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APPENDIX

NUMERICAL EXPERIMENT DETAILS

We demonstrate the convergence of our algorithm in a continuous bandit problem that is a multi-
agent extension of the experiment in Section 5.1 of Silver et al. (2014). Each agent chooses
an action ai ∈ Rm. We assume all agents have the same reward function given by Ri(a) =

−
(∑

i a
i − a∗

)T
C
(∑

i a
i − a∗

)
. The matrix C is positive definite with eigenvalues chosen from

{0.1, 1}, and a∗ = [4, . . . , 4]T. We consider 10 agents and action dimensions m = 10, 20, 50. Note
that there are multiple possible solutions for this problem, requiring the agents to coordinate their
actions to sum to a∗. We assume a target policy of the form µθi = θi for each agent i and a Gaussian
behaviour policy β(·) ∼ N (θi, σ2

β) where σβ = 0.1. We use the Gaussian behaviour policy for both
Algorithms 1 and 2. Strictly speaking, Algorithm 1 is on-policy, but in this simplified setting where
the target policy is constant, the on-policy version would be degenerate such that theQ estimate does
not affect the TD-error. Therefore, we add a Gaussian behaviour policy to Algorithm 1. Each agent
maintains an estimate Qω

i

(a) of the critic using a linear function of the compatible features a − θ
and a bias feature. The critic is recomputed from each successive batch of 2m steps and the actor
is updated once per batch. The critic step size is 0.1 and the actor step size is 0.01. Performance
is evaluated by measuring the cost of the target policy (without exploration). Figure 2 shows the
convergence of Algorithms 1 and 2 averaged over 5 runs. In all cases, the system converges and the
agents are able to coordinate their actions to minimize system cost. The jupyter notebook will be
made available for others to use. In fact, in this simple experiment, we also observe convergence
under discounted rewards.

Figure 2: Convergence of Algorithms 1 and 2 on the multi-agent continuous bandit problem.

ASSUMPTIONS

Assumption 1 (Linear approximation, average-reward). For each agent i, the average-reward func-
tion R̄ is parameterized by the class of linear functions, i.e., ˆ̄Rλi,θ(s, a) = wθ(s, a) · λi where
wθ(s, a) =

[
wθ,1(s, a), . . . , wθ,K(s, a)

]
∈ RK is the feature associated with the state-action pair

(s, a). The feature vectors wθ(s, a), as well as ∇awθ,k(s, a) are uniformly bounded for any s ∈ S ,
a ∈ A, k ∈ J1,KK. Furthermore, we assume that the feature matrix Wπ ∈ R|S|×K has full column
rank, where the k-th column of Wπ,θ is

[ ∫
A π(a|s)wθ,k(s, a)da, s ∈ S

]
for any k ∈ J1,KK.

Assumption 2 (Linear approximation, action-value). For each agent i, the action-value func-
tion is parameterized by the class of linear functions, i.e., Q̂ωi(s, a) = φ(s, a) · ωi where
φ(s, a) =

[
φ1(s, a), . . . , φK(s, a)

]
∈ RK is the feature associated with the state-action pair

(s, a). The feature vectors φ(s, a), as well as ∇aφk(s, a) are uniformly bounded for any s ∈ S ,
a ∈ A, k ∈ {1, . . . ,K}. Furthermore, we assume that for any θ ∈ Θ, the feature matrix
Φθ ∈ R|S|×K has full column rank, where the k-th column of Φθ is

[
φk(s, µθ(s)), s ∈ S

]
for

any k ∈ J1,KK. Also, for any u ∈ RK , Φθu 6= 1.

Assumption 3 (Bounding θ). The update of the policy parameter θi includes a local projection by
Γi : Rmi → Θi that projects any θit onto a compact set Θi that can be expressed as {θi|qij(θi) ≤
0, j = 1, . . . , si} ⊂ Rmi , for some real-valued, continuously differentiable functions {qij}1≤j≤si
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defined on Rmi . We also assume that Θ =
∏N
i=1 Θi is large enough to include at least one local

minimum of J(θ).

We use {Ft} to denote the filtration with Ft = σ(sτ , Cτ−1, aτ−1, rτ−1, τ ≤ t).

Assumption 4 (Random matrices). The sequence of non-negative random matrices {Ct = (cijt )ij}
satisfies:

1. Ct is row stochastic and E(Ct|Ft) is a.s. column stochastic for each t, i.e., Ct1 = 1 and
1>E(Ct|Ft) = 1> a.s. Furthermore, there exists a constant η ∈ (0, 1) such that, for any
cijt > 0, we have cijt ≥ η.

2. Ct respects the communication graph Gt, i.e., cijt = 0 if (i, j) /∈ Et.

3. The spectral norm of E
[
C>t · (I − 11>/N) · Ct

]
is smaller than one.

4. Given the σ-algebra generated by the random variables before time t, Ct, is conditionally
independent of st, at and rit+1 for any i ∈ N .

Assumption 5 (Step size rules, on-policy). The stepsizes βω,t, βθ,t satisfy:

∑
t

βω,t =
∑
t

βθ,t =∞∑
t

(β2
ω,t + β2

θ,t) <∞∑
t

|βθ,t+1 − βθ,t| <∞.

In addition, βθ,t = o(βω,t) and limt→∞βω,t+1/βω,t = 1.

Assumption 6 (Step size rules, off-policy). The step-sizes βλ,t, βθ,t satisfy:

∑
t

βλ,t =
∑
t

βθ,t =∞,
∑
t

β2
λ,t + β2

θ,t <∞

βθ,t = o(βλ,t), lim
t→∞

βλ,t+1/βλ,t = 1.

PROOF OF THEOREM 1

The proof follows the same scheme as Sutton et al. (2000a), naturally extending their results for a
deterministic policy µθ and a continuous action space A.

Note that our regularity assumptions ensure that, for any s ∈ S, Vθ(s), ∇θVθ(s), J(θ), ∇θJ(θ),
dθ(s) are Lipschitz-continuous functions of θ (since µθ is twice continuously differentiable and Θ
is compact), and that Qθ(s, a) and∇aQθ(s, a) are Lipschitz-continuous functions of a (Marbach &
Tsitsiklis (2001)).

We first show that∇θJ(θ) = Es∼dθ
[
∇θµθ(s)∇a Qθ(s, a)|a=µθ(s)].

The Poisson equation under policy µθ is given by Puterman (1994)

Qθ(s, a) = R̄(s, a)− J(θ) +
∑
s′∈S

P (s′|s, a)Vθ(s
′).
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So,

∇θVθ(s) = ∇θQθ(s, µθ(s))

= ∇θ
[
R̄(s, µθ(s))− J(θ) +

∑
s′∈S

P (s′|s, µθ(s))Vθ(s′)
]

= ∇θµθ(s) ∇aR̄(s, a)
∣∣
a=µθ(s)

−∇θJ(θ) +∇θ
∑
s′∈S

P (s′|s, µθ(s))Vθ(s′)

= ∇θµθ(s) ∇aR̄(s, a)
∣∣
a=µθ(s)

−∇θJ(θ)

+
∑
s′∈S
∇θµθ(s) ∇aP (s′|s, a)|a=µθ(s) Vθ(s

′) +
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)

= ∇θµθ(s)∇a
[
R̄(s, a) +

∑
s′∈S

P (s|s′, a)Vθ(s
′)
]∣∣∣∣∣
a=µθ(s)

−∇θJ(θ) +
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)

= ∇θµθ(s)∇a Qθ(s, a)|a=µθ(s) +
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)−∇θJ(θ)

Hence,

∇θJ(θ) = ∇θµθ(s)∇a Qθ(s, a)|a=µθ(s) +
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)−∇θVθ(s)∑
s∈S

dθ(s)∇θJ(θ) =
∑
s∈S

dθ(s)∇θµθ(s)∇a Qθ(s, a)|a=µθ(s)

+
∑
s∈S

dθ(s)
∑
s′∈S

P (s′|s, µθ(s))∇θVθ(s′)−
∑
s∈S

dθ(s)∇θVθ(s).

Using stationarity property of dθ, we get∑
s∈S

∑
s′∈S

dθ(s)P (s′|s, µθ(s))∇θVθ(s′) =
∑
s′∈S

dθ(s′)∇θVθ(s′).

Therefore, we get

∇θJ(θ) =
∑
s∈S

dθ(s)∇θµθ(s) ∇aQθ(s, a)|a=µθ(s) = Es∼dθ
[
∇θµθ(s) ∇aQθ(s, a)|a=µθ(s)].

Given that ∇θiµjθ(s) = 0 if i 6= j, we have ∇θµθ(s) = Diag(∇θ1µ1
θ1

(s), . . . ,∇θNµNθN (s)), which
implies

∇θiJ(θ) = Es∼dθ
[
∇θiµiθi(s)∇ai Qθ(s, µ

−i
θ−i(s), a

i)
∣∣
ai=µi

θi
(s)

]. (15)

PROOF OF THEOREM 3

We extend the notation for off-policy reward function to stochastic policies as follows. Let β be a
behavior policy under which {st}t≥0 is irreducible and aperiodic, with stationary distribution dβ .
For a stochastic policy π : S → P(A), we define

Jβ(π) =
∑
s∈S

dβ(s)

∫
A
π(a|s)R̄(s, a)da.

Recall that for a deterministic policy µ : S → A, we have

Jβ(µ) =
∑
s∈S

dβ(s)R̄(s, µ(s)).

We introduce the following conditions which are identical to Conditions B1 from Silver et al. (Jan-
uary 2014a).
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Conditions 1. Functions νσ parametrized by σ are said to be regular delta-approximation onR ⊂ A
if they satisfy the following conditions:

1. The distributions νσ converge to a delta distribution: limσ↓0
∫
A νσ(a′, a)f(a)da = f(a′)

for a′ ∈ R and suitably smooth f . Specifically we require that this convergence is uniform
in a′ and over any class F of L-Lipschitz and bounded functions, ‖∇af(a)‖< L < ∞,
supaf(a) < b <∞, i.e.:

lim
σ↓0

sup
f∈F,a′∈R

∣∣∣∣∫
A
νσ(a′, a)f(a)da− f(a′)

∣∣∣∣ = 0.

2. For each a′ ∈ R, νσ(a′, ·) is supported on some compact Ca′ ⊆ A with Lipschitz boundary
bd(Ca′), vanishes on the boundary and is continuously differentiable on Ca′ .

3. For each a′ ∈ R, for each a ∈ A, the gradient∇a′νσ(a′, a) exists.

4. Translation invariance: for all a ∈ A, a′ ∈ R, and any δ ∈ Rn such that a + δ ∈ A,
a′ + δ ∈ A, νσ(a′, a) = νσ(a′ + δ, a+ δ).

The following lemma is an immediate corollary of Lemma 1 from Silver et al. (January 2014a).

Lemma 1. Let νσ be a regular delta-approximation onR ⊆ A. Then, wherever the gradients exist

∇a′ν(a′, a) = −∇aν(a′, a).

Theorem 3 is a less technical restatement of the following result.

Theorem 8. Let µθ : S → A. Denote the range of µθ by Rθ ⊆ A, and R = ∪θRθ. For each θ,
consider πθ,σ a stochastic policy such that πθ,σ(a|s) = νσ(µθ(s), a), where νσ satisfy Conditions
1 on R. Then, there exists r > 0 such that, for each θ ∈ Θ, σ 7→ Jπθ,σ (πθ,σ), σ 7→ Jπθ,σ (µθ),
σ 7→ ∇θJπθ,σ (πθ,σ), and σ 7→ ∇θJπθ,σ (µθ) are properly defined on

[
0, r
]

(with Jπθ,0(πθ,0) =
Jπθ,0(µθ) = Jµθ (µθ) and ∇θJπθ,0(πθ,0) = ∇θJπθ,0(µθ) = ∇θJµθ (µθ)), and we have:

lim
σ↓0
∇θJπθ,σ (πθ,σ) = lim

σ↓0
∇θJπθ,σ (µθ) = ∇θJµθ (µθ).

To prove this result, we first state and prove the following Lemma.

Lemma 2. There exists r > 0 such that, for all θ ∈ Θ and σ ∈
[
0, r
]
, stationary distribution dπθ,σ

exists and is unique. Moreover, for each θ ∈ Θ, σ 7→ dπθ,σ and σ 7→ ∇θdπθ,σ are properly defined
on
[
0, r
]

and both are continuous at 0.

Proof of Lemma 2. For any policy β, we let
(
P βs,s′

)
s,s′∈S

be the transition matrix associated to the

Markov Chain {st}t≥0 induced by β. In particular, for each θ ∈ Θ, σ > 0, s, s′ ∈ S, we have

Pµθs,s′ = P (s′|s, µθ(s)),

P
πθ,σ
s,s′ =

∫
A
πθ,σ(a|s)P (s′|s, a)da =

∫
A
νσ(µθ(s), a)P (s′|s, a)da.

Let θ ∈ Θ, s, s′ ∈ S, (θn) ∈ ΘN such that θn → θ and (σn)n∈N ∈ R+N, σn ↓ 0:∣∣∣Pπθn,σns,s′ − Pµθs,s′
∣∣∣ ≤ ∣∣∣Pπθn,σns,s′ − Pµθns,s′

∣∣∣+
∣∣∣Pµθns,s′ − P

µθ
s,s′

∣∣∣ .
Applying the first condition of Conditions 1 with f : a 7→ P (s′|s, a) belonging to F :∣∣∣Pπθn,σns,s′ − Pµθns,s′

∣∣∣ =

∣∣∣∣∫
A
νσn(µθn(s), a)P (s′|s, a)da− P (s′|s, µθn(s))

∣∣∣∣
≤ sup
f∈F,a′∈R

∣∣∣∣∫
A
νσn(a′, a)f(a)da− f(a′)

∣∣∣∣ −→n→∞ 0.
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By regularity assumptions on θ 7→ µθ(s) and P (s′|s, ·), we have∣∣∣Pµθns,s′ − P
µθ
s,s′

∣∣∣ = |P (s′|s, µθn(s))− P (s′|s, µθ(s))| −→
n→∞

0.

Hence, ∣∣∣Pπθn,σns,s′ − Pµθs,s′
∣∣∣ −→
n→∞

0.

Therefore, for each s, s′ ∈ S, (θ, σ) 7→ P
πθ,σ
s,s′ , with Pπθ,0s,s′ = Pµθs,s′ , is continuous on Θ× {0}. Note

that, for each n ∈ N, P 7→
∏
s,s′ (P

n)s,s′ is a polynomial function of the entries of P . Thus, for
each n ∈ N, fn : (θ, σ) 7→

∏
s,s′ (P

πθ,σn)s,s′ , with fn(θ, 0) =
∏
s,s′ (P

µθn)s,s′ is continuous on
Θ × {0}. Moreover, for each θ ∈ Θ, σ ≥ 0, from the structure of Pπθ,σ , if there is some n∗ ∈ N
such that fn∗(θ, σ) > 0 then, for all n ≥ n∗, fn(θ, σ) > 0.

Now let us suppose that there exists (θn) ∈ ΘN∗ such that, for each n > 0 there is a σn ≤ n−1 such
that fn(θn, σn) = 0. By compacity of Θ, we can take (θn) converging to some θ ∈ Θ. For each
n∗ ∈ N, by continuity we have fn∗(θ, 0) = lim

n→∞
fn∗(θn, σn) = 0. Since Pµθ is irreducible and

aperiodic, there is some n ∈ N such that for all s, s′ ∈ S and for all n∗ ≥ n,
(
Pµθn

∗
)
s,s′

> 0, i.e.

fn∗(θ, 0) > 0. This leads to a contradiction.

Hence, there exists n∗ > 0 such that for all θ ∈ Θ and σ ≤ n∗−1, fn(θ, σ) > 0. We let r = n∗−1. It
follows that, for all θ ∈ Θ and σ ∈

[
0, r
]
, Pπθ,σ is a transition matrix associated to an irreducible and

aperiodic Markov Chain, thus dπθ,σ is well defined as the unique stationary probability distribution
associated to Pπθ,σ . We fix θ ∈ Θ in the remaining of the proof.

Let β a policy for which the Markov Chain corresponding to P β is irreducible and aperiodic. Let
s∗ ∈ S, as asserted in Marbach & Tsitsiklis (2001), considering stationary distribution dβ as a vector(
dβs
)
s∈S ∈ R|S|, dβ is the unique solution of the balance equations:∑

s∈S
dβsP

β
s,s′ = dβs′ s′ ∈ S\{s∗},∑

s∈S
dβs = 1.

Hence, we have Aβ an |S| × |S| matrix and a 6= 0 a constant vector of R|S| such that the balance
equations is of the form

Aβdβ = a (16)

with Aβs,s′ depending on P βs′,s in an affine way, for each s, s′ ∈ S . Moreover, Aβ is invertible, thus
dβ is given by

dβ =
1

det(Aβ)
adj(Aβ)>a.

Entries of adj(Aβ) and det(Aβ) are polynomial functions of the entries of P β .

Thus, σ 7→ dπθ,σ = 1
det(Aπθ,σ )

adj(Aπθ,σ )>a is defined on
[
0, r
]

and is continuous at 0.

Lemma 1 and integration by parts imply that, for s, s′ ∈ S, σ ∈
[
0, r
]
:∫

A
∇a′νσ(a′, a)|a′=µθ(s) P (s′|s, a)da = −

∫
A
∇aνσ(µθ(s), a)P (s′|s, a)da

=

∫
Cµθ(s)

νσ(µθ(s), a)∇aP (s′|s, a)da+ boundary terms

=

∫
Cµθ(s)

νσ(µθ(s), a)∇aP (s′|s, a)da

15
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where the boundary terms are zero since νσ vanishes on the boundary due to Conditions 1.

Thus, for s, s′ ∈ S, σ ∈
[
0, r
]
:

∇θP
πθ,σ
s,s′ = ∇θ

∫
A
πθ,σ(a|s)P (s′|s, a)da

=

∫
A
∇θπθ,σ(a|s)P (s′|s, a)da (17)

=

∫
A
∇θµθ(s) ∇a′νσ(a′, a)|a′=µθ(s) P (s′|s, a)da

= ∇θµθ(s)
∫
Cµθ(s)

νσ(µθ(s), a)∇aP (s′|s, a)da

where exchange of derivation and integral in (17) follows by application of Leibniz rule with:

• ∀a ∈ A, θ 7→ πθ,σ(a|s)P (s′|s, a) is differentiable, and ∇θπθ,σ(a|s)P (s′|s, a) =
∇θµθ(s) ∇a′νσ(a′, a)|a′=µθ(s).

• Let a∗ ∈ R, ∀θ ∈ Θ,

‖∇θπθ,σ(a|s)P (s′|s, a)‖ =
∥∥∥∇θµθ(s) ∇a′νσ(a′, a)|a′=µθ(s)

∥∥∥
≤ ‖∇θµθ(s)‖op

∥∥∥∇a′νσ(a′, a)|a′=µθ(s)

∥∥∥
≤ sup
θ∈Θ
‖∇θµθ(s)‖op ‖∇aνσ(µθ(s), a)‖

= sup
θ∈Θ
‖∇θµθ(s)‖op ‖∇aνσ(a∗, a− µθ(s) + a∗)‖ (18)

≤ sup
θ∈Θ
‖∇θµθ(s)‖op sup

a∈Ca∗
‖∇aνσ(a∗, a)‖ 1a∈Ca∗

where ‖·‖op denotes the operator norm, and (18) comes from translation invariance (we take
∇aνσ(a∗, a) = 0 for a ∈ Rn\Ca∗ ). a 7→ sup

θ∈Θ
‖∇θµθ(s)‖op sup

a∈Ca∗
‖∇aνσ(a∗, a)‖ 1a∈Ca∗ is

measurable, bounded and supported on Ca∗ , so it is integrable on A.

• Dominated convergence ensures that, for each k ∈ J1,mK, partial derivative gk(θ) =
∂θk
∫
A∇θπθ,σ(a|s)P (s′|s, a)da is continuous: let θn ↓ θ, then

gk(θn) = ∂θk

∫
A
∇θπθn,σ(a|s)P (s′|s, a)da

= ∂θkµθn(s)

∫
Ca∗

νσ(a∗, a− µθn(s) + a∗)∇aP (s′|s, a)da

−→
n→∞

∂θkµθ(s)

∫
Ca∗

νσ(a∗, a− µθ(s) + a∗)∇aP (s′|s, a)da = gk(θ)

with the dominating function a 7→ sup
a∈Ca∗

|νσ(a∗, a)|sup
a∈A
‖∇aP (s′|s, a)‖ 1a∈Ca∗ .

Thus σ 7→ ∇θP
πθ,σ
s,s′ is defined for σ ∈

[
0, r
]

and is continuous at 0, with ∇θP
πθ,0
s,s′ =

∇θµθ(s) ∇aP (s′|s, a)|a=µθ(s). Indeed, let (σn)n∈N ∈
[
0, r
]+N

, σn ↓ 0, then, applying the first
condition of Conditions 1 with f : a 7→ ∇aP (s′|s, a) belonging to F , we get∥∥∥∇θPπθ,σns,s′ −∇θP

µθ
s,s′

∥∥∥
= ‖∇θµθ(s)‖op

∥∥∥∥∥
∫
Cµθ(s)

νσn(µθ(s), a)∇aP (s′|s, a)da− ∇aP (s′|s, a)|a=µθ(s)

∥∥∥∥∥ −→n→∞ 0.
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Since dπθ,σ = 1
det(Aπθ,σ )

adj (Aπθ,σ )
>
a with |det (Aπθ,σ ) | > 0 for all σ ∈

[
0, r
]

and since entries
of adj (Aπθ,σ ) and det (Aπθ,σ ) are polynomial functions of the entries of Pπθ,σ , it follows that
σ 7→ ∇θdπθ,σ is properly defined on

[
0, r
]

and is continuous at 0, which concludes the proof of
Lemma 2.

We now proceed to prove Theorem 8.

Let θ ∈ Θ, πθ as in Theorem 3, and r > 0 such that σ 7→ dπθ,σ , σ 7→ ∇θdπθ,σ are well defined on[
0, r
]

and are continuous at 0. Then, the following two functions

σ 7→ Jπθ,σ (πθ,σ) =
∑
s∈S

dπθ,σ (s)

∫
A
πθ,σ(a|s)R̄(s, a)da,

σ 7→ Jπθ,σ (µθ) =
∑
s∈S

dπθ,σ (s)R̄(s, µθ(s)),

are properly defined on
[
0, r
]

(with Jπθ,0(πθ,0) = Jπθ,0(µθ) = Jµθ (µθ)). Let s ∈ S, by taking
similar arguments as in the proof of Lemma 2, we have

∇θ
∫
A
πθ,σ(a|s)R̄(s, a)da =

∫
A
∇θπθ,σ(a, s)R̄(s, a)da,

= ∇θµθ(s)
∫
Cµθ(s)

νσ(µθ(s), a)∇aR̄(s, a)da.

Thus, σ 7→ ∇θJπθ,σ (πθ,σ) is properly defined on
[
0, r
]

and

∇θJπθ,σ (πθ,σ) =
∑
s∈S
∇θdπθ,σ (s)

∫
A
πθ,σ(a|s)R̄(s, a)da

+
∑
s∈S

dπθ,σ (s)∇θ
∫
A
πθ,σ(a|s)R̄(s, a)da

=
∑
s∈S
∇θdπθ,σ (s)

∫
A
νσ(µθ(s), a)R̄(s, a)da

+
∑
s∈S

dπθ,σ (s)∇θµθ(s)
∫
Cµθ(s)

νσ(µθ(s), a)∇aR̄(s, a)da.

Similarly, σ 7→ ∇θJπθ,σ (µθ) is properly defined on
[
0, r
]

and

∇θJπθ,σ (µθ) =
∑
s∈S
∇θdπθ,σ (s)R̄(s, µθ(s)) +

∑
s∈S

dπθ,σ (s)∇θµθ(s) ∇aR̄(s, a)
∣∣
a=µθ(s)

To prove continuity at 0 of both σ 7→ ∇θJπθ,σ (πθ,σ) and σ 7→ ∇θJπθ,σ (µθ) (with∇θJπθ,0(πθ,0) =
∇θJπθ,0(µθ) = ∇θJµθ (µθ)), let (σn)n≥0 ↓ 0:

∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,0(πθ,0)
∥∥

≤
∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,σn (µθ)

∥∥+
∥∥∇θJπθ,σn (µθ)−∇θJµθ (µθ)

∥∥ . (19)

For the first term of the r.h.s we have

∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,σn (µθ)
∥∥

≤
∑
s∈S
‖∇θdπθ,σn (s)‖

∣∣∣∣∫
A
νσn(µθ(s), a)R̄(s, a)da− R̄(s, µθ(s))

∣∣∣∣
+
∑
s∈S

dπθ,σn (s)‖∇θµθ(s)‖op

∥∥∥∥∫
A
νσn(µθ(s), a)∇aR̄(s, a)da− ∇aR̄(s, a)

∣∣
a=µθ(s)

∥∥∥∥ .
17
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Applying the first assumption in Condition 1 with f : a 7→ R̄(s, a) and f : a 7→ ∇aR̄(s, a)
belonging to F we have, for each s ∈ S:∣∣∣∣∫

A
νσn(µθ(s), a)R̄(s, a)da− R̄(s, µθ(s))

∣∣∣∣ −→n→∞ 0 and∥∥∥∥∫
A
νσn(µθ(s), a)∇aR̄(s, a)da− ∇aR̄(s, a)

∣∣
a=µθ(s)

∥∥∥∥ −→n→∞ 0.

Moreover, for each s ∈ S, dπθ,σn (s) −→
n→∞

dµθ (s) and∇θdπθ,σn (s) −→
n→∞

∇θdµθ (s) (by Lemma 2),

and ‖∇θµθ(s)‖op<∞, so ∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,σn (µθ)
∥∥ −→
n→∞

0.

For the second term of the r.h.s of (19), we have∥∥∇θJπθ,σn (µθ)−∇θJµθ (µθ)
∥∥ ≤∑

s∈S
‖∇θdπθ,σn (s)−∇θdµθ (s)‖

∣∣R̄(s, µθ(s))
∣∣

+
∑
s∈S
|dπθ,σn (s)− dµθ (s)| ‖∇θµθ(s)‖op

∥∥∥∇aR̄(s, a)
∣∣
a=µθ(s)

∥∥∥ .
Continuity at 0 of σ 7→ dπθ,σ (s) and σ 7→ ∇θdπθ,σ (s) for each s ∈ S , boundedness of R̄(s, ·),
∇aR̄(s, ·) and∇θ(s)µθ(s) implies that∥∥∇θJπθ,σn (µθ)−∇θJµθ (µθ)

∥∥ −→
n→∞

0.

Hence, ∥∥∇θJπθ,σn (πθ,σn)−∇θJπθ,0(πθ,0)
∥∥ −→
n→∞

0.

So, σ 7→ ∇θJπθ,σ (πθ,σ) and ∇θJπθ,σ (µθ) are continuous at 0:

lim
σ↓0
∇θJπθ,σ (πθ,σ) = lim

σ↓0
∇θJπθ,σ (µθ) = ∇θJµθ (µθ).

PROOF OF THEOREM 4

We will use the two-time-scale stochastic approximation analysis . We let the policy parameter θt
fixed as θt ≡ θ when analysing the convergence of the critic step. Thus we can show the convergence
of ωt towards an ωθ depending on θ, which will then be used to prove the convergence for the slow
time-scale.
Lemma 3. Under Assumptions 3 – 5, the sequence ωit generated from (2) is bounded a.s., i.e.,
supt‖ωit‖<∞ a.s., for any i ∈ N .

The proof follows the same steps as that of Lemma B.1 in the PMLR version of Zhang et al. (2018).

Lemma 4. Under Assumption 5, the sequence {Ĵ it} generated as in 2 is bounded a.s, i.e., supt|Ĵ it | <
∞ a.s., for any i ∈ N .

The proof follows the same steps as that of Lemma B.2 in the PMLR version of Zhang et al. (2018).

The desired result holds since Step 1 and Step 2 of the proof of Theorem 4.6 in Zhang et al. (2018)
can both be repeated in the setting of deterministic policies.

PROOF OF THEOREM 5

Let Ft,2 = σ(θτ , sτ , τ ≤ t) a filtration. In addition, we define

H(θ, s, ω) = ∇θµθ(s) · ∇aQω(s, a)|a=µθ(s) ,

H(θ, s) = H(θ, s, ωθ),

h(θ) = Es∼dθ [H(θ, s)] .

18
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Then, for each θ ∈ Θ, we can introduce νθ : S → Rn the solution to the Poisson equation:(
I − P θ

)
νθ(·) = H(θ, ·)− h(θ)

that is given by νθ(s) =
∑
k≥0 Esk+1∼P θ(·|sk) [H(θ, sk)− h(θ)|s0 = s] which is properly defined

(similar to the differential value function V ).

With projection, actor update (5) becomes
θt+1 = Γ [θt + βθ,tH(θt, st, ωt)] (20)

= Γ [θt + βθ,th(θt)− βθ,t (h(θt)−H(θt, st))− βθ,t (H(θt, st)−H(θt, st, ωt))]

= Γ
[
θt + βθ,th(θt) + βθ,t

(
(I − P θt)νθt(st)

)
+ βθ,tA

1
t

]
= Γ

[
θt + βθ,th(θt) + βθ,t (νθt(st)− νθt(st+1)) + βθ,t

(
νθt(st+1)− P θtνθt(st)

)
+ βθ,tA

1
t

]
= Γ

[
θt + βθ,t

(
h(θt) +A1

t +A2
t +A3

t

)]
where

A1
t = H(θt, st, ωt)−H(θt, st),

A2
t = νθt(st)− νθt(st+1),

A3
t = νθt(st+1)− P θtνθt(st).

For r < t we have
t−1∑
k=r

βθ,kA
2
k =

t−1∑
k=r

βθ,k (νθk(sk)− νθk(sk+1))

=

t−1∑
k=r

βθ,k
(
νθk(sk)− νθk+1

(sk+1)
)

+

t−1∑
k=r

βθ,k
(
νθk+1

(sk+1)− νθk(sk+1)
)

=

t−1∑
k=r

(βθ,k+1 − βθ,k) νθk+1
(sk+1) + βθrνθr (sr)− βθtνθt(st) +

t−1∑
k=r

ε
(2)
k

=

t−1∑
k=r

ε
(1)
k +

t−1∑
k=r

ε
(2)
k + ηr,t

where
ε
(1)
k = (βθ,k+1 − βθ,k) νθk+1

(sk+1),

ε
(2)
k = βθ,k

(
νθk+1

(sk+1)− νθk(sk+1)
)
,

ηr,t = βθrνθr (sr)− βθtνθt(st).

Lemma 5.
∑t−1
k=0 βθ,kA

2
k converges a.s. for t→∞

Proof of Lemma 5. Since νθ(s) is uniformly bounded for θ ∈ Θ, s ∈ S, we have for some K > 0
t−1∑
k=0

∥∥∥ε(1)
k

∥∥∥ ≤ K t−1∑
k=0

|βθ,k+1 − βθ,k|

which converges given Assumption 5.

Moreover, since µθ(s) is twice continuously differentiable, θ 7→ νθ(s) is Lipschitz for each s, and
so we have

t−1∑
k=0

∥∥∥ε(2)
k

∥∥∥ ≤ t−1∑
k=0

βθ,k
∥∥νθk(sk+1)− νθk+1

(sk+1)
∥∥

≤ K2
t−1∑
k=0

βθ,k ‖θk − θk+1‖

≤ K3
t−1∑
k=0

β2
θ,k.
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Finally, lim
t→∞

‖η0,t‖ = βθ,0 ‖νθ0(s0)‖ <∞ a.s.

Thus,
∑t−1
k=0

∥∥βθ,kA2
k

∥∥ ≤∑t−1
k=0

∥∥∥ε(1)
k

∥∥∥+
∑t−1
k=0

∥∥∥ε(2)
k

∥∥∥+ ‖η0,t‖ converges a.s.

Lemma 6.
∑t−1
k=0 βθ,kA

3
k converges a.s. for t→∞.

Proof of Lemma 6. We set

Zt =

t−1∑
k=0

βθ,kA
3
k =

t−1∑
k=0

βθ,k
(
νθk(sk+1)− P θkνθk(sk)

)
.

Since Zt is Ft-adapted and E [νθt(st+1)|Ft] = P θtνθt(st), Zt is a martingale. The remaining of
the proof is now similar to the proof of Lemma 2 on page 224 of Benveniste et al. (1990).

Let gi(θt) = Est∼dθt
[
ψit · ξit,θt |Ft,2

]
and g(θ) =

[
g1(θ), . . . , gN (θ)

]
. We have

gi(θt) =
∑
st∈S

dθt(st) · ψit · ξit,θt .

Given (10), θ 7→ ωθ is continuously differentiable and θ 7→ ∇θωθ is bounded so θ 7→ ωθ is
Lipschitz-continuous. Thus θ 7→ ξit,θ is Lipschitz-continuous for each st ∈ S. Due to our regularity
assumptions, θ 7→ ψit,θt is also continuous for each i ∈ N , st ∈ S . Moreover, θ 7→ dθ(s) is also
Lipschitz continuous for each s ∈ S. Hence, θ 7→ g(θ) is Lipschitz-continuous in θ and the ODE
(12) is well-posed. This holds even when using compatible features.

By critic faster convergence, we have limt→∞‖ξit − ξit,θt‖= 0 so limt→∞A
1
t = 0.

Hence, by Kushner-Clark lemma Kushner & Clark (1978) (pp 191-196) we have that the update in
(20) converges a.s. to the set of asymptotically stable equilibria of the ODE (12).

PROOF OF THEOREM 6

We use the two-time scale technique: since critic updates at a faster rate than the actor, we let the
policy parameter θt to be fixed as θ when analysing the convergence of the critic update.
Lemma 7. Under Assumptions 4, 1 and 6, for any i ∈ N , sequence {λit} generated from (7) is
bounded almost surely.

To prove this lemma we verify the conditions for Theorem A.2 of Zhang et al. (2018) to hold.
We use {Ft,1} to denote the filtration with Ft,1 = σ(sτ , Cτ−1, aτ−1, rτ , λτ , τ ≤ t). With λt =[
(λ1
t )
>, . . . , (λNt )>

]>
, critic step (7) has the form:

λt+1 = (Ct ⊗ I) (λt + βλ,t · yt+1) (21)

with yt+1 =
(
δ1
tw(st, at)

>, . . . , δNt w(st, at)
>)> ∈ RKN , ⊗ denotes Kronecker product and I is

the identity matrix. Using the same notation as in Assumption A.1 from Zhang et al. (2018), we
have:

hi(λit, st) = Ea∼π
[
δitw(st, a)>|Ft,1

]
=

∫
A
π(a|st)(Ri(st, a)− w(st, a) · λit)w(st, a)>da,

M i
t+1 = δitw(st, at)

> − Ea∼π
[
δitw(st, a)>|Ft,1

]
,

h̄i(λt) = Aiπ,θ · dsπ −Bπ,θ · λt, where Aiπ,θ =

[∫
A
π(a|s)Ri(s, a)w(s, a)>da, s ∈ S

]
.

Since feature vectors are uniformly bounded for any s ∈ S and a ∈ A, hi is Lipschitz continuous
in its first argument. Since, for i ∈ N , the ri are also uniformly bounded, E

[
‖Mt+1‖2|Ft,1

]
≤ K ·

(1+‖λt‖2) for someK > 0. Furthermore, finiteness of |S| ensures that, a.s., ‖h̄(λt)−h(λt, st)‖2≤
K ′ · (1 + ‖λt‖2). Finally, h∞(y) exists and has the form

h∞(y) = −Bπ,θ · y.
From Assumption 1, we have that −Bπ,θ is a Hurwitcz matrix, thus the origin is a globally asymp-
totically stable attractor of the ODE ẏ = h∞(y). Hence Theorem A.2 of Zhang et al. (2018) applies,
which concludes the proof of Lemma 7.
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We introduce the following operators as in Zhang et al. (2018):

• 〈·〉 : RKN → RK

〈λ〉 =
1

N
(1> ⊗ I)λ =

1

N

∑
i∈N

λi.

• J =
(

1
N 11> ⊗ I

)
: RKN → RKN such that J λ = 1⊗ 〈λ〉.

• J⊥ = I − J : RKN → RKN and we note λ⊥ = J⊥λ = λ− 1⊗ 〈λ〉.

We then proceed in two steps as in Zhang et al. (2018), firstly by showing the convergence a.s. of the
disagreement vector sequence {λ⊥,t} to zero, secondly showing that the consensus vector sequence
{〈λt〉} converges to the equilibrium such that 〈λt〉 is solution to (13).
Lemma 8. Under Assumptions 4, 1 and 6, for any M > 0, we have

sup
t
E
[
‖β−1

λ,tλ⊥,t‖
2
1{supt‖λt‖≤M}

]
<∞.

Since dynamic of {λt} described by (21) is similar to (5.2) in Zhang et al. (2018) we have

E
[
‖β−1

λ,t+1λ⊥,t+1‖2|Ft,1
]

=
β2
λ,t

β2
λ,t+1

ρ
(
‖β−1

λ,tλ⊥,t‖
2+2 · ‖β−1

λ,tλ⊥,t‖·E(‖yt+1‖2|Ft,1)
1
2 + E(‖yt+1‖2|Ft,1)

)
(22)

where ρ represents the spectral norm of E
[
C>t · (I − 11>/N) · Ct

]
, with ρ ∈ [0, 1) by Assumption

4. Since yit+1 = δit · w(st, at)
> we have

E
[
‖yt+1‖2|Ft,1

]
= E

[∑
i∈N
‖(ri(st, at)− w(st, at)λ

i
t) · w(st, at)

>‖2|Ft,1
]

≤ 2 · E
[∑
i∈N
‖ri(st, at)w(st, at)

>‖2+‖w(st, at)
>‖4·‖λit‖2|Ft,1

]
.

By uniform boundedness of r(s, ·) and w(s, ·) (Assumptions 1) and finiteness of S, there exists
K1 > 0 such that

E
[
‖yt+1‖2|Ft,1

]
≤ K1(1 + ‖λt‖2).

Thus, for any M > 0 there exists K2 > 0 such that, on the set {supτ≤t‖λτ‖< M},

E
[
‖yt+1‖21{supτ≤t‖λτ‖<M}|Ft,1

]
≤ K2. (23)

We let vt = ‖β−1
λ,tλ⊥,t‖21{supτ≤t‖λτ‖<M}. Taking expectation over (22), noting that

1{supτ≤t+1‖λτ‖<M} ≤ 1{supτ≤t‖λτ‖<M} we get

E(vt+1) ≤
β2
λ,t

β2
λ,t+1

ρ
(
E(vt) + 2

√
E(vt) ·

√
K2 +K2

)
which is the same expression as (5.10) in Zhang et al. (2018). So similar conclusions to the ones of
Step 1 of Zhang et al. (2018) holds:

sup
t
E
[
‖β−1

λ,tλ⊥,t‖
2
1{supt‖λt‖≤M}

]
<∞ (24)

and lim
t
λ⊥,t = 0 a.s. (25)

We now show convergence of the consensus vector 1⊗ 〈λt〉. Based on (21) we have

〈λt+1〉 = 〈(Ct ⊗ I)(1⊗ 〈λt〉+ λ⊥,t + βλ,tyt+1)〉
= 〈λt〉+ 〈λ⊥,t〉+ βλ,t〈(Ct ⊗ I)(yt+1 + β−1

λ,tλ⊥,t)〉
= 〈λt〉+ βλ,t(h(λt, st) +Mt+1)

21
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where h(λt, st) = Eat∼π
[
〈yt+1〉|Ft

]
andMt+1 = 〈(Ct⊗I)(yt+1+β−1

λ,tλ⊥,t)〉−Eat∼π
[
〈yt+1〉|Ft

]
.

Since 〈δt〉 = r̄(st, at)− w(st, at)〈λt〉, we have

h(λt, st) = Eat∼π(r̄(st, at)w(st, at)
>|Ft) + Eat∼π(w(st, at)〈λt〉 · w(st, at)

>|Ft,1)

so h is Lipschitz-continuous in its first argument. Moreover, since 〈λ⊥,t〉 = 0 and 1>E(Ct|Ft,1) =

1> a.s.:

Eat∼π
[
〈(Ct ⊗ I)(yt+1 + β−1

λ,tλ⊥,t)〉|Ft,1
]

= Eat∼π
[ 1

N
(1> ⊗ I)(Ct ⊗ I)(yt+1 + β−1

λ,tλ⊥,t)|Ft,1
]

=
1

N
(1> ⊗ I)(E(Ct|Ft,1)⊗ I)Eat∼π

[
yt+1 + β−1

λ,tλ⊥,t|Ft,1
]

=
1

N
(1>E(Ct|Ft,1)⊗ I)Eat∼π

[
yt+1 + β−1

λ,tλ⊥,t|Ft,1
]

= Eat∼π
[
〈yt+1〉|Ft,1

]
a.s.

So {Mt} is a martingale difference sequence. Additionally we have

E
[
‖Mt+1‖2|Ft,1

]
≤ 2 · E

[
‖yt+1 + β−1

λ,tλ⊥,t‖
2
Gt |Ft,1

]
+ 2 · ‖E

[
〈yt+1〉|Ft,1

]
‖2

with Gt = N−2 · C>t 11>Ct ⊗ I whose spectral norm is bounded for Ct is stochastic. From (23)
and (24) we have that, for anyM > 0, over the set {supt‖λt‖≤M}, there existsK3,K4 <∞ such
that

E
[
‖yt+1+β−1

λ,tλ⊥,t‖
2
Gt |Ft,1

]
1{supt‖λt‖≤M} ≤ K3·E

[
‖yt+1‖2+‖β−1

λ,tλ⊥,t‖
2|Ft,1

]
1{supt‖λt‖≤M} ≤ K4.

Besides, since rit+1 and w are uniformly bounded, there exists K5 < ∞ such that
‖E
[
〈yt+1〉|Ft,1

]
‖2≤ K5 · (1 + ‖〈λt〉‖2). Thus, for any M > 0, there exists some K6 < ∞

such that over the set {supt‖λt‖≤M}

E
[
‖Mt+1‖2|Ft,1

]
≤ K6 · (1 + ‖〈λt〉‖2).

Hence, for any M > 0, assumptions (a.1) - (a.5) of B.1. from Zhang et al. (2018) are verified on the
set {supt‖λt‖≤M}. Finally, we consider the ODE asymptotically followed by 〈λt〉:

˙〈λt〉 = −Bπ,θ · 〈λt〉+Aπ,θ · dπ

which has a single globally asymptotically stable equilibrium λ∗ ∈ RK , since Bπ,θ is positive
definite: λ∗ = B−1

π,θ ·Aπ,θ ·dπ . By Lemma 7, supt‖〈λt〉‖<∞ a.s., all conditions to apply Theorem
B.2. of Zhang et al. (2018) hold a.s., which means that 〈λt〉 −→

t→∞
λ∗ a.s. As λt = 1 ⊗ 〈λt〉 + λ⊥,t

and λ⊥,t −→
t→∞

0 a.s., we have for each i ∈ N , a.s.,

λit −→
t→∞

B−1
π,θ ·Aπ,θ · d

π.

PROOF OF THEOREM 7

Let Ft,2 = σ(θτ , τ ≤ t) be the σ-field generated by {θτ , τ ≤ t}, and let

ζit,1 = ψit · ξit − Est∼dπ
[
ψit · ξit|Ft,2

]
, ζit,2 = Est∼dπ

[
ψit · (ξit − ξit,θt)|Ft,2

]
.

With local projection, actor update (6) becomes

θit+1 = Γi
[
θit + βθ,tEst∼dπ

[
ψit · ξit,θt |Ft,2

]
+ βθ,tζ

i
t,1 + βθ,tζ

i
t,2

]
. (26)

So with hi(θt) = Est∼dπ
[
ψit · ξit,θt |Ft,2

]
and h(θ) =

[
h1(θ), . . . , hN (θ)

]
, we have

hi(θt) =
∑
st∈S

dπ(st) · ψit · ξit,θt .

Given (10), θ 7→ ωθ is continuously differentiable and θ 7→ ∇θωθ is bounded so θ 7→ ωθ is
Lipschitz-continuous. Thus θ 7→ ξit,θ is Lipschitz-continuous for each st ∈ S. Our regularity
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assumptions ensure that θ 7→ ψit,θt is continuous for each i ∈ N , st ∈ S . Moreover, θ 7→ dθ(s) is
also Lipschitz continuous for each s ∈ S . Hence, θ 7→ g(θ) is Lipschitz-continuous in θ and the
ODE (12) is well-posed. This holds even when using compatible features.

By critic faster convergence, we have limt→∞‖ξit − ξit,θt‖= 0.

Let M i
t =

∑t−1
τ=0 βθ,τζ

i
τ,1. M i

t is a martingale sequence with respect to Ft,2. Since
{ωt}t, {∇aφk(s, a)}s,k, and {∇θµθ(s)}s are bounded (Lemma 3, Assumption 2), it follows

that the sequence
{
ζit,1
}

is bounded. Thus, by Assumption 5,
∑
t E
[∥∥M i

t+1 −M i
t

∥∥2 |Ft,2
]

=∑
t

∥∥βθ,tζit,1∥∥2
< ∞ a.s. The martingale convergence theorem ensures that

{
M i
t

}
converges a.s.

Thus, for any ε > 0,

lim
t
P

(
sup
n≥t

∥∥∥∥∥
n∑
τ=t

βθ,τζ
i
τ,1

∥∥∥∥∥ ≥ ε
)

= 0.

Hence, by Kushner-Clark lemma Kushner & Clark (1978) (pp 191-196) we have that the update in
(26) converges a.s. to the set of asymptotically stable equilibria of the ODE (12).
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