
Appendix

The appendix is organized as follows.

In Appendix A, we present a simplied theorem about non-negative signals and illustrate the idea
behind the proof.

In Appendix B, we study the multiplicative updates and build connections to its continuous approxi-
mation, which will be used next.

In Appendix C, we provide the proof of propositions and technical lemmas in Appendix A.

In Appendix D, we prove the main results stated in the paper.

In Appendix E, we provide the experimental results on real-world datasets to illustrate the effective-
ness of the proposed algorithm.

A Proof for Non-negative Signals

We mainly follow the proof structure from [11] to obtain the convergence of similar gradient descent
algorithm for the case N = 2, which is a limiting case of ours. We will demonstrate how gradient
dynamics changes with N > 2, which requires us to study the growth rate of error and convergence
rate more carefully.

In this section, we will start with the general set up and provide a simplified version of Theorem 1
about non-negative signals.

A.1 Setup

The gradients of L(u,v) with respect to u,v read as

ruL(w) =
2N

n
XT(Xw � y) � uN�1

rvL(w) = �
2N

n
XT(Xw � y) � vN�1

.

With the step size ⌘, the gradient descent updates on ut and vt simply are

ut+1 = ut �

✓
1 � 2N⌘

✓
1

n
XT(X(wt � w?) � ⇠) � uN�2

t

◆◆
,

vt+1 = vt �

✓
1 + 2N⌘

✓
1

n
XT(X(wt � w?) � ⇠) � vN�2

t

◆◆
.

Let wt = w+
t � w�

t where w+
t := uN

t and w�
t := vN

t with the power taken element-wisely. We
denote S as the support of w?, and let S

+ = {i|w
?
i > 0} denote the index set of coordinates with

positive values, and S
� = {i|w

?
i < 0} denote the index set of coordinates with negative values.

Therefore S = S
+

[ S
� and S

+
\ S

� = ;. Then define the following signal and noise-related
quantities:

st := 1S+ � w+
t � 1S� � w�

t ,

et := 1Sc � wt + 1S� � w+
t � 1S+ � w�

t ,

bt :=
1

n
XTXet �

1

n
XT⇠,

pt :=

✓
1

n
XTX � I

◆
(st � w?) .

(13)
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Let ↵
N be the initial value for each entry of w and rewrite the updates on wt, w+

t and w�
t in a more

succinct way:

w+
0 = w�

0 = ↵
N

,

wt = w+
t � w�

t ,

w+
t+1 = w+

t �

⇣
1 � 2N⌘ (st � w? + pt + bt) � (w+

t )(N�2)/N
⌘N

,

w�
t+1 = w�

t �

⇣
1 + 2N⌘ (st � w? + pt + bt) � (w�

t )(N�2)/N
⌘N

.

(14)

When our target w? is with non-negative entries, the design of vt is no longer needed and the
algorithm could be simplied to the following form.

w+
0 = uN

0 = ↵
N

,

w+
t = uN

t ,

w+
t+1 = w+

t �

⇣
1 � 2N⌘ (st � w? + pt + bt) � (w+

t )(N�2)/N
⌘N

(15)

The results in this section are all about updates in equation (15), and will be generalized to updates in
equation (14) in Section D.

A.2 The Key Propositions

Starting from t = 0, we have ks0 � w?
k1 . O(w?

max) and ke0k1  ↵
N . The idea of proposition

1 is to show that after some certain number of iterations t, we obtain kst � w?
k1 . O(w?

min)
and ketk1  ↵

N/2. Proposition 2 further reduces the approximation error from O(w?
min) to

O(
�� 1
nX

T⇠
��
1) if possible, while still maintaining ketk1  ↵

N/4.

Proposition 1. Consider the updates in equations (15). Fix any 0 < ⇣  w
?
max and let � = C�

w?
min

w?
max

where C� is some small enough absolute constant. Suppose the error sequences (bt)t�0 and (pt)t�0

for any t � 0 satisfy the following:

kbtk1  Cb⇣ � ↵
N/4

,

kptk1  � kst � w?
k1 ,

where Cb is some small enough absolute constants. If the initialization satisfies

↵ 

✓
1

8

◆2/(N�2)

^

 
(w?

max)
(N�2)/N

log w?
max
✏

!2/(N�2)

,

and the step size ⌘ 
↵N

8N2⇣(3N�2)/N , then for any T1  T  T2 where

T1 =
75

16⌘N2⇣(2N�2)/N
log

|w
?
max � ↵

N
|

✏
+

15

8N(N � 2)⌘⇣↵(N�2)
,

T2 =
5

N(N � 1)⌘⇣

✓
1

↵(N�2)
�

1

↵(N�2)/2

◆
,

and any 0  t  T , we have

ksT � w?
k1  ⇣,

ketk1  ↵
N/2

.
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Note that the requirement on kbtk1  Cb⇣ � ↵
N/4 can be relaxed to kbtk1  Cb⇣ when we just

consider the updates in equation (15). However, we still consider the stronger requirement in order to
further generalize to updates in equation (14) later.
Proposition 2. Consider the updates in equations (15). Fix any 0 < ⇣  w

?
max and suppose that the

error sequences (bt)t�0 and (pt)t�0 for any t � 0 satisfy

B = kbtk1 + kptk1 
1

200
w

?
min

kbt � 1ik1  Bi 
1

10
w

?
min,

kptk1 
1

20
ks0 � w?

k1 .

Suppose that

↵ 

✓
1

4

◆2/(N�2)

^

 
(w?

min)
(N�2)/N

log
w?

min
✏

!4/(N�2)

,

ks0 � w?
k1 

1

5
w

?
min,

ke0k  ↵
N/2

.

Let the step size satisfy ⌘ 
↵N

8N2(w?
min)

(3N�2)/N . Then for any T3  t  T4,

T3 =
6

⌘N2(w?
min)

(2N�2)/N
log

w
?
min

✏
,

T4 =
25

N(N � 1)⌘w?
min

✓
1

↵(N�2)/2
�

1

↵(N�2)/4

◆
,

and any i 2 S we have

|si,t � w
?
i | . kµ max

j2S
Bj _ Bi _ ✏,

ketk1  ↵
N/4

.

A.3 Technical Lemmas

There are several lemmas, which are about the coherence of the design matrices and the upper bound
of subGaussian noise term.
Lemma 1. Suppose that 1p

n
X is a n⇥p matrix with `2-normalized columns and satisfies µ-coherence

with 0  µ  1. Then for any vector z 2 Rp we have
����

1

n
XTXz

����
1

 p kzk1 .

Lemma 2. Suppose that 1p
n
X is a n ⇥ p `2-normalized matrix satisfying µ-incoherence; that is

1
n |X>

i Xj |  µ, i 6= j. For k-sparse vector z 2 Rp, we have:
����

✓
1

n
XTX � I

◆
z

����
1

 kµ kzk1 .

Lemma 3. Let 1p
n
X be a n ⇥ p matrix with `2-normalized columns. Let ⇠ 2 Rn be a vector of

independent �
2-sub-Gaussian random variables. Then, with probability at least 1 �

1
8p3

����
1

n
XT⇠

����
1

.
r

�2 log p

n
.
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A.4 Proof for Non-negative Signals

Recall the notation

�(w?
max, w

?
min, ✏, N) :=

✓
1

8

◆2/(N�2)

^

 
(w?

max)
(N�2)/N

log w?
max
✏

!2/(N�2)

^

 
(w?

min)
(N�2)/N

log
w?

min
✏

!4/(N�2)

,

and
⇣ :=

1

5
w

?
min _

200

n

��XT⇠
��
1 _ 200✏.

Theorem 3. Suppose that w? < 0 with k � 1 and X/
p

n satisfies µ-incoherence with µ  C�/kr,
where C� is some small enough constant. Take any precision ✏ > 0, and let the initialization be such
that

0 < ↵ 

✓
✏

p + 1

◆4/N

^ �(w?
max, w

?
min, ✏, N)

For any iteration t that satisfies

1

⌘N2⇣(2N�2)/N↵N�2
. t . 1

⌘N2⌧

✓
1

↵N�2
�

1

⇣(N�2)/2

◆
,

the gradient descent algorithm (15) with step size ⌘ 
↵N

8N2(w?
max)

(3N�2)/N yields the iterate wt with
the following property:

|wt,i � w
?
i | .

8
<

:

�� 1
nX

T⇠
��
1 _ ✏ if i 2 S and w

?
min .

�� 1
nX

T⇠
��
1 _ ✏,�� 1

n (XT⇠)i
�� _ kµ

�� 1
nX

T⇠ � 1S

��
1 _ ✏ if i 2 S and w

?
min &

�� 1
nX

T⇠
��
1 _ ✏,

↵
N/4 if i /2 S.

(16)

Proof. Let

⇣ :=
1

5
w

?
min _

2

Cb

����
1

n
XT⇠

����
1

_
2

Cb
✏,

where Cb is some small enough positive constant that will be explicitly derived later. Also by the
requirement of the coherence of the design matrix, we have

kptk1 
C�

w?
max/w?

min

kst � w?
k1 .

Setting

↵ 

✓
✏

p + 1

◆4/N

^

✓
1

8

◆2/(N�2)

^

 
(w?

max)
(N�2)/N

log w?
max
✏

!2/(N�2)

^

 
(w?

min)
(N�2)/N

log
w?

min
✏

!4/(N�2)

.

As long as ketk1  ↵
N/4 we have

kbtk1 + ↵
N/4



����
1

n
XT

✏

����
1

+

����
1

n
XTXet

����
1

+ ↵
N/4

 2

✓����
1

n
XT

✏

����
1

_ (p ketk1

◆
+ ↵

N/4)

 2

✓����
1

n
XT

✏

����
1

_ (p + 1)↵N/4

◆

 Cb
2

Cb

✓����
1

n
XT

✏

����
1

_ ✏

◆

 Cb⇣.
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where the second inequality is from Lemma 1. Further by Lemma 2, we also have

kptk1 
C�

w?
max/w?

min

kst � w?
k1 .

Therefore, both sequences (bt)t�0 and (pt)t�0 satisfy the assumptions of Proposition 1 conditionally
on ketk1 staying below ↵

N/4. If ⇣ � w
?
max, at t = 0, we have already have
ks0 � w?

k  ⇣.

Otherwise, applying Proposition 1, after

T1 =
75

16⌘N2⇣(2N�2)/N
log

|w
?
max � ↵

N
|

✏
+

15

8N(N � 2)⌘⇣↵(N�2)
,

iterations and before
T2 =

5

N(N � 1)⌘⇣

✓
1

↵(N�2)
�

1

↵(N�2)/2

◆

iterations, we have
ksT1 � w?

k  ⇣,

keT1k1  ↵
N/2

.

If 1
5w

?
min 

2
Cb

�� 1
nX

T⇠
��
1 _

2
Cb

✏, then we are done.

If 1
5w

?
min >

2
Cb

�� 1
nX

T⇠
��
1 _

2
Cb

✏, we have ⇣ = 1
5w

?
min. Choose Cb + C� 

1
40 as we have in

Proposition 1. After T1 iterations, we have

kbtk1 + kptk1  Cb
1

5
w

?
min +

C�

w?
max/w?

min

1

5
w

?
min  (Cb + C�)

1

5
w

?
min 

1

200
w

?
min.

Now all the assumptions of Proposition 2 are satisfied. To further reduce kst � w?
k1 from 1

5w
?
min

to O(
�� 1
nX

T⇠
��), we apply Proposition 2 and obtain that after

T3 =
6

⌘N2(w?
min)

(2N�2)/N
log

w
?
min

✏

iterations and before

T4 =
25

N(N � 1)⌘w?
min

✓
1

↵(N�2)/2
�

1

↵(N�2)/4

◆

iterations, we have for any i 2 S,
|st,i � w

?
i | . kµ max

j2S
Bj _ Bi _ ✏,

ketk1  ↵
N/4

.

We use {·} to denote the indicator function. Therefore, the total number of iterations needed is

T1 + T3 =
75

16⌘N2⇣(2N�2)/N
log

|w
?
max � ↵

N
|

✏
+

15

8N(N � 2)⌘⇣↵(N�2)

+
6

⌘N2(w?
min)

(2N�2)/N
log

w
?
min

✏

⇢
1

5
w

?
min >

2

Cb

����
1

n
XT⇠

����
1

_
2

Cb
✏

� (17)

and the upper bound for the total number of iterations would be

T2 + T4 =
5

N(N � 1)⌘⇣

✓
1

↵(N�2)
�

1

↵(N�2)/2

◆

+
25

N(N � 1)⌘w?
min

✓
1

↵(N�2)/2
�

1

↵(N�2)/4

◆ ⇢
1

5
w

?
min >

2

Cb

����
1

n
XT⇠

����
1

_
2

Cb
✏

�

(18)
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B Multiplicative Update Sequences with General Order N

In this section, we analyze the one-dimensional updates that exhibits the similar dynamics to our
gradient descent algorithm. The lemmas we derive will be assembled together to prove Proposition 1
and 2. The whole framework is similar to [11]. However, the continuous approximation plays an
important role to deal with N > 2, and the detailed derivation differs from [11] a lot, especially for
Lemma 5, 8 and 15.

B.1 Error Growth

Lemma 4. Consider the setting of updates given in equations (14). Suppose that ketk1 
1
8w

?
min

and there exists some B 2 R such that for all t we have kbtk1 + kptk1  B. Then, if ⌘ 
1

12(w?
max+B) for any t � 0 we have

ketk1  ke0k1

t�1Y

i=1

(1 + 2N⌘(kbik1 + kpik1) keik
(N�2)/N
1 )N

or in the other form,

ket+1k1  ketk1 (1 + 2N⌘(kbtk1 + kptk1) ketk
(N�2)/N
1 )N .

Proof. From the equations above, we get

1Sc � et+1 = 1Sc � wt � (1 � 2N⌘(st � w? + pt + bt) � w(N�2)/N
t )N

= 1Sc � et � (1Sc � 1Sc2N⌘(st � w? + pt + bt) � e(N�2)/N
t )N

= 1Sc � et � (1 � 2N⌘(pt + bt) � e(N�2)/N
t )N

and hence

k1Sc � et+1k1  ketk1 (1 + 2N⌘(kbtk1 + kptk1) ketk
(N�2)/N
1 )N .

When we have the bound for kbtk1 + kptk1, we can control the size of ketk1 by the following
lemma.
Lemma 5. Let (bt)t�0 be a sequence such that for t � 0 we have |bt|  B for some B > 0. Let the
step size satisfy ⌘ 

1

4N(N�1)Bx(N�2)/(2N)
0

and consider a one-dimensional sequence (xt)t�0 given
by

0 <x0 < 1,

xt+1 =xt(1 + 2N⌘btx
(N�2)/N
t )N .

Then for any t <
1

8N(N�1)⌘B

✓
1

x(N�2)/N
0

�
1

x(N�2)/2N
0

◆
we have

xt 
p

x0.

Proof. We start with studying the larger increasing rate of the updates,

xt+1 = xt(1 + 2N⌘btx
(N�2)/N
t )N

 xt(1 + 2N⌘Bx
(N�2)/N
t )N

 xt

 
1 +

2N
2
⌘Bx

(N�2)/N
t

1 � 2(N � 1)N⌘x
(N�2)/N
t

!

 xt(1 + 4N
2
⌘Bx

(N�2)/N
t ),
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where the second inequality is obtained by (1 + x)r  1 + rx
1�(r�1)x for x 2 (0,

1
r�1 ), and the last

inequality is by the requirement of step size ⌘. Therefore, to achieve to some value xT , the number
of iterations needed is lower bounded as

T �

T�1X

t=0

xt+1 � xt

4N2⌘Bx
(2N�2)/N
t

.

We aim at the number of iterations for
p

x0, and we denote T as the maximal number of iterations,
i.e. xT <

p
x0 and xT+1 �

p
x0. Therefore,
p

x0 � xT

4N2⌘Bx
(2N�2)/N
T


xT+1 � xT

4N2⌘Bx
(2N�2)/N
T

 1.

And for T , we derive the lower bound as

T �

T�1X

t=0

xt+1 � xt

4N2⌘Bx
(2N�2)/N
t

�
1

4N2⌘B

T�1X

t=0

Z xt+1

xt

1

x(2N�2)/N
dx

�
1

4N2⌘B

Z xT

x0

1

x(2N�2)/N
dx

�
1

4N2⌘B

Z p
x0

x0

1

x(2N�2)/N
dx �

1

4N2⌘B

Z p
x0

xT

1

x(2N�2)/N
dx

>
1

4N2⌘B

✓
�

N

2N � 2

1

x(N�2)/N

◆�����

p
x0

x0

� 1

=
1

8N(N � 1)⌘B

 
1

x
(N�2)/N
0

�
1

x
(N�2)/2N
0

!
� 1.

Therefore, we know that for any t 
1

8N(N�1)⌘B

✓
1

x(N�2)/N
0

�
1

x(N�2)/2N
0

◆
� 1, we have xt 

p
x0.

Since in practice t is chosen as an integer, without loss of generality, we simply the requirement as

t <
1

8N(N�1)⌘B

✓
1

x(N�2)/N
0

�
1

x(N�2)/2N
0

◆
.

B.2 Understanding 1-d Case

B.2.1 Basic Setting

In this subsection we analyze one-dimensional sequences with positive target corresponding to
gradient descent updates without any perturbations. That is, wt = uN

t , 1
nX

TX = I and ignoring the
error sequences (bt)t�0 and (pt)t�0. Hence, we will look at one-dimensional sequences of the form

0 < x0 = ↵
N

< x
?

xt+1 = xt(1 � 2N⌘(xt � x
?)x(N�2)/N

t )N .

(19)

Lemma 6 (Iterates behave monotonically). Let ⌘ > 0 be the step size and suppose the updates are
given by

xt+1 = xt(1 � 2N⌘(xt � x
?)x(N�2)/N

t )N .

Then the following holds

1. If 0 < x0  x
? and ⌘ 

1
2N(2N�2)(x?)(2N�2)/N then for any t > 0 we have x0  xt�1 

xt  x
?.

2. If x
?

 x0 
3
2x

? and ⌘ 
1

6N2(x?)(2N�2)/N then for any t � 0 we have x
?

 xt  xt�1 

3
2x

?.

19



Proof. Note that if x0  xt  x
? then xt � x

?
 0 and hence xt+1 � xt. Thus for the first part it is

enough to show that for all t � 0 we have xt  x  x
?.

Assume for a contradiction that exists t such that
x0  xt  x

?
,

xt+1 > x
?
.

Plugging in the update rule for xt+1 we can rewrite the above as
xt  x

?

< xt(1 � 2N⌘(xt � x
?)x(N�2)/N

t )N

 xt

 
1 +

1

2N � 2
�

x
(2N�2)/N
t

(2N � 2)(x?)(2N�2)/N

!N

Letting � =
�
xt
x?

�(2N�2)/N , by our assumption we have 0 < �  1. The above inequality gives us
✓

1

�

◆ 1
2N�2

< 1 +
1

2N � 2
�

1

2N � 2
�.

And hence for 0 < �  1 we have f(�) :=
�
1
�

� 1
2N�2 + 1

2N�2� < 1 + 1/(2N � 2). Since for
0 < � < 1 we also have

f
0(�) =

1

2N � 2
�

1

2N � 2

✓
1

�

◆ 1
2N�2+1

< 0,

so f(�) � f(1) = 1 + 1/(2N � 2). This gives us the desired contradiction and concludes our proof
for the first part.

We will now prove the second part. Similarly to the first part, we just need to show that for all t � 0
we have xt � x

?. Suppose that x
?

 xt 
3
2x

? and hence we can write xt = x
?(1 + �) for some

� 2 [0,
1
2 ]. Then we have

xt+1 = (1 + �)x?(1 � 2N⌘�x
?
x
(N�2)/N
t )N

� (1 + �)x?(1 � 3N⌘�(x?)(N�2)/N )N

� x
?(1 + �)

✓
1 �

1

2N
�

◆N

� x
?
.

The last inequality is obtained by letting f(�) := (1 + �)
�
1 �

1
2N �

�N , we could get that

f
0(�) =

✓
1 �

1

2N
�

◆N

�
1

2
(1 + �)

✓
1 �

1

2N
�

◆N�1

=

✓
1 �

1

2N
�

◆N�1✓1

2
�

1

2
�

◆
> 0.

Hence, f(�) � f(0) = 1 when � 2 [0,
1
2 ], which finishes the second part of our proof.

Lemma 7 (Iterates behaviour near convergence). Consider the same setting as before. Let x
?

> 0
and suppose that |x0 � x

?
| 

1
2x

?. Then the following holds.

1. If x0  x
? and ⌘ 

1
2N(2N�2)(x?)(2N�2)/N , then for any t �

2

⌘N2(x?)
2N�2

N
we have

0  x
?

� xt 
1

2
|x0 � x

?
|.

2. If x
?

 x0 
3
2x

? and ⌘ 
1

6N2(x?)(2N�2)/N then for any t �
1

2N2⌘(x?)(2N�2)/N we have

0  xt � x
?


1

2
|x0 � x

?
|.

20



Proof. Let us write |x0 � x
?
| = �x

? where � 2 [0,
1
2 ].

For the first part, we have x0 = (1 � �)x?, we want to know how many steps t are needed to halve
the error, i.e.,

xt(1 � 2N⌘(xt � x
?)x

N�2
N

t ))N � (1 �
�

2
)x?

.

We have that

xt(1 � 2N⌘(xt � x
?)x

N�2
N

t ))N � xt(1 + 2N⌘
�

2
x
?((1 � �)x?)

N�2
N ))N

� x0(1 + N⌘�(1 � �)
N�2
N (x?)

2N�2
N ))Nt

It is enough to have

x0(1 + N⌘�(1 � �)
N�2
N (x?)

2N�2
N ))Nt

� (1 �
�

2
)x?

)(1 � �)(1 + tN
2
⌘�(1 � �)

N�2
N (x?)

2N�2
N )) � (1 �

�

2
)

)t �

✓
1 �

�
2

1 � �
� 1

◆
1

N2⌘�(1 � �)
N�2
N (x?)

2N�2
N

)t �
1

2(1 � �)
2N�2

N N2⌘(x?)
2N�2

N

)t �
2

⌘N2(x?)
2N�2

N

The last step is by � 2 [0,
1
2 ], we could obtain that 1

2(1��)
2N�2

N


1

2(1/2)
2N�2

N


1
2(1/2)2  2.

Therefore after t �
2

⌘N2(x?)
2N�2

N
, the error is halved.

To deal with the second part, we write x0 = x
?(1 + �). We will use a similar approach as the one in

the first part. If for some xt we have xt  (1 + �/2)x? we would be done. If xt > x
?(1 + �/2) we

have xt+1  xt(1 � 2N⌘
�
2x

?(x?)(N�2)/N )N . Therefore,

x0(1 � 2N⌘
�

2
x
?(x?)(N�2)/N )Nt

 x
?(1 + �/2)

()Nt log(1 � N⌘�(x?)(2N�2)/N )  log
x
?(1 + �/2)

x0

()t �
1

N

log x?(1+�/2)
x0

log(1 � N⌘�(x?)(2N�2)/N )
.

We can deal with the term on the right hand side by noting that

1

N

log x?(1+�/2)
x0

log(1 � N⌘�(x?)(2N�2)/N )
=

1

N

log 1+�/2
1+�

log(1 � N⌘�(x?)(2N�2)/N )


1

N

⇣
1+�/2
1+� � 1

⌘
/

⇣
1+�/2
1+�

⌘

�N⌘�(x?)(2N�2)/N

=
1

N

�
�
2 /(1 + �

2 )

�N⌘�(x?)(2N�2)/N


1

2N2⌘(x?)(2N�2)/N

where the second line used log x  x � 1 and log x �
x�1
x . Note that both logarithms are

negative.

Lemma 8 (Iterates at the beginning). Consider the same setting as before. If 0 < x0 
1
2x

? and
⌘ 

x0

2N(2N�4)(x?)(3N�2)/N , for any t �
3

2N(N�2)⌘x?x(N�2)/N
0

, we will have 1
2x

?
 xt  x

?.
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Proof. We need to find a lower-bound on time T which ensures that xT �
x?

2 . At any time t, we
have

xt+1 = xt(1 � 2N⌘(xt � x
?)x(N�2)/N

t )N � xt(1 � 2N
2
⌘(xt � x

?)x(N�2)/N
t ).

xt+1 � xt � �2N
2
⌘(xt � x

?)x(2N�2)/N
t

xt+1 � xt

2N2⌘(x? � xt)x
(2N�2)/N
t

� 1

T�1X

t=0

xt+1 � xt

2N2⌘(x? � xt)x
(2N�2)/N
t

�

T�1X

t=0

1 = T.

Therefore, for t that is larger than the left hand side, we have xt �
1
2x

?.

T�1X

t=0

xt+1 � xt

2N2⌘(x? � xt)x
(2N�2)/N
t


1

N2⌘x?

T�1X

t=0

xt+1 � xt

x
(2N�2)/N
t

=
1

N2⌘x?

T�1X

t=0

Z xt+1

xt

1

x(2N�2)/N
+

 
1

x
(2N�2)/N
t

�
1

x(2N�2)/N

!
dx


1

N2⌘x?

T�1X

t=0

Z xt+1

xt

1

x(2N�2)/N
dx

+
1

N2⌘x?
max

0tT�1

 
1

x
(2N�2)/N
t

�
1

x
(2N�2)/N
t+1

!
(xT � x0)


1

N2⌘x?

Z 1
2x

?

x0

1

x(2N�2)/N
dx (20)

+
1

N2⌘x?
max

0tT�1

 
1

x
(2N�2)/N
t

�
1

x
(2N�2)/N
t+1

!✓
1

2
x
?

� x0

◆

(21)

+
1

N2⌘x?

1

( 12x?)(2N�2)/N

✓
xT �

1

2
x
?

◆
(22)

For equation (20),

1

N2⌘x?

Z 1
2x

?

x0

1

x(2N�2)/N
dx 

1

N2⌘x?

0

@�
N

N � 2

1

x(N�2)/N

�����

1
2x

?

x0

1

A

=
1

N2⌘x?

 
�

N

N � 2

1

( 12x?)(N�2)/N
+ �

N

N � 2

1

x
(N�2)/N
0

!

=
1

N(N � 2)⌘x?

 
1

x
(N�2)/N
0

�
2(N�2)/N

(x?)(N�2)/N

!
.

For equation (21), we first focus on

1

x
(2N�2)/N
t

�
1

x
(2N�2)/N
t+1

.

We have that

xt+1 = xt(1 � 2N⌘(xt � x
?)x(N�2)/N

t )N ,

) x
(2N�2)/N
t+1 = x

(2N�2)/N
t (1 � 2N⌘(xt � x

?)x(N�2)/N
t )2N�2

.
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To deal with the multiplicative coefficient, with ⌘ 
1

2N(2N�3)(x?)(2N�2)/N using the inequality
(1 + x)r  1 + rx

1�(r�1)x where x 2 (0,
1

r�1 ), we obtain that

(1 � 2N⌘(xt � x
?)x(N�2)/N

t )2N�2
 (1 + 2N⌘(x?)(2N�2)/N )(2N�2)

 1 +
2N(2N � 2)⌘(x?)(2N�2)/N

1 � 2N(2N � 3)⌘(x?)(2N�2)/N

=
1 � 2N⌘(x?)(2N�2)/N

1 � 2N(2N � 3)⌘(x?)(2N�2)/N
.

Therefore,
1

x
(2N�2)/N
t

�
1

x
(2N�2)/N
t+1

=
1

x
(2N�2)/N
t

�
1

x
(2N�2)/N
t (1 � 2N⌘(xt � x?)x(N�2)/N

t )2N�2

=
1

x
(2N�2)/N
t

 
1 �

1

(1 � 2N⌘(xt � x?)x(N�2)/N
t )2N�2

!


1

x
(2N�2)/N
t

✓
1 �

1 � 2N(2N � 3)⌘(x?)(2N�2)/N

1 � 2N⌘(x?)(2N�2)/N

◆


1

x
(2N�2)/N
t

2N(2N � 4)⌘(x?)(2N�2)/N

1 � 2N⌘(x?)(2N�2)/N


1

x
(2N�2)/N
t

2N(2N � 4)⌘(x?)(2N�2)/N


1

x
(2N�2)/N
0

2N(2N � 4)⌘(x?)(2N�2)/N
.

If we further require the step size satisfies ⌘ 
x0

2N(2N�4)(x?)(3N�2)/N , we have for equation (21),

1

N2⌘x?
max

0tT�1

 
1

x
(2N�2)/N
t

�
1

x
(2N�2)/N
t+1

!✓
1

2
x
?

� x0

◆


1

N2⌘x?

1

x
(N�2)/N
0 x?

✓
1

2
x
?

� x0

◆


1

2N2⌘x?

1

x
(N�2)/N
0

,

which is with the same order with the result of equation (20).

Combining the results from equations (20), (21), (22), we obtain that

T 
1

N(N � 2)⌘x?

 
1

x
(N�2)/N
0

�
2(N�2)/N

(x?)(N�2)/N

!
+

1

2N2⌘x?

1

x
(N�2)/N
0

+
1

N2⌘x?

1

( 12x?)(2N�2)/N

✓
xT �

1

2
x
?

◆


1

N(N � 2)⌘x?

 
1

x
(N�2)/N
0

�
2(N�2)/N

(x?)(N�2)/N
+

1

2x
(N�2)/N
0

+
1

( 12x?)(N�2)/N

!


3

2N(N � 2)⌘x?x
(N�2)/N
0

.

Lemma 9 (Overall iterates). Consider the same setting as before. Fix any ✏ > 0.

1. If ✏ < |x
?
�x0| 

1
2x

? and ⌘ 
1

6N2(x?)(2N�2)/N then for any t �
3

⌘N2(x?)
2N�2

N
log |x?�x0|

✏

we have
|x

?
� xt|  ✏.
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2. If 0 < x0 
1
2x

? and ⌘ 
x0

2N(2N�4)(x?)(3N�2)/N then for any

t �
3

⌘N2(x?)
2N�2

N

log
|x

?
� x0|

✏
+

3

2N(N � 2)⌘x?x
(N�2)/N
0

we have
x
?

� ✏  xt  x
?
.

Proof. 1. To prove the first part we simply need apply Lemma 7 dlog2
|x?�x0|

✏ e times. Hence
after

2 log2 e

⌘N2(x?)
2N�2

N

log
|x

?
� x0|

✏


3

⌘N2(x?)
2N�2

N

log
|x

?
� x0|

✏

iterations we are done.

2. For the second part, we simply combine the results from the first part and Lemma 8, it is
enough to choose t larger than or equal to

3

⌘N2(x?)
2N�2

N

log
|x

?
� x0|

✏
+

3

2N(N � 2)⌘x?x
(N�2)/N
0

.

B.2.2 Dealing with Bounded Errors bt

In this subsection we extend the previous setting to handle bounded error sequences (bt)t�0 such
that for any t � 0 we have kbtk1  B for some B 2 R. That is, we look at the following updates

xt+1 = xt(1 � 2N⌘(xt � x
? + bt)x

(N�2)/N
t )N .

Surely, if B � x
?, the convergence to x

? is not possible. Hence, we will require B to be small
enough, with a particular choice B 

1
5x

?. For a given B, we can only expect the sequence (xt)t�0

to converge to x
? up to precision B. We would consider two extreme scenarios,

x
+
t+1 = x

+
t (1 � 2N⌘(x+

t � (x?
� B))(x+

t )(N�2)/N )N ,

x
�
t+1 = x

�
t (1 � 2N⌘(x�

t � (x? + B))(x�
t )(N�2)/N )N .

Lemma 10 (Squeezing iterates with bounded errors). Consider the sequences (x�
t )t�0, (xt)t�0 and

(x+
t )t�0 as defined above with

0 < x
�
0 = x

+
0 = x0  x

? + B

If ⌘ 
1

8N2(x?)(2N�2)/N then for all t � 0

0  x
�
t  xt  x

+
t  x

? + B.

Proof. We will prove the claim by induction. The claim holds trivially for t = 0. If x
+
t � xt, we

have
x
+
t+1 = x

+
t (1 � 2N⌘(x+

t � (x? + B))(x+
t )

N�2
N )N

� x
+
t (1 � 2N⌘(x+

t � (x? + B))x
N�2
N

t )N

(4 = x
+
t � xt) = (xt + 4)(1 � 2N⌘(xt � x

? + bt)x
N�2
N

t

+ 2N⌘(x+
t � xt � B � bt)x

N�2
N

t )N

(mt = 1 � 2N⌘(xt � x
? + bt)x

N�2
N

t ) � (xt + 4)(mt � 2N⌘4x

N�2
N

t )N

� (xt + 4)(mt � 2N⌘4x

N�2
N

t )N

= xtm
N
t + (xt + 4)(mt � 2N⌘4x

N�2
N

t )N � xtm
N
t

= xtm
N
t + (xt + 4)mN

t

 
1 �

2N⌘4x

N�2
N

t

mt

!N

� xtm
N
t .
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We aimed to show that (xt + 4)mN
t (1 � 2N⌘4x

N�2
N

t /mt)N � xtm
N
t is positive. With ⌘ 

1
4N(x?+B)(x?)(N�2)/N , we can see mt � 1/2 for all t and

(xt + 4)mN
t (1 � 2N⌘4x

N�2
N

t /mt)
N

� xtm
N
t � (xt + 4)mN

t (1 � 4N⌘4x

N�2
N

t )N � xtm
N
t

� (xt + 4)mN
t (1 � 4N

2
⌘4x

N�2
N

t ) � xtm
N
t .

The last inequality is obtained via (1 � x)n � 1 � nx. If we further require ⌘ 
1

8N2(x?)(2N�2)/N ,
we obtain that

(xt + 4)mN
t (1 � 4N

2
⌘4x

N�2
N

t ) � xtm
N
t � (xt + 4)mN

t

✓
1 �

1

2x?
4

◆
� xtm

N
t

� m
N
t

✓
xt + 4 �

xt

2x?
4 �

1

2x?
4

2
� xt

◆

� m
N
t 4

✓
1 �

xt

2x?
�

4

2x?

◆

� m
N
t 4

✓
1 �

1

2
�

1

2

◆
� 0.

Therefore, we obtain that
x
+
t+1 � xtm

N
t = xt+1.

For x
�
t , it follows a similar proof.

Lemma 11 (Iterates with bounded errors monotonic behaviour). Consider the previous setting with
B 

1
5x

?, ⌘ 
1

6N2(x?)(2N�2)/N . Then the following holds

1. If |xt � x
?
| > B then |xt+1 � x

?
| < |xt � x

?
|.

2. If |xt � x
?
|  B then |xt+1 � x

?
|  B.

Proof. The choice of B and step size ⌘ ensures us to apply Lemma 6 and Lemma 10 to the sequences
(x�

t )t�0 and (x+
t )t�0.

Lemma 12 (Iterates with B near convergence). Consider the setting as before. Then the following
holds:

1. If 1
2 (x?

� B)  x0  x
?

� 5B then for any t �
2

⌘N2(x?)
2N�2

N
we have

|x
?

� xt| 
1

2
|x0 � x

?
|.

2. If x
? + 4B < x0 <

6
5x

? then for any t �
4

⌘N2(x?)
2N�2

N
we have

|x
?

� xt| 
1

2
|x0 � x

?
|.

Proof. 1. To prove the first part, let us first apply Lemma 7 on x
�
t twice, therefore for all

t �
25

4⌘N2(x?)
2N�2

N

� 2
2

⌘N2(x? � B)
2N�2

N

we have

0  (x?
� B) � x

�
t


1

4
|x0 � (x?

� B)|


1

4
|x0 � x

?
| +

1

4
B.
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When xt  x
?, from Lemma 10 we have

0  x
?

� xt

 x
?

� x
�
t

1

4
|x0 � x

?
| +

5

4
B


1

2
|x0 � x

?
|.

When xt � x
? then by Lemma 10 we have

0  xt � x
?

 B 
1

5
|x0 � x

?
|,

where both last inequalities are from x0  x
?

� 5B.

2. The second part follows a very similar proof for x
+
t , the number of iterations would be

t �
4

⌘N2(x?)
2N�2

N

� 2
2

⌘N2(x? + B)
2N�2

N

.

Lemma 13 (Overall iterates with B). Consider the same setting as before. Fix any ✏ > 0, then the
following holds

1. If B + ✏ < |x
?
� x0| 

1
5x

? then for any t �
15

4⌘N2(x?)
2N�2

N
log |x?�x0|

✏ iterations we have

|x
?

� xt|  B + ✏.

2. If 0 < x0  x
?

� B � ✏ then for any

t �
75

16⌘N2(x?)
2N�2

N

log
|x

?
� x0|

✏
+

15

8N(N � 2)⌘x?x
(N�2)/N
0

we have x
?

� B � ✏  xt  x
? + B.

Proof. 1. If x0 > x
? + B then by Lemma 10 and Lemma 11 we only need to show that

(x+
t )t�0 hits x

? + B + ✏ within the desired number of iterations. From the first part of
Lemma 9, we see that

3

⌘N2(x? + B)
2N�2

N

log
|x

? + B � x0|

✏


15

4⌘N2(x?)
2N�2

N

log
|x

?
� x0|

✏

iterations are enough, where we require |x?�x0|
✏ �

5
2 .

2. The upper bound is obtained immediately from Lemma 10. For lower bound, we simply
apply the second part of Lemma 9 to the sequence (x�

t )t�0 to get

t �
75

16⌘N2(x?)
2N�2

N

log
|x

?
� x0|

✏
+

15

8N(N � 2)⌘x?x
(N�2)/N
0

�
3

⌘N2(x? � B)
2N�2

N

log
|x

?
� B � x0|

✏
+

3

2N(N � 2)⌘(x? � B)x(N�2)/N
0

to ensure the results we wanted.
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Lemma 14. Suppose the error sequences (bt)t�0 and (pt)t�0 satisfy the following for any t � 0:

kbt � 1Sk  B,

kptk1 
1

20
kst � w?

k1 .

Suppose that

20B < ks0 � w?
k1 

1

5
w

?
min.

Then for ⌘ 
1

6N2(w?
max)

(2N�2)/N and any t �
2

⌘N2(w?
max)

(2N�2)/N we have

kst � w?
k1 

1

2
ks0 � w?

k1 .

Proof. Note that kb0k1 + kptk1 
1
10 ks0 � w?

k1. For any i such that |s0,i � w
?
i | 

1
2 ks0 � w?

k1, Lemma 11 guarantees that for any t � 0 we have |st,i � w
?
i | 

1
2 ks0 � w?

k1.
On the other hand, for any i such that |s0,i � w

?
i | >

1
2 ks0 � w?

k1 by Lemma 12 we have
|s0,i � w

?
i | 

1
2 ks0 � w?

k1 for any t �
2

⌘N2(w?
max)

(2N�2)/N which concludes the proof.

B.3 Dealing with Negative Targets

Lemma 15. Let xt = u
N

� v
N and x

?
2 R be the target such that |x

?
| > 0. Suppose the sequences

(ut)t�0 and (vt)t�0 evolve as follows

0 < u0 = ↵, ut+1 = ut(1 � 2N⌘(xt � x
? + bt)u

N�2
t ),

0 < v0 = ↵, vt+1 = vt(1 + 2N⌘(xt � x
? + bt)v

N�2
t ),

where ↵  (2 � 2
N�2
N )

1
N�2 |x

?
|
1/N and there exists B > 0 such that |bt|  B and ⌘ 

↵
4N(N�2)(x?+B)x? . Then the following holds: For any t � 0 we have
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N
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N
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1
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N .
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?

< 0 and v
N
t � |x

?
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N
t 

1
2↵

N .

Proof. Let us assume x
?

> 0 first and prove the first statement. From the updating equation, we
obtain that

ut+1 � ut

u
N�1
t

= �2N⌘(xt � x
? + bt).

Therefore,
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u
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1

uN�1
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=

Z ut
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1
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du

= (2 � N)(u2�N
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0 ).

When u
N
t � x

?, we have that u
2�N
t  (x?)(2�N)/N . Therefore,

tX
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�2N⌘(xi � x
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t � u
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Similarly for vt, we have
tX

i=1

2N⌘(xi � x
? + bi) =
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v
N�1
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0 ).

Therefore, we have that
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For x
?

< 0, we obtain a similar result by symmetry.

Lemma 16. Let xt = x
+
t � x

�
t and x

?
2 R be the target such that |x

?
| > 0. Suppose the sequences

(x+
t )t�0 and (x�

t )t�0 evolve as follows

0 < x
+
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N
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N
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�
t )(N�2)/N )N ,

and that there exists B > 0 such that |bt|  B and ⌘ 
1

8N(x?+B)(x?)(N�2)/N . Then the following
holds: For any t � 0 we have

• If x
?
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�
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+
i )(N�2)/N )N .

Proof. Assume x
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> 0 and fix any t � 0. Let 0  s  t be the largest s such that x
+
s > x

?. If no
such s exists we are done immediately. If s = t then by the first part we have x

�
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N and we are
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If s < t, by Lemma 15, we have x
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N . From the requirement of initialization, we have
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This completes the proof for x
?

> 0. It follows a similar proof for the case x
?

< 0.

C Proof of Propositions and Technical Lemmas

In this section, we provide the proof for the propositions and technical lemmas mentioned in
Appendix A.

C.1 Proof of Proposition 1

By the assumptions on (bt)t�0 and (pt)t�0, we obtain that

kbtk1  Cb⇣ � ↵
N/4

,

kptk1 
C�

w?
max/⇣

kst � w?
k1 

C�

w?
max/⇣

w
?
max  C�⇣.

Choose Cb and C� such that Cb + C�  1/40. Therefore, we have

B  kbtk1 + kptk1 + ↵
N/4

 (Cb + C�)⇣ 
1

40
⇣.
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?
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1
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1
20w

?
j . Therefore, by applying Lemma 13, we know
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1
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?
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?
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By Lemma 5, we have that ketk1  ↵
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(23)

C.2 Proof of Proposition 2

By Lemma 5, with the choice of B = 1
200w

?
min, we can maintain ketk1  ↵

N/4 for at least another

t 
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Now we consider to further reduce kst � w?
k1 from 1

5w
?
min to

�� 1
nX

T⇠
��
1 _ ✏. Let Bi := (bt)i

and B := maxj2S Bj .

We first apply Lemma 14 for log2
w?

min
100(B_✏) times, the total number of iterations for this step would be

2

⌘N2(w?
min)

(2N�2)/N
log2

w
?
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100(B _ ✏)
.

After that we have kst � w?
k1 < 20(B _ ✏) and so kptk1 < kµ · 20(B _ ✏). Hence, for any i 2 S

we have
kbt � 1ik1 + kptk1  Bi + kµ20(B _ ✏).

Then we further apply Lemma 13 for each coordinate i 2 S to obtain that

|wi,t � w
?
i | .

����
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n
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���� _ kµ

����
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n
XT⇠ � 1S

����
1

_ ✏.

the number of iterations needed for this step is 15
4⌘N2(w?
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(2N�2)/N log w?

min
✏ .

Therefore the total number of iterations needed to further reduce kst � w?
k1 is
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✏
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(24)

C.3 Proof of Technical Lemmas

Proof of Lemma 1. Since 1p
n
X is with `2-normalized columns and satisfies µ-coherence, where

0  µ  1, �����

✓
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n
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◆
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p
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Therefore, for any z 2 Rp, ����
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XTXz

����
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 p kzk1 .

Proof of Lemma 2. It is straightforward to verify that for any i 2 {1, . . . , p},
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✓
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n
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i

� zi

����  kµ kzk1 .
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Therefore, ����

✓
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n
XTX � I

◆
z

����
1

 kµ kzk1 .

Proof of Lemma 3. Since the vector ⇠ are made of independent �
2-subGaussian random variables

and any column Xi of X is `2-normalized, i.e.
��� 1p

n
Xi

��� = 1, the random variable 1p
n
(XT⇠)i is still

�
2-subGaussian.

It is a standard result that for any ✏ > 0,

P
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◆
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✓
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◆
.

Setting ✏ = 2
p

2�2 log(2p), with probability at least 1 �
1

8p3 we have
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1

n
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1


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p
n

2
p

�2 log(2p) .
r

�2 log p

n
.

D Proof of Theorems in Section 3

In this section, we provide the proof for all results we mentioned in Section 3.

D.1 Proof of Theorem 1

Proof. Now let us consider the updates in equation (14). The major idea is to show that the results in
Theorem 3 can be easily generalized with the lemmas we developed in Section B.3.

Let us denote
 (w?

min, N) := (2 � 2
N�2
N )

1
N�2 (w?

min)
1
N ^ 2

3
N (2

1
N � 1)

1
N�2 (w?

min)
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N .
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↵ 

✓
✏

p + 1

◆4/N

^ �(w?
max, w

?
min, ✏, N) ^ (w?

min, N).

Under the same requirements on other parameters with Theorem 3, we satisfy the conditions of
Lemma 4, Lemma 5 and Lemma 16. From these lemmas, we could maintain that

w
?
j > 0 =) 0  w

�
t  ↵

N/4
,

w
?
j < 0 =) 0  w

+
t  ↵

N/4
,

up to T2 + T4 as defined in Proposition 1 and 2.

Consequently, for w
?
j > 0 we can ignore (w�

j,t)t�0 by treating as a part of bounded error bt. The
same holds for sequence (w+

j,t)t�0 when w
?
j < 0. Then, for w

?
j > 0 the sequence (w+

j,t) evolves as
follows

w
+
j,t+1 = w

+
j,t(1 � 2N⌘(w+

j,t � w
?
j + (bj,t � w

�
j,t) + pj,t)(w

+
j,t)

(N�2)/2)N .

The bj,t � w
�
j,t explains why we need kbtk1 + ↵

N/4
 Cb⇣ in Proposition 1. For w

?
j > 0, we

follow the exact proof structure with Theorem 3 with treating (w�
j,t)t�0 as a part of bounded error.

For w
?
j < 0 it follows the same argument by switching w

+
t and w

�
t .

Therefore, we could closely follow the proof of Theorem 3 to generalize the result from non-
negative signals to general signals. The result remains unchanged as well as the number of iterations
requirement in equation (17) and (18). With the choice of Cb = 1

100 in the proof of Theorem 3, recall
that

⇣ =
1

5
w

?
min _ 200

����
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n
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����
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_ 200✏,
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and define the indicator function with A as the event {
1
5w

?
min > 200

�� 1
nX

T⇠
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1 _ 200✏},
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⇢
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We now define that
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The error bound (16) holds for any t such that

Tl(w
?
, ↵, N, ⌘, ⇣, ✏)  t  Tu(w?

, ↵, N, ⌘, ⇣, ✏).

The equation (23) and (24) ensure that it is not a null set.

Thus, we finish generalizing Theorem 3 to general signals with an extra requirement  (w?
min, N) on

the initialization ↵.

For the case k = 0, i.e., w? = 0, we set w
?
min = 0 and
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✓
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Therefore, by Lemma 5, for ⌘ 
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, which agrees to the definition of Tu(w?
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case.

D.2 Proof of Corollary 1

Since ⇠ is made of independent �
2-sub-Gaussian entries, by Lemma 3 with probability 1 � 1/(8p

3)
we have ����
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n
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Hence, letting ✏ = 2
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n , we obtain that
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D.3 Proof of Theorem 2

We now state Theorem 2 formally as below.
Theorem 4. Let T1, T2, T3 and T4 be the number of iterations defined in Proposition 1 and
Proposition 2. Suppose ⇣ � 1, w

?
max � 1 and the initialization ↵  exp(�5/3), fixing ↵ and ⌘ for

all N , both T2 �T1 and T4 �T3 have a tight lower bound that is increasing as N increases (N > 2).
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Proof. We observe first that under the assumption ⇣ � 1 and w
?
max � 1,

75
16⌘N2⇣(2N�2)/N log |w?

max�w0|
✏ and T3 = 6

⌘N2(w?
max)

(2N�2)/N log w?
min
✏ are decreasing as N increases.

For the rest part of T2�T1, we will be showing that a lower bound of that is increasing as N increases.
As T2 � T1 is by design a lower bound of the “true” early stopping window, the lower bound we get
here is tight for T2 � T1 and is treated as equivalent to T2 � T1 to indicate the monotonicity of the
"true" early stopping window.
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Note that the second term is always positive, we just need to show the first term is positive.
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We can further derive that when ↵  exp(�5/6) ^ 1/4, we have a lower bound of T2 � T1 is
increasing as N increases.

To show T4 � T3 is increasing as N increases, we just need to show T4 is increasing. It follows a
similar proof.

We can further derive that when ↵  exp(�5/3) ^ 2, we have T4 � T3 is increasing as N increases.

D.4 Proof of Remark 2

The proof is indeed similar to that of Theorem 4. Fixing any N > 2 and step size ⌘, we look at
T2 � T1 and T4 � T3 and show that a tight lower bound of that is increasing as ↵ decreases. We
start with T2 � T1.

33



Recall that
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increasing as ↵ decreases. With the general requirement of ↵ < 1, we have that
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For T4 � T3, it follows a similar proof.

E Experiments on MNIST

Figure 7: Experiments with different choice depth parameter N . The number of measurements is
set as n = 392, where the dimension of the original image is p = 784. We use Rademacher sensing
matrix.

The efficacy of different depth parameter N is shown in Figure 2 and Figure 7 on both simulated data
and real world datasets. The MNIST examples are successfully recovered from Rademacher linear
measurements using different deep parametrizations.
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