg(s),a)P(s'|s,a)da
A A

= / Vo (19(8),a)V4P(s'|s,a)da + boundary terms
c

- /C vo(po(s),a)VoP(s'|s,a)da
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where the boundary terms are zero since v, vanishes on the boundary due to Conditions [I]
Thus, for s, s’ € S, 0 € [0,7]:

VP, = Vg/’f('gg( |s)P(s'|s,a)da
/Vgﬂ'@a al|s)P(s'|s,a)da (17
:/ Vouo(s) Vave(a'sa)ly_,, s P(s'|s a)da
A

= Vgug(s)/c Vo (pg(s),a)VoP(s'|s,a)da

kg (s)
where exchange of derivation and integral in (T7) follows by application of Leibniz rule with:

e Va € A 0 — mg,(als)P(s'|s,a) is differentiable, and Vgmg ,(a|s)P(s'|s,a) =
Vonuo(s) Vave(a'sa)l,_,, )

o Leta* e R,VO € 0O,

IV oma.0 als)P(s'|s, )| = || Vorio(5) Varvo(a,0)] -
1¥0k0(5)lop || Varvo (0", o
sup [[Vios10(5)llop || Vatio (119(s), )|
6ce

= 5P [Voro(s)lep [Varola™sa = pols) + a7}l (18)
S

IN

IN

IN

sup [[Vopo(s)ll, sup [[Vave(a®,a)l lace,.
0€O C

acCqx*

where ||-||op denotes the operator norm, and (18) comes from translation invariance (we take
Vave(a®,a) = 0 fora € R"\Co»). a = sup [Vopg(s)|l,, sup [[Vavo(a®,a)l| laec,. is
0

€O a€Cpyx
measurable, bounded and supported on C,+, so it is integrable on .A.

e Dominated convergence ensures that, for each k € [1,m], partial derivative g;(0) =
Doy, [ 4 VoTo,o(als)P(s']s,a)da is continuous: let 6, | 6, then

9r(0n) = Op, / Vomo, .o (als)P(s'|s,a)da
A
= Og, 1o, (5)/ ve(a*,a — g, (s) +a*)V,P(s'|s,a)da

n::o ng,ug(s)/ ve(a*,a — pg(s) +a*)VaP(s'|s,a)da = gi(0)

¥

with the dominating function a — sup |v,(a*, a)|sup IVaP(s]s,a)|| 1aec,. -
a€Cyx
Thus ¢ +— VP, ‘;“ is defined for o € [0,7‘} and is continuous at 0, with VyP_ TOO  —

N
Vope(s) VP (s']5,0)],—,,(s)- Indeed, let (0,), e € [O,r]+ , 0n | 0, then, applying the first
condition of Conditions[I]with f : a — V,P(s'|s, a) belonging to F, we get

TO,0m 12
HWP = VPl

s,s’

= ”V@/J'@(S)Hop — 0.

n— oo

/ Vo, (1o(8),a)VoP(s'[s,a)da — Vo P(s'[s, a) |, (s)
c

no(s)
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Since d™¢:c = dt(Aﬁwadj (A™0.) T g with |det (A™.2)| > 0 forall o € [0, 7] and since entries
of adj (A™ <) and det (A™ <) are polynomial functions of the entries of P7¢:v, it follows that

o — Ved™ - is properly defined on [0, r] and is continuous at 0, which concludes the proof of
Lemma 2 O

We now proceed to prove Theorem ]

Let § € ©, my as in Theorem 3} and r > 0 such that o — d™:v, ¢ + Vyd™ are well defined on
[O, r} and are continuous at 0. Then, the following two functions

o= Jr, ,(T0,0) Zd”“ /nga|) (s,a)da,

seS

o= Jﬂe,a (ug) = Z d™e (S)R(S>M9(s))7
seS

are properly defined on [0, 7] (with Jr, ,(m0,0) = Jrpo(1t0) = Ju,(119)). Let s € S, by taking
similar arguments as in the proof of Lemmam we have

Vg/ WQ,G(Q|S)R(87a)d(Z:/ Vgﬂgﬁg(a,s)R(s,a)da
A A

= Vg,ug(s)/c Vo (po(s),a)VaR(s,a)da.

ug(s)

Thus, o — Vg Jr,  (7g,s) is properly defined on [O, r] and

Vodry., (To.0) Z Vod"®e / 9.0 (a|s)R(s,a)da

seS

+Zd’”’*’(s)Vg/Aﬁe’g(a|s)R(s,a)da

seS

= Z Vod™ / Vo (po(s),a)R(s, a)da

seS

+Zd”" YVono(s )/C Vo (po(s),a)VoR(s,a)da.

sES no(s)

Similarly, o — Vg Jm9 (g) is properly defined on [0, 7] and

Z Vod e S ,LL9 + Z d™oe Vgug ) V(LR(S, a)}
seS sES

a=16(s)

To prove continuity at 0 of both o — VoJr, (m9,0) and o = Vg Jr, (1g) (With Vo Jr, (7,0) =
V@Jﬂg’o(,u@) = VoJu, (ko). let (Un)nZO 1 0:

Hvere,(,n (T9,0,,) — VeJﬂe‘o(We,o)H
<\ Vodr., @0.0,) = Vodry,, ()| + |[VoTr., (o) — Vo e (110)]] - (19)

For the first term of the r.h.s we have

HVGJWQJH (70,00) = Vorg,, (ue)H

< IV )| f v, (a9, ) R ) — s )

seS

+ > d™ ()] Vopa(s)lop

seS

/ Vo, (o(s). @)VuR(s,a)da — Vo R(s.0)[,_,.
A

17
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Applying the first assumption in Condition [I| with f : @ — R(s,a) and f : a — V,R(s,a)
belonging to F we have, for each s € S:

’/ Vo, (o(s),a)R(s,a)da — R(s, ps(s)) — 0 and
‘/Ayan(ug(s),a)VaR(s,a)da— VGR(s,a)|a:MB(S) = 0.

Moreover, for each s € S, d™on (s) — d'?(s) and Vod™on (s) — Vgd"?(s) (by Lemma ,
n—oo

n—oo

and ||V pg(s)|lop< 00, sO

V6 Tr.0, (76.00) = VoTmy. (110)| — 0.

b.on n—00

For the second term of the r.h.s of (I9), we have

Vo Try, (10) = VoTuy (o) || <D I[Vad™n (s) — Vad ()| | R(s, po(s))]|
SES

+ Y 1d™n () = a0 (s)] | Vons(s)

seS

‘VRS(I)|

a=po(s)
Continuity at 0 of ¢ — d™(s) and ¢ — V,yd™"(s) for each s € S, boundedness of R(s, "),
Vo R(s,-) and Vg(s)ug(s) implies that

Vom0, (16) = VoTuy(o)]| — 0

Hence,
H CGJ”S,an(ieﬂjn) ;9‘Jﬂe,o(7 9,0)” ’
n—roo

So, 0+ Vo Jr, ,(T9,0) and VgJr, _(pe) are continuous at 0:

lim Vo T, , (70.0) = 1im VoJr, , (1) = Vo g (110)-

PROOF OF THEOREM [4]

We will use the two-time-scale stochastic approximation analysis . We let the policy parameter 6,
fixed as #; = 0 when analysing the convergence of the critic step. Thus we can show the convergence
of w; towards an wy depending on #, which will then be used to prove the convergence for the slow
time-scale.

Lemma 3. Under Assumpnonjﬁ] E] the sequence w: generated from (l) is bounded a.s., i.e.,
sup, ||wi||< oo a.s., for any i €

The proof follows the same steps as that of Lemma B.1 in the PMLR version of [Zhang et al.[(2018).

Lemma 4. UnderAssumpnon@ the sequence {J’} generated as zn@ls bounded a.s, i.e., supt|J, | <
oo a.s., foranyi € N.

The proof follows the same steps as that of Lemma B.2 in the PMLR version of [Zhang et al.[(2018).

The desired result holds since Step 1 and Step 2 of the proof of Theorem 4.6 in|Zhang et al|(2018)
can both be repeated in the setting of deterministic policies.

PROOF OF THEOREM [3]

Let Fi2 = 0(0;,s,,7 < t) afiltration. In addition, we define

H(G, S,(.L)) = VQ,LLG(S) : anw(sa a)'@:u@(s) ’
H(0,s) = H(0,s,wp),
h(0) = Eq g0 [H(0,5)].

18
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Then, for each § € ©, we can introduce vy : S — R" the solution to the Poisson equation:
(1= P")ve() = H(6,") — h(6)
that is given by vp(s) = > ;50 Es,, ~po(|s,) [H (0, 85) — h(0)|so = s] which is properly defined
(similar to the differential value function V).
With projection, actor update (3)) becomes
Or1 =T [0 + Bot H(O:, 5¢,w¢)] (20)
[9t + 59 th(9t) - ﬁe t ( ( ¢) — (et; St)) - 5071& (H(eu St) - H(et; 8t7wt))}
r [9t + Bo,th(0:) + Bo.e ( — p%) e, St)) + 50,tAt1]
I [0; + Bo,h(0:) + Bot (vo, (st) — vo, (5141)) + Baye (vo, (se+1) — PP v, (s1)) + Bo,e At
T [0y 4 Bos (h(6;) + Af + A7 + A})]

where
A} = H (0, 8¢,w1) — H(0y, 5¢),
A? = vp,(st) — vo, (5141),
A2 = vy, (s041) — PP vy, (s).

For r < t we have

t—1 t—1
Z Bor AR = Z Bo.k (o, (sk) — Vo, (Sk+1))
k=r k=r

_ -1
= Zﬂak (vo, (5k) = Vo s (k1)) + Zﬁeﬁk (V0r1 (Sk41) — Vo, (Sk41))
_ k=r
t—1

t—1
(Bo.k+1 — Bo.k) Voyy (Sk+1) + Bo, Ve, (5r) — Bo,ve, (s¢) + Z e

M

-1

6(1) + Z ¢ + Tt
k=r
where

() = (Bo,k+1 — Bo.k) Voy1 (Sk1),

6,(C ) = Bok (Vo1 (Sk41) — vo, (Sk41)) »
Nrit = ﬂOTVGT(ST) - ﬁetyet (St)'

t—1
Lemmas. ), By, A7 converges a.s. for t — oo

Proof of Lemma[3] Since vg(s) is uniformly bounded for § € ©, s € S, we have for some K > 0

— Bo,x|

which converges given Assumption 5]

Moreover, since pg(s) is twice continuously differentiable, 6 — vy (s) is Lipschitz for each s, and
so we have

t—1 t—1
Z “6’(“2)" < Zﬂe,k Vo), (k1) = Vorsy (Sks1) ||
k=0 k=0

t—1

<K? Zﬁe,k 10k — Okt
k=0

t—1

3 2
<K E Ba k-

k=0
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Finally, lim [0 = 8o 0 lva,(s0)]| < oo as.

Thus, 57 || 8o 42| < S50 ||| + it

t—1
Lemma 6. >, _, Bo.x A} converges a.s. for t — oc.

e,(f)H + ||no,¢|| converges a.s. O

Proof of Lemmal6] We set
t—1 t—1
Zi = BoxAL = Box (vor(sky1) — PPva, (1)) .
k=0 k=0

Since Z; is F;-adapted and E [vp, (s141)|Ft] = P%wvp,(st), Z; is a martingale. The remaining of
the proof is now similar to the proof of Lemma 2 on page 224 of |Benveniste et al.| (1990). O

Let g(0:) = By wao: [V} - € 9, | F1,2] and g(0) = [g1(6),..., g™ (h)]. We have
g0 =D d*(s:) -0 -,

stES
Given (I0), # — wp is continuously differentiable and 6§ — Vywy is bounded so 6 +— wy is
Lipschitz-continuous. Thus 6 — &; , is Lipschitz-continuous for each s, € S. Due to our regularity
assumptions, 6 — wi o, is also continuous for each i € N, s; € S. Moreover, 6 de(s) is also
Lipschitz continuous for each s € S. Hence, 6 — g¢(#) is Lipschitz-continuous in # and the ODE
(12) is well-posed. This holds even when using compatible features.
By critic faster convergence, we have limy ,o0[|£} — &/ 4. [|= 0 s0 limy o A} = 0.

Hence, by Kushner-Clark lemma Kushner & Clarkl (1978)) (pp 191-196) we have that the update in
(20) converges a.s. to the set of asymptotically stable equilibria of the ODE (12).

PROOF OF THEOREM [6]

We use the two-time scale technique: since critic updates at a faster rate than the actor, we let the
policy parameter 6, to be fixed as § when analysing the convergence of the critic update.

Lemma 7. Under Assumptions and @ for any i € N, sequence {\:} generated from @ is
bounded almost surely.

To prove this lemma we verify the conditions for Theorem A.2 of Zhang et al, (2018) to hold.
We use {F; 1} to denote the filtration with F; 1 = o (s, Cr_1,ar_1,77, Ar, 7 < t). With Ay =
(DT, ..., (A T] T critic step (7) has the form:

Atr1 = (Ce @ 1) (At + Bt - Yer1) (21)

with g1 = (Sfw(se,a) ..., 0N w(s,, Clt)T)T € REN, ® denotes Kronecker product and I is
the identity matrix. Using the same notation as in Assumption A.1 from Zhang et al.| (2018), we
have:

R (N, 5t) = Barr [jw(st, a) T Fea :/ m(alse) (R (se,a) — w(se, a) - X)w(s;,a) " da,
A
Mfﬂ = Siw(sy, a) " — Egmr [6§w(st, a)T|.7:t,1],
Ri(\) = A;irﬂ ~d; — Brg- A, where Aing = [/ 7(a|s)R'(s,a)w(s,a) da,s € S| .
A

Since feature vectors are uniformly bounded for any s € S and a € A, h' is Lipschitz continuous
in its first argument. Since, for i € N, the r* are also uniformly bounded, E ||| M41[[F;1] < K -
(1+]|A¢]|?) for some K > 0. Furthermore, finiteness of |S| ensures that, a.s., ||h(\;) —h(\¢, 5¢)[|?<
K’ (1+ || A||?). Finally, hoo(y) exists and has the form
heo(y) = —Br - -

From Assumption [T} we have that — By g is a Hurwitcz matrix, thus the origin is a globally asymp-
totically stable attractor of the ODE ¢ = h(y). Hence Theorem A.2 ofZhang et al.|(2018) applies,
which concludes the proof of Lemmal[7]
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We introduce the following operators as in|Zhang et al.| (2018)):
o () :REN  RK

W= 0Ten=1 3N

’LGN
o« J— (%11%@1) REN 5 REN guch that JA = 1@ (A).
o Ji=1—-7J:REN s REN andwenote \] = J1A=A—1® (\).

We then proceed in two steps as inZhang et al.| (2018)), firstly by showing the convergence a.s. of the
disagreement vector sequence {A | ; } to zero, secondly showing that the consensus vector sequence
{(A¢) } converges to the equilibrium such that (\;) is solution to (13).

Lemma 8. Under Assumptions[d} [Iland[6] for any M > 0, we have

sup E[Ilﬂii/\u||211{suptuxtn§M}} < o0
Since dynamic of {\;} described by is similar to (5.2) in Zhang et al.[(2018) we have
B3
P)

5/\,t+1

_ _ _ 1
BI85 A Lt IP1F] = 2 p (180 AL al2+2 - 1B A LAy 12150 + Bl |21F) )

(22)
where p represents the spectral norm of E[C,” - (I — 117 /N) - C;], with p € [0, 1) by Assumption
Since yi, | = i - w(s¢, ar) " we have

E[lyeal?|Fea | = E [Zn st,01) = w(sr, @) X)) - wise, ar) |

< 2-E[Z\wst,at>w<st,at>TH2+||w<st,at> [RIPHEER
1EN

By uniform boundedness of r(s,-) and w(s,-) (Assumptions |1)) and finiteness of S, there exists
K7 > 0 such that

E[llyes 121 | < a1+ 2.
Thus, for any M > 0 there exists Ko > 0 such that, on the set {sup, <, ||\ ||< M},

E|:||yt+lH2]1{sup7§t\|)\TH<M}|ft,1:| < Ks. (23)

We let vy, = HB}Ti)‘L,t||2]]-{supT<tHx\TH<J\/[}- Taking expectation over 1} noting that
Lsup, calinrl<nr} = Lisup  ac ) <ar} We get

2
E(r11) < 0 p (E(w) +2v/E@w) - VK + K>)

ﬁA,t+1

which is the same expression as (5.10) in|Zhang et al.| (2018)). So similar conclusions to the ones of
Step 1 of Zhang et al.|(2018)) holds:

SUPE{H@ ALqll? ]]-{bup,HAtH<M}} 00 (24)

and hrtn Al =0as. (25)

We now show convergence of the consensus vector 1 @ (\;). Based on we have
Aer1) = (Cr @ D)1 @ (M) + ALt + Bat¥ir1))
= A+ ALe) + Bail(Co @ D(yesr + By AL))
= (M) + Bt (h(Ae, s¢) + Myya)
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where h(As, 51) = By [(yeg1)|F2] and My = ((Co@I) (g4 1485 s A Lt)—Eaymor [(Wr41)| Fe]-
Since (0;) = 7(s¢, ar) — w(sy, ar){A¢), we have

h(Ae, st) = Ea,mor (T(S¢, ar)w(se, at)T\]:t) + Eq,or(w(se, ar)(Ae) - w(se, at)T|-7:t,1)

5o h is Lipschitz-continuous in its first argument. Moreover, since (\; ;) = 0 and 1" E(C}|F, 1) =
17 as.:

1
Ea,mn [((Cr © D) (yer1 + By AL Fea] = Eaynn [N(IT @ I)(Cy @ I)(ye1 + 5;;>\L,t)|]'—t,1]
1

= N(lT ® I)(E(C|Fi.1) @ DEaymr [Ye11 + By AL el Fra]

1 _
= N(ITE(CtLFt,l) ® DEq,mor [Ye41 + ﬁ/\71)\1_,t|ft,1]

= Eat"’ﬂ' [<yt+1>‘]:t,1] a.s.

So {M,} is a martingale difference sequence. Additionally we have
E[[|Meal*|Fen] <2-Eflyers + By ALl & Fea] + 2 [E[(yera)| Fea]lI”

with G, = N~2. C’tT 1170, @ I whose spectral norm is bounded for C} is stochastic. From ||
and (24) we have that, for any M > 0, over the set {sup,||A¢||< M}, there exists K3, K4y < oo such
that

E[||yt+1+5;j)m,t||2ct|]:t,1]]1{supt|\AtH§M} < K3'E[||yt+1||2+|\5,§%)\L,t||2|ft71} Lisup, nf<my < Ky

Besides, since 7} 41 and w are uniformly bounded, there exists K5 < oo such that
IE[(es1)|Fea]lP< Ks - (1 + [[(Ae)]|?). Thus, for any M > 0, there exists some Kg < 00
such that over the set {sup, || \¢||< M}

E[| Mo Fen] < Ko - (1+ [1QADP)-

Hence, for any M > 0, assumptions (a.1) - (a.5) of B.1. from|Zhang et al.|(2018)) are verified on the
set {sup, || A+||< M }. Finally, we consider the ODE asymptotically followed by (A;):

(A) = —=Brg- M)+ Apg - d”

which has a single globally asymptotically stable equilibrium \* € RX, since B, g is positive

definite: \* = B;ylo -Arg-d". By Lemma sup,||(A¢)]|< oo a.s., all conditions to apply Theorem

B.2. of [Zhang et al.|(2018) hold a.s., which means that {\;) = Afas. As A =1@ (M) + ALt
— 00

and \| ; — 0 a.s., we have foreachi € NV, a.s.,
7 t—o0

i —1 T
N — By Ang-d”.

—00
PROOF OF THEOREM[7]
Let F; 2 = 0(6;,7 < t) be the o-field generated by {6,,7 < t}, and let

Cla = Vi€ = Eginan [01 - €| F2] G = Bsinar [U7 - (& — €10, Fr2] -

With local projection, actor update (&) becomes

Orp1 =T [0; + BoaBs,mar [V1 - &l 0,1 Fe2] + BouCla + Boalial - (26)
So with b (8;) = B, ~gr [wg’ i |]—'t,2] and h(0) = [A1(0), ..., h" (6)], we have

0 =D d"(s0) - i - Eig,.

st€ES

Given (I0), & — wy is continuously differentiable and 6 — Vgwy is bounded so 6 — wy is
Lipschitz-continuous. Thus § — & , is Lipschitz-continuous for each s; € S. Our regularity
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assumptions ensure that § — ¢f , is continuous for each i € N/, s, € S. Moreover, 6 — d’(s) is
also Lipschitz continuous for each s € S. Hence, § — ¢(6) is Lipschitz-continuous in 6 and the
ODE (12) is well-posed. This holds even when using compatible features.

By critic faster convergence, we have lim; _,oo[|§} — &} 4 /= 0.

Let M} = Y'_{Bp.C;. M is a martingale sequence with respect to Fio. Since
{witt,{Vadr(s,a)}s k. and {Vopo(s)}s are bounded (Lemma [3] Assumption [2), it follows

that the sequence {(;,} is bounded. Thus, by Assumption >.E [HMZH — M} ‘2 |]-'t’2} =

Do Hﬁe,th H < oo a.s. The martingale convergence theorem ensures that {Mg} converges a.s.

Thus, for any € > 0,
S iy = ) _o.

T=t
Hence, by Kushner-Clark lemma |[Kushner & Clark (1978)) (pp 191-196) we have that the update in
(26) converges a.s. to the set of asymptotically stable equilibria of the ODE (12).

lirtn P (sup

n>t
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