
Interpreting Representation Quality of DNNs
for 3D Point Cloud Processing:

Supplementary Materials

Wen Shenb∗ Qihan Rena Dongrui Liua Quanshi Zhanga†
aShanghai Jiao Tong University bTongji University

A Shapley values

This section provides more details about Shapley values in Section 3 of the paper. The Shapley value
φ(i) =

∑
S⊆N\{i}

|S|!(n−|S|−1)!
n! (v(S ∪ {i})− v(S)) satisfies axioms of linearity, nullity, symmetry,

and efficiency [5], as follows.

• Linearity: If two independent games v and w can be merged into one game u(S) = v(S) + w(S),
then the Shapley value of the player i in game v and game w also can be merged, i.e. φu(i) =
φv(i) + φw(i).

• Nullity: A dummy player i satisfies ∀S ⊆ N\{i}, v(S ∪ {i}) = v(S) + v({i}), which indicates
that the player i has no interaction with other players, i.e. φ(i) = v({i}).
• Symmetry: Given two players i, j, if ∀S ⊆ N\{i, j}, v(S ∪ {i}) = v(S ∪ {j}), then φ(i) = φ(j).

• Efficiency: The overall reward can be allocated to all players in the game, i.e.
∑
i∈N φ(i) =

v(N)− v(∅).

B Multi-order interactions

This section provides more details about multi-order interactions [8] in Section 3.3 of the paper.
Given two input variables i and j (in this paper, input variables indicate point cloud regions), the
interaction of the m-th order measures the additional attribution brought by collaborations between
regions i and j under the context of m regions:

I(m)(i, j) = ES⊆N\{i,j},|S|=m
[
v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)

]
. (1)

I(m)(i, j) > 0 indicates that the presence of region j increases the attribution of region i, φ(i), under
the context of other m regions. I(m)(i, j) < 0 indicates that the presence of region j decreases the
value of φ(i). I(m)(i, j) ≈ 0 indicates that region j and region i are almost independent. When m is
small, I(m)(i, j) reflects the interaction between i and j w.r.t. simple contextual collaborations with a
few regions. When m is large, I(m)(i, j) corresponds to the interaction w.r.t. complex contextual
collaborations with massive regions.

The multi-order interaction satisfies axioms of linearity, nullity, commutativity, symmetry, and
efficiency [8], as follows.

∗This work was done when Wen Shen was an intern at Shanghai Jiao Tong University.
†Quanshi Zhang is the corresponding author. This study was done under the supervision of Dr. Quanshi

Zhang. He is with the John Hopcroft Center and the MoE Key Lab of Artificial Intelligence, AI Institute, at the
Shanghai Jiao Tong University, China.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

• Linearity: If two independent games v and w can be merged into one game u(S) = v(S) + w(S),
then the interaction of the player i in game v and game w also can be merged, i.e. I(m)

u (i, j) =

I
(m)
v (i, j) + I

(m)
w (i, j).

• Nullity: A dummy player i satisfies ∀S ⊆ N\{i}, v(S ∪ {i}) = v(S) + v({i}), which indicates
that the player i has no interaction with other players, i.e. ∀j, I(m)(i, j) = 0.

• Commutativity: ∀i, j, I(m)(i, j) = I(m)(j, i).

• Symmetry: If two players i, j have same collaborations with other players ∀S ⊆ N\{i, j}, v(S ∪
{i}) = v(S ∪ {j}), then ∀k ∈ N, I(m)(i, k) = I(m)(j, k).

• Efficiency: The overall reward can be decomposed into interactions of different orders, i.e. v(N) =

v(∅) +
∑
i∈N (v({i})− v(∅)) +

∑
i∈N

∑
j∈N\{i}[

∑n−2
m=0

n−1−m
n(n−1) I

(m)(i, j)].

C More visualization results

This section provides more visualization results of regional sensitivities (see Fig. 1) and regional attri-
butions (see Fig. 2). These visualization results help us understand the conclusions in “Comparative
study 1, explaining the regional sensitivity of DNNs.” in Section 4 of the paper.

D Technical details of combining [4] and [1]

In this section, we provide technical details of the method in [1], based on which we adversarially
trained a GCNN [4] w.r.t. the attacks based on rotations and translations of point clouds, so as
to improve the GCNN’s robustness to rotation and translation. Considering a GCNN with model
parameters w and loss function Loss, let x denote the input point cloud and ytruth denote the ground
truth label. The objective function was

min
w

Ex
[
max
T

Loss(x′ = T (x), ytruth;w)
]
, (2)

where T denoted the transformation applied on the input point cloud x, e.g. rotations or translations.
We followed [1] to generate adversarial samples. The method in [1] applied the following update rule
to generate adversarial samples through multiple iterations.

x
(0)
adv = x, x

(t+1)
adv = Clipε

{
x
(t)
adv + η sign(∇xLoss(x(t)adv, y

truth))
}
, (3)

where η was the step size, Clipε denoted the clipping operation, so that x(t)adv will be in L∞ ε-
neighborhood of x. We followed Equation (3) to generate adversarial rotations and translations, and
then based on such adversarial rotations and translations to generate adversarial samples, so as to
adversarially train a GCNN.

E About the ShapeNet part dataset

This section provides more details about the use of the ShapeNet part dataset in the paper. We
trained DNNs based on the ShapeNet part dataset [7], which contained 16,881 point clouds from 16
categories. Due to time limitation, we removed six categories with the largest number of samples,
and only used the remaining ten categories to train DNNs and to evaluate the proposed metrics. The
remaining ten categories are Bag, Cap, Earphone, Knife, Laptop, Motorbike, Mug, Pistol, Rocket,
and Skateboard.

F Bias of the Knife category

In Comparative study 2 in Section 4 in the paper, we claimed that the adversarially trained GCNN
based on the ShapeNet part dataset was significantly biased to the knife category. In this section
in the supplementary material, we discuss more about this phenomenon and explore whether this
phenomenon (biased knife category) is a specific situation or an accident.

2

se
ns

iti
vi

ty
to

 e
dg

es
se

ns
iti

vi
ty

sc
al

e
se

ns
iti

vi
ty

to
 su

rf
ac

es
se

ns
iti

vi
ty

to
 m

as
se

s

PointNet PointNet++ PointConv DGCNN GCNN adv-GCNN

se
ns

iti
vi

ty
ro

ta
tio

n
se

ns
iti

vi
ty

tra
ns

la
tio

n

se
ns

iti
vi

ty
to

 e
dg

es
se

ns
iti

vi
ty

sc
al

e
se

ns
iti

vi
ty

to
 su

rf
ac

es
se

ns
iti

vi
ty

to
 m

as
se

s
se

ns
iti

vi
ty

ro
ta

tio
n

se
ns

iti
vi

ty
tra

ns
la

tio
n

PointNet PointNet++ PointConv DGCNN GCNN adv-GCNN

high
sensitivity.

se
ns

iti
vi

ty
to

 e
dg

es
se

ns
iti

vi
ty

sc
al

e
se

ns
iti

vi
ty

to
 su

rf
ac

es
se

ns
iti

vi
ty

to
 m

as
se

s
se

ns
iti

vi
ty

ro
ta

tio
n

se
ns

iti
vi

ty
tra

ns
la

tio
n

se
ns

iti
vi

ty
to

 e
dg

es
se

ns
iti

vi
ty

sc
al

e
se

ns
iti

vi
ty

to
 su

rf
ac

es
se

ns
iti

vi
ty

to
 m

as
se

s
se

ns
iti

vi
ty

ro
ta

tio
n

se
ns

iti
vi

ty
tra

ns
la

tio
n

high
sensitivity

low
sensitivity

se
ns

iti
vi

ty
to

 e
dg

es
se

ns
iti

vi
ty

sc
al

e
se

ns
iti

vi
ty

to
 su

rf
ac

es
se

ns
iti

vi
ty

to
 m

as
se

s
se

ns
iti

vi
ty

ro
ta

tio
n

se
ns

iti
vi

ty
tra

ns
la

tio
n

se
ns

iti
vi

ty
to

 e
dg

es
se

ns
iti

vi
ty

sc
al

e
se

ns
iti

vi
ty

to
 su

rf
ac

es
se

ns
iti

vi
ty

to
 m

as
se

s
se

ns
iti

vi
ty

ro
ta

tio
n

se
ns

iti
vi

ty
tra

ns
la

tio
n

high
sensitivity.

Figure 1: Visualization of regional sensitivities. The regional sensitivities of all point clouds are
normalized to the same colorbar, which is shown in a log-scale.

3

m
ax

m

in
m

ax

m
in

m
ax

m

in

PointNet PointNet++ PointConv DGCNN GCNN adv-GCNN PointNet PointNet++ PointConv DGCNN GCNN adv-GCNN

maximum

minimum

m
ax

m

in
m

ax

m
in

m
ax

m

in

Figure 2: Visualization of regional attributions. For each point cloud, we selected the most rotation-
sensitive region i∗ (shown as black boxes) and visualized the pair of point clouds with specific
orientations corresponding to the maximum and the minimum regional attributions of the region i∗.

Table 1: Different versions of a specific network architecture using different data augmentation.

Model translation data scale data rotation data augmentation rotation data augmentation
augmentation augmentation around the y-axis around a random axis

A: baseline settings X X × ×in [4]
B × X × ×
C X × × ×
D X X X ×
E X X × X

The bias to the knife category means that the probability of the knife category was almost the same
when given the empty input (we reset coordinates of all points in the input to the center of the entire
point cloud to obtain the empty input) and an entire point cloud in the knife category, which indicated
that adversarially trained GCNN did not learn the specific knowledge to classify the knife category.

To explore whether the above phenomenon (biased knife category) is a specific situation or an
accident, we explored the bias appearing in the adversarially-trained DNNs with different initial
parameters. If the bias of different DNNs was always the same (i.e., all DNNs classified an empty
input as the knife category), then it meant that the knife was a special category that the empty
point cloud was classified as. If the bias of different DNNs was different, then it meant that this
phenomenon was an accident.

We trained the adversarially-trained GCNN five times under different initial parameters. The biased
category appearing in different DNNs was always the knife category, which means that the knife was
a special category that the empty point cloud was classified as.

G Effects of the data augmentation on sensitivities

We explored effects of data augmentation on sensitivities in Section 4 in the paper, in this section in
the supplementary material, we provide more details about the experimental setting and results. We
conducted experiments to explore the effects of data augmentation on sensitivities, including (1) the
translation data augmentation, (2) the scale data augmentation, (3) the rotation data augmentation
around the y-axis, and (4) the rotation data augmentation around a random axis.

4

Table 2: Translation sensitivity of DNNs with or without the translation data augmentation.

Network architecture Model A: w/ translation data augmentation Model B: w/o translation data augmentation

PointNet 0.111± 0.053 0.160±0.067
DGCNN 0.048± 0.024 0.098±0.054

Table 3: Scale sensitivity of DNNs with or without the scale data augmentation.

Network architecture Model A: w/ the scale data augmentation Model C: w/o the scale data augmentation

PointNet 0.025±0.017 0.063±0.047
DGCNN 0.020±0.015 0.028±0.020

We conducted experiments on two network architectures, i.e., PointNet and DGCNN. As Table 1
shows, for each network, we trained five versions of this network with different data augmentation
settings. We compared model A and B to explore effects of the translation data augmentation. We
compared model A and C to explore effects of the scale data augmentation. We compared model A
and D to explore effects of the rotation data augmentation around the y-axis. We compared model
A and E to explore effects of the rotation data augmentation around a random axis. These DNNs
were trained on the ModelNet10 dataset. The baseline network (version A) was trained following the
standard and widely-used setting in [4]. All the other versions B-E were revised from such a standard
setting to enable fair comparisons.

We found that the translation data augmentation decreased the translation sensitivity of a DNN (as
Table 2 shows), the scale data augmentation decreased the scale sensitivity of a DNN (as Table 3
shows), and the rotation data augmentation around the y-axis/a random axis decreased the rotation
sensitivity of a DNN (as Tables 4 and 5 show).

H Comparing effects of the rotation data augmentation and the effects of
adversarial training on the rotation sensitivity

In this section, we compared effects of the rotation data augmentation and the effects of adversarial
training on the rotation sensitivity. We conducted experiments on DGCNN and GCNN. We trained
two versions of DGCNN and GCNN, including Model E (see Table 1) and the adversarially-trained
one (using rotations for attack).

Table 6 shows that compared with the rotation data augmentation, the adversarial training based
on rotations of point clouds had a greater impact on the rotation sensitivity. I.e., the adversarially-
trained DNN had a lower value of rotation sensitivity than the DNN trained with the rotation data
augmentation around a random axis.

I Effects of sizes of the selected regions on sensitivities

In this section, we conducted experiments to explore the effects of the size of the selected regions. In
addition to the size used in our paper (each point cloud was partitioned to 32 regions), we selected
other two sizes, i.e., one size larger than the size in the paper and one size smaller than the size in
the paper. To obtain regions with the larger size, each point cloud was partitioned to 16 regions. To
obtain regions with the smaller size, each point cloud was partitioned to 64 regions. We measured
the rotation sensitivity, the translation sensitivity, and the scale sensitivity of PointNet and DGCNN
based on the ModelNet10 dataset, as shown in Table 7.

Table 4: Rotation sensitivity of DNNs with or without the rotation data augmentation around y-axis.

Network architecture Model D: w/ the rotation data augmentation Model A: w/o the rotation data augmentation
around y-axis around y-axis

PointNet 0.108±0.047 0.155±0.068
DGCNN 0.158±0.063 0.173±0.072

5

Table 5: Rotation sensitivity of DNNs with or without the rotation data augmentation around a
random axis.

Network architecture Model E: w/ the rotation data augmentation Model A: w/o the rotation data augmentation
around a random axis around a random axis

PointNet 0.057±0.030 0.155±0.068
DGCNN 0.052±0.021 0.173±0.072

Table 6: Rotation sensitivity of DNNs with the rotation data augmentation and the adversarially-
trained DNN.

Model Rotation sensitivity

Model E: DGCNN w/ rotation data augmentation around a random axis 0.052 ±0.021
Adversarially-trained DGCNN 0.036±0.015

Model E: GCNN w/ rotation data augmentation around a random axis 0.048±0.024
Adversarially-trained GCNN 0.028±0.016

Results show that as the size of the selected regions increased, all sensitivities increased. However,
the relative magnitude of sensitivities of different models did not change. We still obtained the same
conclusion that all DNNs were more sensitive to the rotation than the translation and the scale change.
Therefore, the observations and analysis in our paper are reliable.

Besides, we can also summarize the following two conclusions from Table 7, and these conclusions
can also be verified by results in the paper. (1) DGCNN was more robust to the translation than the
PointNet. (2) Both DGCNN and PointNet were robust to the scale change.

J Effects of the size of datasets on sensitivities

In this experiment, we aimed to explore the effects of the size of datasets on sensitivities. Specifically,
we conducted experiments based on a larger dataset, i.e., the ModelNet40 dataset, which had more
training samples than the dataset used in our paper (i.e., the ModelNet10 dataset). Experimental
results show that the size of datasets did not significantly affect the metrics in most cases.

Experiment settings: Based on the ModelNet40 dataset, we trained two DNNs, i.e., PointNet and
DGCNN. We measured the rotation sensitivity, the translation sensitivity, and the scale sensitivity of
these DNNs.

Table 8 shows that the relative relationship of each sensitivity between DNNs trained on the Mod-
elNet40 dataset was the same as that trained on the ModelNet10 dataset, i.e., all DNNs were more
sensitive to the rotation than the translation and the scale change. This indicates that the conclusions
in our paper are reliable.

Besides, we can also summarize the following two conclusions from Table 8, and these conclusions
can also be verified by results in the paper. (1) DGCNN was more robust to the translation than the
PointNet. (2) Both DGCNN and PointNet were robust to the scale change.

Table 7: Sensitivities of DNNs with different sizes of the selected regions.

Model region size rotation sensitivity translation sensitivity scale sensitivity

PointNet

Small size (each point cloud 0.086±0.044 0.061±0.031 0.013±0.011was partitioned to 64 regions)
Middle size (each point cloud 0.159±0.070 0.110±0.053 0.024±0.017was partitioned to 32 regions, in the paper)
Large size (each point cloud 0.292±0.117 0.202±0.095 0.043±0.029was partitioned to 16 regions)

DGCNN

Small size (each point cloud 0.091±0.043 0.026±0.013 0.012±0.008was partitioned to 64 regions)
Middle size (each point cloud 0.174±0.075 0.048±0.024 0.020±0.014was partitioned to 32 regions, in the paper)
Large size (each point cloud 0.336±0.144 0.086±0.047 0.035±0.027was partitioned to 16 regions)

6

Table 8: Sensitivities of DNNs trained on datasets with different sizes.

Model Dataset rotation sensitivity translation sensitivity scale sensitivity

PointNet ModelNet10 0.159±0.070 0.110±0.053 0.024±0.017
ModelNet40 0.162±0.073 0.069±0.035 0.026±0.023

DGCNN ModelNet10 0.174±0.075 0.048±0.024 0.020±0.014
ModelNet40 0.158±0.065 0.033±0.013 0.022±0.012

Table 9: Details about the training protocol of each DNN.

Model Optimizer Epoch Learning_rate Scheduler

PointNet [2] −− following settings in [2] Adam 200 0.001 StepLR
PointNet++ [3] −− following settings in [3] Adam 200 0.001 StepLR
PointConv [6] −− following settings in [6] SGD 400 0.01 StepLR
DGCNN [4] −− following settings in [4] SGD 250 0.1 CosineAnnealingLR
GCNN [4] −− following settings in [4] SGD 250 0.1 CosineAnnealingLR

On the other hand, in most cases, DNNs with the same architecture trained on different datasets (with
different numbers of training samples) had similar sensitivities. This indicates that the size of datasets
had little impact on different metrics.

K Details about the training protocol of each DNN

In this section, we reported details about the training protocol of each DNN, as shown in Table 9.
Actually, for all DNNs used in our paper, we strictly followed the training protocol in papers of these
DNNs [2, 3, 6, 4].

References
[1] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world, 2017.

[2] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 652–660, 2017.

[3] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in Neural Information Processing Systems, pages
5099–5108, 2017.

[4] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):146, 2019.

[5] Robert J Weber. Probabilistic values for games. The Shapley Value. Essays in Honor of Lloyd S. Shapley,
pages 101–119, 1988.

[6] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point clouds. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9621–9630, 2019.

[7] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla
Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in 3d shape collections.
SIGGRAPH Asia, 2016.

[8] Hao Zhang, Xu Cheng, Yiting Chen, and Quanshi Zhang. Game-theoretic interactions of different orders.
arXiv preprint arXiv:2010.14978, 2020.

7

	Shapley values
	Multi-order interactions
	More visualization results
	Technical details of combining wang2019dynamic and kurakin2017adversarial
	About the ShapeNet part dataset
	Bias of the Knife category
	Effects of the data augmentation on sensitivities
	Comparing effects of the rotation data augmentation and the effects of adversarial training on the rotation sensitivity
	Effects of sizes of the selected regions on sensitivities
	Effects of the size of datasets on sensitivities
	Details about the training protocol of each DNN

