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Abstract
Sarcasm is an intricate expression phenomenon and has garnered in-
creasing attentions over the recent years, especially for multimodal
contexts such as videos. Nevertheless, despite being a significant as-
pect of human sentiment, the effect of sarcasm is consistently over-
looked in sentiment analysis. Videos with sarcasm often convey sen-
timents that diverge or even contradict their explicit messages. Prior
works mainly concentrate on simply modeling sarcasm and senti-
ment features by utilizing the Multi-Task Learning (MTL) frame-
work, which we found introduces detrimental interplays between
the sarcasm detection task and sentiment analysis task. Therefore,
this study explores the effective enhancement of video sentiment
analysis through the incorporation of sarcasm information. To this
end, we propose the Progressively Sentiment-oriented Sarcasm
Refinement and Integration (PS2RI) framework, which focuses on
modeling sentiment-oriented sarcasm features to enhance senti-
ment prediction. Instead of naively combining sarcasm detection
and sentiment prediction under an MTL framework, PS2RI iter-
atively performs the sentiment-oriented sarcasm refinement and
sarcasm integration operations within the sentiment recognition
framework, in order to progressively learn sarcasm-aware senti-
ment feature without suffering the detrimental interplays caused
by information irrelevant to the sentiment analysis task. Exten-
sive experiments are conducted to validate the effectiveness of our
approach. Code is available at https://github.com/tiggers23/PS2RI.

CCS Concepts
• Information systems → Sentiment analysis; Multimedia
information systems.
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1 Introduction
Sarcasm detection has gained significant attentions in recent years
due to the potential impact of sarcasm on the sentiment analysis
task [20, 21, 25, 32, 38, 55]. The key factor of sarcasm detection is
to extract incongruous features which can suggest the distinction
between the conveyed sentiment and the author’s intended senti-
ment [25, 32, 55]. The contradictory sentiments arising from such
incongruity can considerably disrupt the sentiment analysis task.
Recent research [15] has consistently shown that highly advanced
Large Language Models (such as ChatGPT [31]), face challenges
when it comes to detecting genuine sentiments conveyed in sarcas-
tic samples. Therefore, it is crucial for sentiment analysis systems
to handle sarcasm which is usually overlooked by existing works.

In practice, sarcasm can become more prevalent within mul-
timodal inputs like videos [12, 24, 29, 39, 42, 56], which convey
contradicting sentiments among different modalities. As shown in
Figure 1, the text conveys a positive sentiment, while the video
demonstrates a negative sentiment which reflects the intrinsic sen-
timent of the character. Existing studies implement multimodal
sarcasm detection by modeling the incongruity information within
different aspects of multimodal contents [4, 21, 25, 32]. However,
there is a lack of investigation on how sarcasm information can be
effectively utilized to enhance the sentiment analysis task.

To this end, an intuitive way is to utilize the Multi-Task Learning
(MTL) framework by jointly training the sarcasm detection and
sentiment analysis tasks, which has been studied by Chauhan et al.
[4] and Liu et al. [26]. The MTL framework is expected to enhance
sentiment prediction by learning shared representations across
the two tasks. However, as will be shown in Section 5, after a
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Well thank God your livelihood doesn't depend on it.
Figure 1: An example of video with sarcasm. The text of
this video segment is positive, while the facial sentiment
expressed in the visual modality is negative.

comprehensive evaluation, it turns out that the MTL framework
impedes sentiment prediction over non-sarcastic inputs which can
be easily identified using a single sentiment classifier (see Table 1).
This phenomenon implies that the sentiment analysis task suffers
the negative interference of the sarcasm detection task in the MTL
framework, which is a universally present challenge inMTL [13, 52].

Motivated by the above observation, we propose the Progressive
Sentiment-oriented Sarcasm Refinement and Integration (PS2RI)
mechanismwhich boosts video sentiment prediction capabilitywith
sarcasm-aware information. Figure 2 shows the model overview of
the proposed PS2RI approach. The core idea of PS2RI is to iteratively
perform the sentiment-oriented sarcasm refinement and sarcasm
integration operations within the sentiment recognition framework,
in order to discard irrelevant signals of sarcasm features during the
sarcasm-aware sentiment learning process. To this end, our model
first utilizes two separate encoders to respectively extract sarcasm-
informed features and sentiment-related features from videos. Then
a Sarcasm-Aware Sentiment Learning (SASL) module is stacked on
top of sentiment-related features, with the purpose of producing
sarcasm-aware sentiment representations. SASL is implemented
via an iterative framework in order to progressively explore the
deep interactions between two tasks. Specifically, SASL iteratively
propagates information between the two tasks by first refining
sarcasm features using sentiment information, and then fusing the
refined sarcasm features obtained in the previous step into the sen-
timent feature learning process. Within each iteration, the sarcasm
refinement operation is introduced to obtain sentiment-oriented sar-
casm features, to reduce the negative interference caused by direct
incorporation of sarcasm features. Compared to the MTL frame-
work [4] which shares features across tasks, PS2RI can alleviate the
negative interference of sarcasm detection by discarding irrelevant
signals of sarcasm features via sentiment-oriented sarcasm learning
before fusing them into the sentiment learning module, thus atten-
tively propagating effective signals between sarcasm and sentiment
throughout the learning process (as shown in the supplementary).
The superiority of PS2RI is verified via extensive experiments on
different video sentiment analysis benchmarks.

To sum up, the contributions of this work can be summarized as
follows:

• We conduct a comprehensive study on how to improve sen-
timent analysis with the assistance of sarcasm detection and
discuss the drawbacks of existing MTL-based methods.

• We propose the PS2RI framework which effectively allevi-
ates the negative interference caused by the interaction of
sentiment analysis and sarcasm detection; and enhances the
performance of sentiment prediction significantly.

• We conduct extensive evaluations to demonstrate the effec-
tiveness and scalability of our proposed PS2RI framework.

2 Relate Work
2.1 Video Sentiment Analysis
Video sentiment analysis is primarily focused on identifying the
sentiment polarity of humans from videos. Given the presence of
different information across various modalities, such as language,
acoustic, and visual, video understanding requires fusing data from
different modalities [6, 10, 19, 30, 43, 45, 60, 64]. In general, existing
video sentiment analysis methods can be divided into global-level
fusion and element-level fusion. Specifically, the former strategy
implements multimodal fusion over global-level feature vectors
extracted from each individual modality and does not consider the
cross-modal interactions between elements [17, 35, 42, 43, 48, 50, 51].
Compared to global-level fusion, the element-level fusion methods
can achieve a more thorough inter-modal interaction by modeling
the fine-grained feature fusion with word-level information consid-
ered [22, 23, 28, 45, 49, 65]. However, the above works mainly focus
on multimodal fusion, ignoring a further investigation from the
sentiment recognition aspect. As indicated by recent works [21, 25],
sarcasm information usually makes a negative interference on the
sentiment analysis task.

2.2 Multimodal Sarcasm Detection
Besides the standard sentiment recognition task as introduced
above, there also exit various sentiment-related recognition prob-
lems, such as metaphor detection [53, 61, 62], humor recognition [5,
11, 33, 54], and sarcasm detection [12, 24, 29, 39, 42, 56]. In this
work, we mainly focus on the multimodal sarcasm detection prob-
lem. Sarcasm detection aims to capture the contradictory sentiment
information present in samples, which has garnered significant
attentions due to its effect on causing a shift or complete reversal
in the expressed sentiment, thereby greatly impacting sentiment
analysis [32, 38, 55]. Early sarcasm detection works primarily fo-
cuses on text-only samples, with the core idea being to identify
incongruous patterns within texts [9, 37, 41]. Recently, there has
been a surge of interest in multimodal sarcasm detection, driven
by the growing fascination people have with posting and brows-
ing multimodal information [40]. Compared to text-based sarcasm
detection, multimodal sarcasm detection can be more difficult to
identify considering the misalignment across different modalities.
Existing works on multimodal sarcasm detection focus on explor-
ing incongruity information within different aspects of multimodal
contents by building graph neural networks [21, 25] or modeling
cross-modal discrepancies and intra-text incongruities [32]. Re-
cently, multimodal sarcasm detection has also been explored for
videos [2, 63].

However, the above works study the sarcasm detection task in-
dependently and there are currently limited studies that explore
how sarcasm information enhances the sentiment analysis task,
which holds greater importance in practical application scenarios.
There are some studies that acknowledge the interaction between
sentiment analysis and sarcasm detection, employing a MTL frame-
work to jointly train the sarcasm detection and sentiment analysis
tasks, leading to good advances in sentiment analysis [4, 26]. Nev-
ertheless, their primary emphasis resides in amalgamating features
from these two tasks, lacking a more comprehensive evaluation for
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the sentiment analysis task. Moreover, by conducting a comprehen-
sive evaluation, we find that the MTL framework can only make a
marginal improvement for sentiment analysis, and even hurts the
performance on non-sarcastic examples.

3 Problem Definition & Preliminary
3.1 Problem Definition
The task of video sentiment analysis involves three different modal-
ities, i.e., language (l), vision (v), and acoustic (a) modalities. Fol-
lowing Chauhan et al. [4], we denote a sample in training data as
𝑋 = {(𝑈 ,𝐶), 𝑌𝑠𝑎𝑟 , 𝑌𝑠𝑒𝑛}, where𝑈 and𝐶 correspond to the target ut-
terance and associated historical contextual dialogues, respectively.
𝑌𝑠𝑎𝑟 denotes the binary sarcasm label and 𝑌𝑠𝑒𝑛 denotes the senti-
ment label. To be specific, we use𝑈𝑚 ∈ R𝑇

𝑢
𝑚×𝑑𝑚 , where𝑚 ∈ {𝑙, 𝑣, 𝑎}

refers to a specific modality, to denote the utterance feature from
modality 𝑚. 𝑇𝑢

𝑚 and 𝑑𝑚 denote the utterance length and feature
dimension, respectively. Similarly, the context feature can be de-
noted by𝐶𝑚 ∈ R𝑇

𝑐
𝑚×𝑑𝑚 , where𝑇𝑐

𝑚 denotes the context length. The
core idea of this problem is to integrate data of the three modali-
ties and learn sarcasm-aware sentiment representations which are
reinforced by sarcasm information.

3.2 Cross-modal Attentions
The cross-modal attention operation fuses the source modality
information into the target modality [46]. We denote 𝑋𝑠 ∈ R𝑇𝑠×𝑑𝑠

the source modality feature and 𝑋𝑡 ∈ R𝑇𝑡×𝑑𝑡 the target modality
feature. The cross-modal attention mechanism treats the source
modality as keys and values to be attended using the target modality
as the query:

𝑌𝑠→𝑡 = CA(𝑋𝑠 , 𝑋𝑡 )

= softmax(
(𝑋𝑡𝑊𝑞) · (𝑊 ⊤

𝑘
𝑋⊤
𝑠 )√︁

𝑑𝑘

)𝑋𝑠𝑊𝑣,
(1)

where𝑊𝑞,𝑊𝑘 and𝑊𝑣 are transformation matrices. 𝑌𝑠→𝑡 ∈ R𝑇𝑡×𝑑𝑡

is the resulting representation in the target domain. For ease of
illustration, we use CA to denote the cross-modal attention process
as shown in Eq. (1) with multiple attention heads. Note that CA
can also be used for fusing information from two source modalities
to the target modality.

3.3 Modality-guided Trimodal Fusion
The Modality-guided Trimodal Fusion (MTF) strategy is introduced
in [23] which aims to integrate information from other modalities
into each unimodal feature representation. Specifically, MTF con-
sists of multiple layers, and we denote by MTF𝑛𝑚 the 𝑛-th layer for
modality𝑚 ∈ {𝑙, 𝑣, 𝑎}. Given input features 𝑍𝑛−1

𝑙
, 𝑍𝑛−1

𝑣 , 𝑍𝑛−1
𝑎 from

three modalities at the (𝑛 − 1)th layer, we denote by

𝑍𝑛
𝑚 = MTF𝑛𝑚 (𝑍𝑛−1

𝑙
, 𝑍𝑛−1

𝑣 , 𝑍𝑛−1
𝑎 ) (2)

the output feature for modality𝑚 after trimodal fusion. More specif-
ically,MTF𝑛𝑚 is computed by firstly applying CA between the target
modality (e.g.,𝑚 = 𝑙) and the other two modalities using Eq. (1).
Then a gate unit is applied to combine the faetures obtained from
two cross-modal attention operations i.e., 𝑌𝑣→𝑙 = CA(𝑍𝑛−1

𝑣 , 𝑍𝑛−1
𝑙

)
and 𝑌𝑎→𝑙 = CA(𝑍𝑛−1

𝑎 , 𝑍𝑛−1
𝑙

), as proposed in [23].

In order to combine features from three modalities as the final
representation, a gate [28] is further applied on top of the last MTF
layer by weighing the contribution from each modality𝑚:

𝜇𝑚 = 𝑈⊤tanh(𝑍𝑁
𝑚 ·𝑊𝑚 + 𝑏𝑚),

𝛼𝑚 =
exp(𝜇𝑚)∑

𝑚′∈{𝑙,𝑣,𝑎} exp(𝜇𝑚′ ) ,

𝑍 =
∑︁

𝑚∈{𝑙,𝑣,𝑎}
𝛼𝑚 ⊙ 𝑍𝑁

𝑚 , (3)

where 𝑍𝑁
𝑚 is the output of the last MTF layer i.e., MTF𝑁𝑚 . 𝑈⊤ are

learnable parameters,𝑊𝑚 and 𝑏𝑚 are the parameters of a linear
function. For ease of illustration, we use 𝑍 = F (𝑍 0

𝑙
, 𝑍 0

𝑣 , 𝑍
0
𝑎) to refer

to the fusion output given by Eq. (2) and (3).

4 Methodology
4.1 Model Overview
Figure 2 shows the overall architecture of our proposed PS2RI frame-
work. Given a video input consisting of textual, acoustic and visual
features, the PS2RI model first utilizes two separate encoders (i.e.,
Sarcasm Feature Encoder and Sentiment Feature Encoder) to respec-
tively produce sarcasm-informed features and sentiment-related
features. A Sarcasm-Aware Sentiment Learning module is then
stacked on top of sentiment-related features, with the purpose of
producing sarcasm-aware sentiment representations for enhanced
sentiment recognition. SASL is implemented via an iterative frame-
work to progressively explore the deep interactions between two
tasks. Within each iteration, SASL utilizes a Sentiment-Oriented
Sarcasm Refinement (SOSR) operation to refine sarcasm features
guided by relevant sentiment information, which is then followed
by a Sarcasm Integration (SI) operation to merge the sentiment-
oriented sarcasm feature into the sentiment feature learning process.
After implementing the above progressive refinement and integra-
tion process, SASL will result in sarcasm-aware sentiment features,
which can lead to enhanced sentiment recognition performance.
The PS2RI framework provides an effective way to alleviate the
negative interference caused by the detrimental interplay between
the sentiment analysis and sarcasm detection tasks (as shown in
the supplementary).

4.2 Feature Preprocessing
In this work, we adopt the same feature extraction step used in [11]
to extract features from each modality. To extract acoustic features,
we preprocess acoustic frames using COVAREP [7] which is capa-
ble of processing Melcepstral coefficients, fundamental frequency,
voiced/unvoiced segments, normalized amplitude quotient, quasi
open quotient [14], glottal source parameters [8], harmonic model,
phase distortions, and the formants. For the visual modality, facial
Action Unit (AU) features and rigid/non-rigid facial shape parame-
ters are extracted using OpenFace 2 [1]. For the textual modality,
we use the ALBERT tokenizer [16] to convert language utterances,
following the previous work [11]. Formally speaking, we denote
by 𝑋𝑙 = [𝐶𝑙 ;𝑈𝑙 ], 𝑋𝑣 = [𝐶𝑣 ;𝑈𝑣] and 𝑋𝑎 = [𝐶𝑎 ;𝑈𝑎] input feature
for the language, vision and acoustic modality respectively, where
𝐶 and 𝑈 indicate context and utterance respectively. We denote
𝑋𝑚 ∈ R(𝑇𝑢

𝑚+𝑇 𝑐
𝑚 )×𝑑𝑚 one of the three modalities, where𝑚 ∈ {𝑙, 𝑣, 𝑎}.
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Sarcasm Feature
Encoder

Sentiment Feature 
Encoder

Well thank God your
livelihood doesn't
depend on it. .....

Multimodal Input
(utterance+context)

Sarcasm-Aware Sentiment
Learning Module

Refine Refine

IntegrateIntegrate

Sentiment
Polarity

Figure 2: The model overview of the proposed PS2RI framework. The Sarcasm Feature Encoder and Sentiment Feature
Encoder will first produce sarcasm-informed features 𝑍 0

𝑠𝑎𝑟 and sentiment-related features 𝐻0
𝑚 , respectively. The Sarcasm-

Aware Sentiment Learning module is stacked on top of 𝐻0
𝑚 to produce sarcasm-aware sentiment representations by iteratively

integrating information from the sarcasm-informed feature. Within each iteration of the SASL, the sarcasm feature 𝑍 𝑗−1
𝑠𝑎𝑟 will

first be refined by the sentiment features 𝐻 𝑗−1
𝑚 in SOSR 𝑗 , and then be integrated into the sentiment feature 𝐻 𝑗

𝑚 via SI 𝑗 , resulting
in 𝐻

𝑗
𝑚 . By iteratively performing the refinement and integration stages, the SASL module will finally produce sarcasm-aware

sentiment feature 𝐻 𝐽
𝑚 for enhanced sentiment recognition.

Figure 3: The detail of each SASL iteration. Within each iter-
ation, the Sentiment-Oriented Sarcasm Refinement (SOSR),
Sarcasm Integration (SI) and Modality-guided Trimodal Fu-
sion (MTF) operations are involved.

4.3 Sarcasm/Sentiment Feature Encoding
Sarcasm Feature Encoder. The Sarcasm Feature Encoder aims to
discriminate sarcasm-related information from inputs without any
interference from the sentiment aspect. To achieve that, we first pro-
cess the multimodal input using their respective encoders. Follow-
ing [11], for textual input𝑋𝑙 , we use a pre-trained ALBERT encoder
composed of 12 layers, together with a linear transformation layer,
to produce the text representation𝐻𝑠𝑎𝑟

𝑙
= Linear𝑠𝑎𝑟

𝑙
(Albert𝑠𝑎𝑟 (𝑋𝑙 )),

where 𝐻𝑙 ∈ R(𝑇𝑢
𝑚+𝑇 𝑐

𝑚 )×𝑑𝐻
and 𝑑𝐻 is the output dimension of the

alignment layer which maps different modalities features into the
same space. Following [11], we apply a multi-layer transformer en-
coder [47] and a linear alignment layer to process the visual modal-
ity 𝐻𝑠𝑎𝑟

𝑣 = linear𝑠𝑎𝑟𝑣 (Transformer𝑠𝑎𝑟𝑣 (𝑋𝑣 ) ) and acoustic modality𝐻𝑠𝑎𝑟
𝑎 =

linear𝑠𝑎𝑟𝑎 (Transformer𝑠𝑎𝑟𝑎 (𝑋𝑎 ) ) , where 𝐻𝑠𝑎𝑟
𝑣 , 𝐻𝑠𝑎𝑟

𝑎 ∈ R(𝑇𝑢
𝑚+𝑇 𝑐

𝑚 )×𝑑𝐻
.

Note that we use the superscript “sar” to denote the functions and
variables within the sarcasm feature extraction module.

Given transformed features 𝐻𝑠𝑎𝑟
𝑙

, 𝐻𝑠𝑎𝑟
𝑣 and 𝐻𝑠𝑎𝑟

𝑎 from three
modalities, we adopt the Modality-guided Trimodal Fusion (MTF)

strategy introduced in Section 3.3 to generate a unified cross-modal
feature representation 𝑍𝑠𝑎𝑟 = F (𝐻𝑠𝑎𝑟

𝑙
, 𝐻𝑠𝑎𝑟

𝑣 , 𝐻𝑠𝑎𝑟
𝑎 ) via Eq. (2) and

(3). We train this module with the supervision of the sarcasm label
𝑌𝑠𝑎𝑟 by minimizing the cross-entropy loss between 𝑌𝑠𝑎𝑟 and the
predicted score 𝑌 ′

𝑠𝑎𝑟 = 𝑓 (𝑍𝑠𝑎𝑟 ), where 𝑓 is composed of a 1D max
pooling layer and a linear layer. As a result, this sarcasm feature
encoder can produce sarcasm-discriminative features.
Sentiment Feature Encoder. Similar to the Sarcasm Feature En-
coding module, we use another set of parameters to process the
multimodal inputs, and denote them using the superscript “sen”
which indicates sentiment: 𝐻𝑠𝑒𝑛

𝑙
= Linear𝑠𝑒𝑛

𝑙
(Albert𝑠𝑒𝑛 (𝑋𝑙 ) ) , 𝐻𝑠𝑒𝑛

𝑣 =

linear𝑠𝑒𝑛𝑣 (Transformer𝑠𝑒𝑛𝑣 (𝑋𝑣 ) ) ,𝐻𝑠𝑒𝑛
𝑎 = linear𝑠𝑒𝑛𝑎 (Transformer𝑠𝑒𝑛𝑎 (𝑋𝑎 ) ) ,

where 𝐻𝑠𝑒𝑛
𝑙

, 𝐻𝑠𝑒𝑛
𝑣 , and 𝐻𝑠𝑒𝑛

𝑎 ∈ R(𝑇𝑢
𝑚+𝑇 𝑐

𝑚 )×𝑑𝐻
. Unlike the sarcasm

feature encoder, the sentiment feature encoder does not consider
the trimodal fusion of the three modalities and leaves the fusion
process to the following Sarcasm-Aware Sentiment Learning pro-
cedure, due to the computation overhead and model complexity
aspects. We treat the above generated features𝐻𝑠𝑒𝑛

{𝑙,𝑣,𝑎} as sentiment-
related features, which will then be input into the SASL module to
generate sarcasm-aware sentiment representations.

4.4 Sarcasm-Aware Sentiment Learning
With a well-trained sarcasm feature extractor, we stack the SASL
module on top of sentiment-related features 𝑍 to produce sarcasm-
aware sentiment representations by effectively incorporating use-
ful sarcasm features. Within each iteration, two interaction block
are involved: a Sentiment-Oriented Sarcasm Refinement (SOSR)
block and a Sarcasm Integration (SI) block. Initially, the SOSR block
takes the output feature 𝑍𝑠𝑎𝑟 generated from the Sarcasm Feature
Encoding module and provides a refiement given input features
coming from the sentiment module. This update infuses original
sarcasm-only features with relevant sentiment information which
progressively orients sarcasm features towards the sentiment space,
reducing the task gap. On the other hand, the SI block receives the
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updated sarcasm features and integrates them into the representa-
tion of each modality adaptively, thus merging relevant sarcasm
features into the sentiment learning process. We alternate these
two blocks progressively throughout multiple layers to reinforce
the propagation between two task signals. Figure 3 shows the detail
process of PS2RI. The algorithm which displays the information
flow across the PS2RI procedure, is shown in the supplementary.
Sentiment-Oriented Sarcasm Refinement. We use SOSR𝑗 to
denote the SOSR block at the 𝑗-th layer. SOSR𝑗 receives sarcasm
features 𝑍 𝑗−1

𝑠𝑎𝑟 and unimodal sentiment features 𝐻 𝑗−1
𝑚 (𝑚 ∈ {𝑙, 𝑣, 𝑎})

from the previous layer as its input and produces sentiment-oriented
sarcasm features 𝑍 𝑗

𝑠𝑎𝑟 ∈ R(𝑇𝑢
𝑚+𝑇 𝑐

𝑚 )×𝑑𝐻
:

𝑍
𝑗
𝑠𝑎𝑟 = SOSR𝑗 (𝑍 𝑗−1

𝑠𝑎𝑟 , 𝐻
𝑗−1
𝑙

, 𝐻
𝑗−1
𝑣 , 𝐻

𝑗−1
𝑎 ). (4)

At the 1st layer, we initialize unimodal sentiment features as 𝐻0
𝑚 =

𝐻𝑠𝑒𝑛
𝑚 and sarcasm features as 𝑍 0

𝑠𝑎𝑟 = 𝑍𝑠𝑎𝑟 . Next, we illustrate how
SOSR𝑗 is computed. Specifically, we merge unimodal sentiment
features 𝐻 𝑗−1

𝑚 into a unified representation 𝑍
𝑗−1
𝑠𝑒𝑛 via the gate unit

introduced in Eq. (3).
Then a cross-attention layer introduced in Section 3.2 and a

self-attention layer introduced in [47] are used to infuse sarcasm
features with multimodal sentiment representation 𝑍 𝑗−1

𝑠𝑒𝑛 by attend-
ing to relevant sentiment features:

𝑍
𝑗−1
𝑠𝑎𝑟 = CA𝑗 (LN(𝑍 𝑗−1

𝑠𝑒𝑛 ), LN(𝑍 𝑗−1
𝑠𝑎𝑟 )),

𝑍
𝑗−1
𝑠𝑎𝑟 = 𝑓𝐹𝐹 (𝑍

𝑗−1
𝑠𝑎𝑟 + 𝑍

𝑗−1
𝑠𝑎𝑟 ),

𝑍
𝑗
𝑠𝑎𝑟 = 𝑓𝐹𝐹 (SA𝑗 (LN(𝑍 𝑗−1

𝑠𝑎𝑟 )) + 𝑍
𝑗−1
𝑠𝑎𝑟 ), (5)

where LN, 𝑓𝐹𝐹 and SA𝑗 represent the layer normalization opera-
tion, the feed-forward operation and the 𝑗-th self-attention layer,
respectively. This completes the operation of Eq. (4).
Sarcasm Integration. The sentiment-oriented sarcasm feature
𝑍
𝑗
𝑠𝑎𝑟 will in turn be used to reinforce the computation of unimodal

sentiment features𝐻 𝑗−1
𝑚 (𝑚 ∈ {𝑙, 𝑣, 𝑎}) via a Sarcasm Integration (SI)

block. Formally, the SI block takes 𝑍 𝑗
𝑠𝑎𝑟 and {𝐻 𝑗−1

𝑙
, 𝐻

𝑗−1
𝑣 , 𝐻

𝑗−1
𝑎 } as

its input and produces enhanced sarcasm-aware sentiment features
�̂�

𝑗
𝑚 ∈ R(𝑇𝑢

𝑚+𝑇 𝑐
𝑚 )×𝑑𝐻

, where𝑚 ∈ {𝑙, 𝑣, 𝑎}:

�̂�
𝑗
𝑚 = SI𝑗𝑚 (𝑍 𝑗

𝑠𝑎𝑟 , 𝐻
𝑗−1
𝑚 ). (6)

Specifically, the function SI𝑗𝑚 includes a cross-attention layer and
a self-attention layer to fuse sentiment-oriented sarcasm features
𝑍
𝑗
𝑠𝑎𝑟 into unimodal sentiment representations 𝐻 𝑗−1

𝑚 , similar to Eq.
(5). The difference with Eq. (5) is that we replace the input 𝑍 𝑗−1

𝑠𝑒𝑛 and
𝑍
𝑗−1
𝑠𝑎𝑟 with 𝑍 𝑗

𝑠𝑎𝑟 and 𝐻
𝑗−1
𝑚 respectively, and the output is a sarcasm-

aware sentiment feature �̂� 𝑗
𝑚 , where𝑚 ∈ {𝑙, 𝑣, 𝑎}. As a last step at

the 𝑗-th layer, MTF as shown in Eq. (2) generates updated feature
representations for each modality: 𝐻 𝑗

𝑚 = MTF𝑗𝑚 (�̂� 𝑗

𝑙
, �̂�

𝑗
𝑣 , �̂�

𝑗
𝑎 ). A

gate unit as introduced in Eq. (3) is used to integrate 𝐻 𝐽

𝑙
, 𝐻

𝐽
𝑣 and

𝐻
𝐽
𝑎 into 𝑍𝑠𝑒𝑛 , where 𝐽 is the index of the last layer. 𝑍𝑠𝑒𝑛 will be fed

into the sentiment classifier for final prediction.

5 Experiments
Following the previous works [3, 4], we first demonstrate the su-
periority of our proposed approach on two standard benchmark

datasets (i.e., MUStARD [2] and MUStARD++ [36]) which contain
both sarcasm and sentiment labels. For in-depth analysis, we split
both MUStARD and MUStARD++ datasets into two groups: sarcas-
tic samples (Subset 1) and non-sarcastic samples (Subset 2).

Considering that the sarcasm label is usually difficult to annotate,
we also validate the scalability of the proposed SASL mechanism
on wider settings where sarcasm labels are not provided. Specifi-
cally, we conduct experiments by employing the SASL mechanism
in conjunction with state-of-the-art video sentiment recognition
models on CMU-MOSI [59] and CMU-MOSEI [58], which are two
extensively used benchmarks in video sentiment analysis. As these
two datasets do not have sarcasm labels, we directly use the sar-
casm feature extraction module trained onMUStARD++ to generate
sarcasm features for their samples.

5.1 Dataset
The detailed descriptions for the datasets involved in our experi-
ments are listed as follows.
MUStARD [2] comprises 3.68 hours of human conversations and
provides 675 video samples (50% of which are sarcastic samples)
from popular TV shows such as Friends, The Big Bang Theory, The
Golden Girls and Sarcasmaholics Anonymous. Its predetermined
data partition has 539 samples in the training set, 68 samples in the
validation set, and 68 samples in the testing set. Castro et al. [2]
manually annotate the sarcastic/non-sarcastic label for each exam-
ple, while Chauhan et al. [4] re-annotate the MUStARD examples
with sentiment labels. Therefore, MUStARD contains both 3-class
sentiment labels (i.e., positive, neutral and negative) and 2-class
sarcasm labels (i.e., sarcastic and non-sarcastic). Each sample in
MUStARD consists of a single sentence with accompanied visual
and acoustic segments. In agreement with the prior work [36], we
adopt the Weighted-Average evaluation metrics, including Precision,
Recall and F1-score to evaluate the performance.
MUStARD++ [36] is a sarcasm dataset consisting of 1,202 samples
of video clips (50% of which are sarcastic samples). Its predeter-
mined data partition has 962 samples in the training set, 120 samples
in the validation set, and 120 samples in the testing set. Ray et al.
[36] extend the samples in MUStARD [2] and re-annotate them
with 10-class sentiment labels and 2-class sarcasm labels. As in
the MUStARD dataset, each sample in MUStARD++ consists of a
single sentence with accompanied visual and acoustic segments.
Moreover, each sample also comes with a corresponding context
in three modalities. The performance metrics are the same to the
ones used in the MUStARD dataset.
CMU-MOSI [59] is made by 2,199 samples of short video clips. Fol-
lowing the previous works [6, 48, 51], we split the dataset into 1,284
training samples, 229 validation samples and 686 testing samples.
Each sample in the dataset is labeled with a sentiment label ranging
from -3 (strongly negative) to 3 (strongly positive). The acoustic
and visual sequences are extracted at the receiving frequency of
12.5 and 15 Hz, respectively. As in the previous works [6, 48, 51],
the performance is evaluated by the 7-class accuracy (i.e., Acc7),
binary accuracy (i.e., Acc2) and F1 score.
CMU-MOSEI [58] is a dataset consisting of 22,856 samples of movie
review video clips which are collected from the YouTube platform.
According to the predetermined data partition of CMU-MOSEI, we
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Table 1: Evaluating the contributions of introducing sarcasm information to sentiment analysis through the MTL framework
on MUStARD and MUStARD++, where F -SEN is the model only trained with sentiment supervision and F -MTL represents the
model trained with both sarcasm and sentiment supervisions. For fair comparisons, the network backbone of F -MTL is the
same as F -SEN.

Benchmark Method Entire testing set Subset 1 Subset 2

Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)

MUStARD
F -SEN 51.28 55.62 54.12 56.47 60.05 58.13 46.15 55.88 50.07
F -MTL [4] 52.13 57.42 54.86 58.24 62.17 60.43 42.11 53.95 46.94
△ 0.85↑ 1.76↑ 0.74↑ 1.77↑ 2.12↑ 2.30↑ -4.04↓ -1.93↓ -3.13↓

MUStARD++
F -SEN 18.61 20.67 19.49 16.94 14.63 15.08 27.48 33.93 31.24
F -MTL [4] 19.29 21.33 19.82 17.61 19.06 18.41 26.26 29.77 27.58
△ 0.68↑ 0.66↑ 0.33↑ 0.67↑ 4.43↑ 3.33↑ -1.22↓ -4.16↓ -3.66↓

divide the dataset into 16,326 training samples, 1,871 validation
samples and 4,659 testing samples. As in the above setting, the
sentiment label of each sample ranges from -3 to 3. The performance
metrics are the same to the ones used in the CMU-MOSI dataset.

5.2 Implementation Details
Following Hasan et al. [11], we use different learning rates for
language, acoustic and visual encoders, as well as other blocks
in our approach. Specifically, the learning rate for both acoustic
and visual encoders is set to 3e-3, while the learning rate for the
language encoder and other blocks is set to 1e-5. Adam is adopted
as the optimizer. During the training process, the learning rate
decreases according to the cosine decay policy. The batch size is
set to 64 in the training process. The dropout rates is set to 0.4. The
training epoch is set to 50. We use early-stopping with patience of
10 to avoid overfitting. Following Hasan et al. [11], we utilize a 12-
layer ALBERT, an 8-layer transformer and a 1-layer transformer to
respectively process the text, visual and acoustic modalities within
sarcasm/sentiment feature encoders. The number of MTF layer
within the sarcasm feature encoder is set to 4. The PS2RI module
utilizes 4 iterations, i.e., 𝐽 = 4. The hidden-layer dimension is set
to 192, i.e., 𝑑𝐻 = 192. The models are trained on a 3090 GPU.
The hyper-parameters are determined on the validation set. In
experiments, we report results averaged on 5 runs with different
random seeds.

5.3 Result
In this paper, we design four sets of experiments to answer four
research questions, through which we progressively study the pro-
moting relationship between sarcasm detection and sentiment anal-
ysis:

• RQ1: Can sarcasm information contribute to sentiment anal-
ysis by directly utilizing the MTL framework?

• RQ2: Does the proposed framework achieve performance
superiority overall and on specific data splits, compared to
existing baselines?

• RQ3: Can the proposed SASL mechanism bring performance
improvementwhen applied to existing video sentiment recog-
nition models?

• RQ4: Can the proposed SASL mechanism achieve good ro-
bustness on wider benchmarks where the sarcasm labels are
not provided?

Next, we detail the answer for each question and discuss the exper-
imental results.
Answer to RQ1. For RQ1, we resort to a single model (i.e., the
fusion function F consisting of 4 MTF layers) introduced in Sec-
tion 3.3 as the base model, which processes the multimodal input by
incorporating modality-wise interactions. We use F -SEN to denote
the model that is only trained using the sentiment supervision. To
examine whether sarcasm information contributes to sentiment
analysis by directly utilizing the MTL framework, we implement
F -MTL which includes two classification heads on top of F -SEN
for generating sarcasm and sentiment predictions and is trained
with both sarcasm and sentiment supervisions. For in-depth anal-
ysis, we partition the testing set into two separate sub-sets: one
containing sarcastic samples (Subset 1) and the other containing
non-sarcastic samples (Subset 2). Table 1 shows the performance of
F -SEN and F -MTL on different data splits.

From Table 1, we can see that F -MTL can only achieve a mar-
ginal improvement over F -SEN (i.e., 54.86% vs. 54.12% in terms
of F1 score). Moreover, this improvement is solely achieved from
Subset 1 containing sarcastic samples. When it comes to Subset
2 containing non-sarcastic samples, F -MTL is significantly infe-
rior than the F -SEN base model. This observation shows that the
MTL framework only improves sentiment predictions over
sarcastic samples, while causing negative interference for
non-sarcastic samples which can be easily identified by a
single sentiment recognition model. Hence, we speculate that
the MTL framework which requires representation sharing among
tasks may bring noisy information negatively affecting the sen-
timent prediction task. This calls for a more effective strategy to
integrate sarcasm information into the sentiment prediction task.
Answer to RQ2. For RQ2, we compare our framework PS2RI
with existing state-of-the-art video sentiment analysis baselines,
including TFN [57], LMF [27], MulT [44], MISA [12], MAG [34],
F -MTL [4], GSLM+ [3] and DMD [18]. For fair comparisons, we
use ALBERT as the textual encoder for all the baselines and report
the performance of PS2RI and the compared baselines averaged
over 5 independent runs with different random seeds in Table 2.
As shown in Table 2, PS2RI outperforms all the baseline models
with a large performance gain. Specifically, we can see that PS2RI
can obtain consistent performance improvement over both sarcasm
samples (Subset 1) and non-sarcasm samples (Subset 2). This obser-
vation shows that PS2RI has indeed found an effective way to
use sarcasm information to enhance sentiment task, which
eliminates the negative impact of the MTL framework.
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Table 2: Performance comparison on the MUStARD and MUStARD++ benchmarks. All the baselines are reproduced by using
the codes provided in their papers. For fair comparisons, all the baselines utilize ALBERT as the text encoder.

Benchmark Method Entire testing set Subset 1 Subset 2

Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)

MUStARD

TFN [57] 49.36 45.57 48.39 53.92 49.41 50.99 45.63 47.21 46.44
LMF [27] 52.14 54.41 52.66 58.45 60.78 58.57 45.46 48.04 45.58
MulT [44] 51.89 55.15 52.83 54.82 58.82 56.74 44.41 50.56 48.90
MISA [12] 54.07 49.82 52.93 60.07 55.62 58.96 43.57 48.41 46.13
MAG [34] 52.76 54.27 53.85 62.53 59.74 59.16 42.56 50.42 47.32
F -MTL [4] 52.13 57.42 54.86 58.24 62.17 60.43 42.11 53.95 46.94
GSLM+ [3] 52.16 58.12 55.43 60.21 62.13 61.47 45.13 50.49 48.36
DMD [18] 54.29 59.08 56.27 60.71 62.49 61.71 44.97 52.82 49.66
PS2RI (ours) 57.46 62.06 58.45 61.73 66.47 63.52 52.42 57.65 53.50

MUStARD++

TFN [57] 14.62 20.51 16.95 9.05 14.90 12.71 27.33 30.71 29.35
LMF [27] 15.24 19.17 17.76 13.34 15.63 14.21 26.86 23.21 24.86
MulT [44] 15.96 25.01 18.03 14.15 12.37 13.82 31.34 25.74 29.21
MISA [12] 16.01 25.83 18.56 15.63 17.19 15.58 26.67 30.17 28.62
MAG [34] 17.46 22.51 19.38 17.07 20.31 18.35 26.22 35.71 29.76
F -MTL [4] 19.29 21.33 19.82 17.61 19.06 18.41 26.26 29.77 27.58
GSLM+ [3] 19.61 24.17 20.96 20.13 17.19 18.44 32.43 31.14 31.65
DMD [18] 20.37 24.16 22.81 22.14 17.31 19.04 34.56 33.46 34.07
PS2RI (ours) 24.06 25.83 24.28 22.96 18.75 19.27 37.59 33.93 35.04

Table 3: Results of applying the proposed SASL mechanism
to existing video sentiment recognition models.

Benchmark Method Pre(%) Rec(%) F1(%)

MUStARD

MulT [44] 51.89 55.15 52.83
with SASL 52.38 58.71 54.41

DMD [18] 54.29 59.08 56.27
with SASL 57.34 60.57 58.03

MUStARD++

MulT [44] 15.96 19.17 17.76
with SASL 17.03 20.11 19.34

DMD [18] 20.37 24.16 22.81
with SASL 21.12 25.34 23.34

Table 4: Result of applying the proposed SASL mechanism
to existing video sentiment recognition models on the CMU-
MOSI and CMU-MOSEI benchmarks.

Benchmark Method ACC7(%) ACC2(%) F1(%)

CMU-MOSI

MulT [44] 39.44 82.19 81.94
with SASL 41.25 83.79 83.64

DMD [18] 43.88 83.77 84.35
with SASL 45.36 86.17 85.94

CMU-MOSEI

MulT [44] 51.23 81.41 81.26
with SASL 52.91 82.75 82.93

DMD [18] 52.29 84.51 84.57
with SASL 54.45 86.82 86.72

Answer to RQ3. For RQ3, we conduct experiments by applying the
proposed Sarcasm-Aware Sentiment Learning (SASL) mechanism
to other existing video sentiment recognition models (including
the typical MulT [44] baseline and the state-of-the-art DMD [18]
baseline). Specifically, the SOSR layer and SI layer are added before
the each layer of the MulT model and DMD model. Table 3 shows
the corresponding results averaged over 5 different runs. We can see
that our proposed SASL mechanism also achieves consistent
performance improvement based on other baselines, which
demonstrates the scalability of the SASL mechanism.
Answer to RQ4. For RQ4, we conduct experiments by applying
the SASL mechanism to the MulT [44] and DMD [18] models on
CMU-MOSI and CMU-MOSEI, which are two extensively used
benchmarks in video sentiment analysis. As these two datasets do
not contain sarcasm labels, we directly adopt the sarcasm feature

Table 5: Ablation study for the contribution of each design
on the MUStARD and MUStARD++ benchmarks. The results
are reported in terms of the weighted-F1.

Benchmark Method Entire testing set Subset 1 Subset 2

MUStARD
PS2RI (full model) 58.45 63.52 53.50
w/o SI 54.12 62.89 47.58
w/o SOSR 54.60 58.63 52.17

MUStARD++
PS2RI (full model) 24.28 19.27 35.04
w/o SI 20.07 18.11 24.75
w/o SOSR 20.94 17.35 26.33

extraction module trained on MUStARD++ to generate sarcasm
features for their samples. Table 4 shows the corresponding results
averaged over 5 different runs. We can see that our proposed SASL
mechanism can also lead to consistent performance improvements
on both CMU-MOSI and CMU-MOSEI benchmarks. This observa-
tion clearly shows the robustness of our approach on settings
where the sarcasm labels are not provided.

5.4 Analysis
Ablation Study. We report the ablation study results on the MUS-
tARD and MUStARD++ benchmarks in Table 5. The first row of
each dataset displays the performance of the full model. In the
second row of each dataset, we remove the SI blocks from the full
model, resulting in the F -SEN base model which only involves the
sentiment information. The consistent performance drops observed
on bothMUStARD andMUStARD++ show that the PS2RI model can
effectively utilize the sarcasm information to improve the sentiment
recognition task. Compared with the MTL framework, incorporat-
ing the sarcasm information within the PS2RI framework does not
adversely affect the sentiment prediction over non-sarcastic sam-
ples. In the third row of each dataset, we remove the SOSR blocks
from the full model by directly integrating the original sarcasm
feature generated from the Sarcasm Feature Extraction Module
into sentiment features. The performance degradation compared
to that of the first row can indicate that the original sarcasm fea-
ture can bring negative interference for sentiment analysis. This
observation clearly demonstrates the effectiveness of modeling
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Figure 4: Performance under different iteration numbers
within the SASL module.

No  thanks Josephine!

Oh I see, I thought you just really really liked your new couch.

Figure 5: Case samples with sarcasm intention, for which the
F -SEN base model fails to recognize the true sentiments.
sentiment-oriented sarcasm features via SOSR blocks, which is
consistent with our motivation.
Analysis on Sarcasm Features. In order to further investigate the
sentiment-oriented sarcasm refinement mechanism of the proposed
approach, we respectively train two sentiment classification heads
on vanilla sarcasm features 𝑍𝑠𝑎𝑟 extracted from the SFE module
and sentiment-oriented sarcasm features 𝑍𝑠𝑎𝑟 obtained from the
last layer of SOSR. The performance on 𝑍𝑠𝑎𝑟 is significantly worse
than that on 𝑍𝑠𝑎𝑟 (i.e., 46.15% vs 50.42% in terms of weighted-F1
on MUStARD), which validates that our approach can effectively
discard information irrelevant to the sentiment analysis task from
sarcasm features, resulting in sentiment-oriented sarcasm features
to enhance the sentiment task.
Iteration Numbers within SASL. Furthermore, we test the per-
formance by varying the iteration number within SASL. For each
number, we also conduct experiments with SOSR blocks removed
(i.e., directly integrate the original sarcasm feature extracted from
the SFE module into sentiment features). The corresponding results
are shown in Figure 4. In general, the proposed PS2RI framework
can achieve gradually increasing performance when more interac-
tive iterations are utilized to learn sarcasm-aware sentiment feature.
However, for PS2RI w/o SOSR, the performance improvement is
limited when more than 2 SI blocks are utilized. This observation
further demonstrates that modeling sentiment-oriented sarcasm
features is important for effectively improving sentiment recogni-
tion. Moreover, a performance drop is observed when the iteration

Table 6: Results of applying the SASL mechanism to existing
video sentiment recognition models. We keep an equal num-
ber of parameters in models with more layers and with SASL

Benchmark Method Pre(%) Rec(%) F1(%)

MUStARD

MulT [44] 51.89 55.15 52.83
with more layers 51.43 54.34 52.17
with SASL 52.38 58.71 54.41

DMD [18] 54.29 59.08 56.27
with more layers 52.17 57.17 55.06
with SASL 57.34 60.57 58.03

MUStARD++

MulT [44] 15.96 19.17 17.76
with more layers 15.01 18.21 17.33
with SASL 17.03 20.11 19.34

DMD [18] 20.37 24.16 22.81
with more layers 20.12 22.13 21.23
with SASL 21.12 25.34 23.34

number is greater 4. This observation indicates that the sentiment-
oriented sarcasm information can be well modeled by using 4 itera-
tion numbers and more network parameters will lead to overfitting.
Case Study. To illustrate the assistance of sarcasm information, we
provide case studies which express sarcastic intention in Figure 5.
Take the top sample of Figure 5 as example, the word “like” in the
text and the smiling face in the last video clip convey the positive
sentiment, while the confused face in the first four video clips con-
veys the negative sentiment. The conflict sentiments constitute the
sarcastic expression. Without the assistance of sarcasm information,
the F -SEN base model fails to recognize their sentiment polarities.
On the other hand, by explicitly modeling sarcasm-aware senti-
ment features, the PS2RI approach can effectively recognize the
true sentiment.
Comparison with Equal Parameter Number. In the Results
section of the main paper, we implement the proposed SASL mecha-
nism on theMulT andDMDmodels and achieve a clear performance
improvement. To elucidate the attained performance improvement
more distinctly, we augment the original MulT and DMD models
with external layers, maintaining an equal number of model param-
eters with the SASL variants. From Table 6, we can see that the mod-
els with additional layers exhibit inferior performance compared
to the original ones. This observation emphasizes that the perfor-
mance improvement of our approach cannot be solely ascribed to
the additional parameters introduced by the SASL mechanism.

6 Conclusion & Future work
In this study, we investigate how to enhance sentiment analysis
through the assistance of sarcasm detection. To this end, we dis-
cuss the limitations associated with the current MTL-based ap-
proaches and propose the PS2RI model to iteratively merge sarcasm-
related features into the sentiment learning process. In order to
alleviate the negative interference of sarcasm detection, we intro-
duce Sentiment-Oriented Sarcasm Refinement blocks which model
sentiment-oriented sarcasm features by attending sarcasm features
to sentiment features and Sarcasm Integration blocks which incor-
porate sentiment-oriented sarcasm features into sentiment features.
By applying the SASL mechanism to CMU-MOSI and CMU-MOSEI
datasets, we demonstrate the robustness of our approach in settings
where sarcasm labels are absent. However, there still exist domain
gaps between the source and target datasets. In future work, we will
address the challenge by integrating domain adaptation methods
into the training phase.
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