
Appendix648

A Agent Structure649

No Wrist Cam Use Wrist Cam
Wrist Cam Utilization

0

20

40

60

80

S
uc

ce
ss

 R
at

e

(a) Wrist Camera

Close Up Zoomed Out Tuned
Camera Position

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(b) Camera Position

Discrete Continuous
Gripper Action Space

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(c) Gripper Control

5 10 15 20 25
Num Gripper Steps

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(d) Gripper Steps

MSE Gaussian GMM
Loss Function

0

20

40

60

80

S
uc

ce
ss

 R
at

e

(e) Loss

Figure A.1: Effect of Observation, Action and Loss Decisions. We ablate a variety of design decisions in
OPTIMUS and demonstrate that each produces a clear improvement.

Observation spaces: We use the same set of proprioceptive observations across all tasks: end-effector650

position, end-effector orientation (quaternion), gripper position. For each task, we select a different651

camera view that maximizes scene coverage. For Shelf and Microwave, we use two views, left652

and right shoulder views, whereas for the rest of the tasks we use a single forward facing view.653

Additionally, we use a wrist camera for every task, which greatly improves the performance. We use654

camera images of size 84x84. We empirically validate these decisions in Sec. B.1 and visualize the655

results in Fig. A.1.656

Action spaces: As mentioned in the main text, we use task space control for moving the arm.657

In Robosuite, we use the built-in OSC controller [59]. In IsaacGym, we used a simple IK-based658

task-space controller. With regard to gripper control, we discuss and resolve two challenges related659

to TAMP. 1) Continuous gripper actions produced by the TAMP solver can be challenging for the660

network to fit, as the network does not fully commit to predicting grasps. To that end, we modify661

the gripper actions to be binary open and close motions which improves performance and reduces662

noise in policy execution. We validate that this results in a performance improvement in Sec. B.1.663

2) TAMP demonstrations can include“stall regions”: segments of the trajectory in which the robot664

is not moving, such as when TAMP executes gripper-only actions for grasps and placements. This665

results in trained policies that may freeze after grasping an object, as the data does not contain cues666

for when to exit the stall region. To address this issue, we tune the length of stall regions during data667

collection against the agent’s history length to ensure data collection success rate remains high while668

minimizing policy freezing behavior.669

15



B Additional Learning Results670

OPTIMUS can learn to adapt its behavior based on the scene configuration. We evaluate671

OPTIMUS on two tasks that involve adapting the task plan based on the configuration of objects in672

the scene: StackAdapt and MicrowaveAdapt, and two that require adapting motions to randomized673

receptacle sizes: ShelfReceptacle and MicrowaveReceptacle. As shown in Table B.1, OPTIMUS674

is able to effectively leverage visual input to learn when additional stacking operations are needed675

(StackAdapt) or when the area in front of the microwave needs to be cleared (MicrowaveAdapt),676

achieving 96% and 75% respectively, compared to the best baseline (96% and 40%). Additionally,677

we demonstrate that OPTIMUS is able to effectively learn to generalize to unseen receptacle sizes678

with high success rates, achieves 80% and 70% on held out shelves and microwaves respectively.679

These results illustrate that OPTIMUS can distill scene conditioned task plan adaptation and motion680

generalization across scene configurations from TAMP supervision.681

Dataset BC-MLP BC-RNN BeT OPTIMUS

StackAdapt 96 92 81 96
MicrowaveAdapt 25 40 13 75
ShelfReceptacle 72 71 59 80
MicrowaveReceptacle 48 55 31 70

Table B.1: Scene-based adaptation results. OPTIMUS can learn to vary the task plan it executes based on the
scene configuration (rows 1 and 2) as well as adapt to unseen receptacles (rows 3 and 4).

We describe and empirically validate three advantages of the distilled policies over the TAMP682

system: 1) success rate improvement over the TAMP supervisor, 2) faster run-time, 3) operation from683

perceptual instead of state input.684

OPTIMUS almost doubles the performance of the TAMP supervisor. To evaluate TAMP, we685

execute 50 trials averaged over three random seeds on each single-task environment and record the686

performance in Table B.2. We find that OPTIMUS is able to outperform the TAMP system by a wide687

margin, from 20% on the easiest task, PickPlace, to 64% on Microwave-1 and 44% on the hardest688

task, PickPlaceFour. TAMP with joint space control has better performance on average than TAMP689

with task space control (52% vs. 45%), but still performs significantly worse than OPTIMUS (52%690

vs. 87%). We instead find that not all grasps execute perfectly every time, likely due to differences in691

simulation, planning and control schemes from the ACRONYM paper. As a result, we observe grasp692

execution failures and object slippage during placement motions. OPTIMUS avoids learning these693

failure cases by only distilling the successful trajectories, which enables it to successfully generalize694

to unseen configurations of the task.

Dataset TAMP-joint TAMP-task OPTIMUS

PickPlace-1 82 82 100
PickPlaceTwo 52 58 96
PickPlaceThree 40 50 91
PickPlaceFour 34 16 60
Shelf-1 58 44 91
Microwave-1 46 22 86

Average 52 45 87

Table B.2: Comparison of OPTIMUS vs. TAMP. We plot percentage success on randomly chosen states from
the environment. We find OPTIMUS greatly outperforms the TAMP supervisor, whether TAMP uses task space
control or joint space.

695

OPTIMUS executes 5-7.5x faster than TAMP. We evaluate the run-time of OPTIMUS against696

TAMP by computing the average time per step for both systems across 100 trials. We run the697

evaluation on a machine with an RTX 3090 GPU and Intel i9-10980XE CPU and include the results698

in Table B.3. TAMP takes 0.15s per action on average while OPTIMUS (30M parameters) takes699

0.021s per action and OPTIMUS (100M parameters) takes 0.031s per action. TAMP pays a high700

up-front cost of 2-5 seconds, and then executes a feedback controller to quickly track the planned701

way-points. In contrast, OPTIMUS spends a constant amount of time per action. Furthermore, it is702

possible to greatly improve the inference time performance of OPTIMUS by employing techniques703

such as FlashAttention [70], model compilation, and TensorRT.704

16



TAMP OPTIMUS (30M) OPTIMUS (100M)

.15s .021s .031s

Table B.3: Timing Results. We measure the average time taken per action (lower is better). On average,
OPTIMUS is 5-7.5x faster to execute than TAMP.

By distilling TAMP, we obtain a performant policy that executes high-frequency low-level705

control from purely perceptual input. OPTIMUS produces policies that are fast to execute, reactive706

and perform visuomotor control at similar performance to policies that have access to state information707

(Fig. A.1) and out-performs the privileged TAMP expert (Table B.2).708

B.1 Ablations709

In this section, we ablate additional components of OPTIMUS, namely the gripper control scheme710

and data generation process, observation space design and loss function.711

Discrete gripper control and short ”stall” regions directly impact the performance of TAMP712

imitation. We first analyze the impact of switching from continuous to discrete gripper control on713

the Stack task in Fig. A.1. By using discrete control, we can improve the success rate by 4%, while714

qualitatively we observe smoother gripper control and decisive grasps. On the other hand, we find715

that the decision to tune the length of ”stall” regions, namely TAMP grasp and release actions, is716

crucial to the performance of OPTIMUS. As observed in Fig. A.1, reducing the number of control717

actions per grasp and release action greatly improves performance, from 78% at 25 steps to 100% at 5718

actions. This is likely due to two reasons, 1) we shorten the overall length of the roll-outs, easing the719

learning burden, and 2) we reduce the likelihood of the policy to encounter a series of states where720

the observations and actions do not change, which can result in freezing behavior in the policy.721

Camera view selection enables greatly improved visuomotor learning. We evaluate two camera722

views on the Stack task. Both camera poses keep all objects as well as the robot in view; one is723

close up which hinders accurate estimation of scene geometry while the other is farther away which724

decreases the size of the objects in the frame, making it difficult for the policy to focus on them. As a725

result, we find in Fig. A.1 that a well-tuned camera view that is angled and positioned appropriately726

performs best. We additionally evaluate the impact of using a wrist camera. For tasks with primitive727

objects such as blocks, we found that the wrist cam had little impact. However, moving to tasks such728

as Microwave, where close up views of the handle and target object enable improved perception of729

grasp geometries, the wrist camera affords a significant performance improvement as we show in730

Fig. A.1.731

GMM loss enables OPTIMUS to better handle the multi-modality of TAMP supervision. TAMP732

generates highly multi-modal action distributions through randomized planning and non-deterministic733

IK. Therefore, as we note in Sec. 3.3, we use Gaussian Mixture Models to model the multi-modality.734

We experimentally validate that GMM output distributions greatly improve learning performance735

by comparing against MSE loss, which produces a deterministic, uni-modal output distribution,736

and Gaussian log-likelihood, which produces a non-deterministic, uni-modal output distribution.737

We find that GMM loss greatly out-performs both output distributions (86% vs. 66% and 70%).738

While including a stochastic output distribution such as a Gaussian does improve performance by739

4%, the multi-modality of GMM produces a further improvement of 16% performance. The results740

demonstrate that by providing the policy a more expressive output distribution, we can greatly741

improve how well the policy can model the TAMP expert.742

17



C Environments743

In this section, we provide a detailed description of the environments we use to evaluate OPTIMUS.744

We begin by describing settings which are common across environments. We then discuss each task745

individually.746

For all tasks, we use a Franka Panda 7-DOF manipulator with the default Franka gripper, though the747

TAMP system is capable of generating supervision using any manipulator, provided the robot URDF.748

For the Stack task, we use the block stacking environment from Robosuite [58], modifying it to749

include up to 5 blocks and a larger workspace region. For all other tasks we use IsaacGym [71] with750

the PhysX [72] back-end. For each task, we use a fixed reset pose for the robot, while randomizing751

the positions of sampled objects. Object orientation about the z-axis is sampled uniformly at random752

from 0 to 360 degrees for all tasks.753

For PickPlace, Multi-step PickPlace, Shelf and Microwave, we sample objects from ShapeNet [49].754

We select objects that have valid grasps in the Acronym [51] dataset. We further refine our dataset by755

filtering out objects that do not simulate well in our IsaacGym environments. From the remaining756

objects, we form two datasets with 19 and 72 objects respectively.757

We next provide additional details for each task.758

Stack: The goal is to stack the blocks in a fixed ordering. Each block is a different color. The block759

positions are sampled uniformly in an area of size 28cm x 28cm. The base block is of size 2.5cm3;760

the rest are of size 2cm3. The task is considered solved if all of the blocks are stacked in the correct761

ordering.762

StackAdapt: The task is the same as Stack, except there are two platforms, the blocks must be763

stacked on the target platform only. There is a 50/50 chance for the base block to be spawned on the764

target platform, in which the task simply involves stacking, and the base block to be spawned on the765

other platform, which requires the agent to first place the base block on the target platform then stack766

on top of it.767

PickPlace: The task involves picking and placing ShapeNet objects from the left platform to the768

right platform. The platforms are of size .25 by .25 and are kept .5 apart. The object positions are769

sampled uniformly at random on the platform. The task success criteria is fulfilled if the object is770

placed anywhere on the target platform.771

Multi-step PickPlace: The task involves picking and placing ShapeNet objects from platforms on772

the left to bins on the right. Up to four objects: a basket, vase, magnet or cup are sampled on separate773

platforms. Each platform is of size .15x.15 and each bin is of size .2x.2m. Each object’s position is774

sampled uniformly at random on its associated platform. The task is solved when all objects are in775

their associated bins.776

Shelf: The task involves moving ShapeNet objects from the lower rung of the shelf to the middle777

one. The shelf is 1m tall and has three rungs of size .5m x .25. The position and size of the shelf are778

constant. Object positions are sampled on the lowest rung, uniformly at random across the surface.779

The task is solved when the object is placed on the middle rung.780

ShelfReceptacle: This task is the same as Shelf, but the shelf size is randomized within the following781

intervals: height (.8-1m), rungs: (.5x.25m - .4x.75m).782

Microwave: The goal is to open the microwave by pulling open the handle, grasp a ShapeNet object,783

and place it inside the microwave. The microwave is .3m tall, 50cm wide and 20 cm deep. Microwave784

position and size are held fixed. The initial angle of the microwave door is 0, i.e. fully closed. Object785

positions are sampled on a platform of size .25x.25m. The agent has succeeded when the object is786

inside the microwave.787

MicrowaveReceptacle: This task is the same as Microwave, but the microwave size is randomized788

within the following intervals: height (.3-.4m), width: (.5-.6m), depth: (.2-.3m).789

MicrowaveAdapt: The task is the same as the microwave task, except with 50% probability an790

object is spawned in front of the microwave door, requiring the agent to first move the object aside791

then open the door and place the target object inside.792

18



D Experiment Details793

Hyper-parameter Value

Learning Rate 0.0001
Batch Size 16/512
Warmup Steps 0
Linear Scheduling Steps 100K
Final Learning Rate 0.00001
Weight Decay 0.01
Gradient Clip Threshold 1.0
Number of Gradient Steps 1M
Optimizer Type AdamW
Loss Type GMM
GMM Components 5
GMM Min. Std. Dev. 0.0001
GMM Std. Dev. Activation Fn. SoftPlus

Table D.1: Hyper-parameters used during training.

OPTIMUS (30M/100M) MLP (30M/100M) RNN (30M/100M) BeT (30M/100M)

Num Layers 6/12 2/6 2/3 6/12
Hidden Dimension 1024/1024 1000/2000
Context Length 8/8 10/10 10/10
Num Heads 8/16 8/16
Transformer Embed. Dim. 256/512 256/512
Embedding Dropout Prob. 0.1/0.1 0.1/0.1
Attention Dropout Prob. 0.1/0.1 0.1/0.1
Output Dropout Prob. 0.1/0.1 0.1/0.1
Positional Embed. Learned/Learned Learned/Learned
Positional Embed. Type Relative/Relative Relative/Relative
Num. Clusters 24/24
Offset Loss Scale 100/100

Table D.2: Model hyper-parameters.

Network and Training Details: We include the model hyper-parameters for the 30M and 100M794

parameter variants of each method in Table D.2. For the vision-backbone, as discussed in the main795

text, we use a Resnet-18 [60] with a Spatial Softmax [61] output to encode each image separately.796

For details, please see the Robomimic paper [29]. We include learned positional embeddings with797

each token and employ relative, rather than absolute, position embeddings to enable the network to798

adapt to longer horizons at test time. We use a linear annealing schedule that reduces the learning rate799

from 10−4 to 10−5 over 100K gradient steps and then keeps the learning rate constant. We train with800

the AdamW optimizer with a weight decay of 0.01 and no learning rate warm-up. For single-task801

learning, we train with a batch size of 16 on a single V100 GPU, while for multi-task learning we802

train using batch size of 512 to 1024 depending on the task, across 8 V100 GPUs. For visuomotor803

learning, we train with multiple camera views with image size 84x84, and we augment the data with804

random crops [29, 73, 74]. We additionally list the hyper-parameters used for training in Table D.1.805

One note of interest: for multi-task training, we found that increasing the batch size greatly improved806

the results; hence we use a batch size of 512.807

For BeT, we tried using the original authors codebase, which we augmented with our vision backbone,808

but found that the performance was extremely low. Instead, we re-implemented BeT as a modification809

of OPTIMUS, using the same network structure but predicting a discrete cluster center and offset810

head instead and training using the focal and MT losses from the BeT paper. We found that the811

standard hyper-parameters for BeT did not perform well, and after significant hyper-parameter tuning812

found that the combination of 24 cluster centers and offset loss scale of 100 performed best.813

19



Evaluation Protocol: We note additional details regarding our evaluation protocol as follows. We814

split each dataset into a set of training and validation trajectories (using a 90/10 split). From the815

validation trajectories, we save the initial state of the demonstration. During evaluation, we reset816

the simulator state to an initial state from the validation set, and execute the policy from there. By817

comparing on the same set of validation states, we can better evaluate performance across seeds and818

algorithms. Note this means evaluation is performed from states that the TAMP solver is able to819

solve. As we note in Sec. 4.1, in practice this distinction matters little, as the TAMP system does not820

have a systematic failure case which could be passed on to the policy. Therefore we observe similar821

success rates when evaluating on randomly sample poses from the environment.822

20



E Related Work823

E.1 Offline Learning from Demonstrations824

Imitation Learning (IL) is a paradigm for training robots to perform manipulation tasks by leveraging825

a set of expert demonstrations. In this work, we focus on offline learning, in which a policy learns826

a dataset of demonstrations, without any additional interaction. This is typically done through827

Behavior Cloning (BC) [30], in which a policy is trained to imitate the actions in the dataset through828

supervised learning. While this is a simple approach, it has proved incredibly effective for robotic829

manipulation [29, 31, 32, 33, 34, 35, 36, 37], particularly when coupled with a large number of830

demonstrations [10, 20, 38, 39]. Concurrent work has proposed leveraging Diffusion Models [75] to831

train policies via BC [76] in order to handle multi-modality of demonstrations. Our work instead832

focuses on how to best imitate TAMP with Transformers; Diffusion Policies, in particular their833

Transformer variants, could be straightforwardly integrated into OPTIMUS.834

Human supervision is a common source of demonstrations. Several prior works use kinesthetic835

teaching [77, 78, 79, 80], in which a human manually guides an arm through a task, but this does not836

scale. Many works have leveraged teleoperation systems [13, 14, 15, 20, 35, 38, 39, 81, 82, 83], in837

which a human remote controls a robot arm to guide it through a task. However, scaling teleoperation838

is costly because it can require months of data collection and numerous human operators [10, 20, 81].839

This has motivated the development of intervention-based systems, in which humans provide smaller840

corrective behaviors to an agent [84, 85, 86, 87, 88, 89], enabling more sample-efficient learning and841

less operator burden. Instead of relying on human operators for supervision, we learn policies from842

demonstrations provided by a TAMP supervisor, which can generate large, diverse datasets without843

human supervision.844

E.2 Transformers for Robot Control845

Recent work explores the application of Transformers to controlling robot manipulators. Transformer-846

based policy architectures such as Gato [12], PerAct [40], VIMA [41], RT-1 [10], Dasari and Gupta847

[42], and Behavior Transformer [43] have demonstrated impressive results across a range of robotic848

manipulation tasks, yet make use of discretization of the input observations and output actions,849

limiting their applicability to tasks requiring precise manipulation. Additionally, PerAct [40] and850

VIMA [41] use abstracted actions to ease the learning burden at the cost of expressivity and execution851

speed. HiveFormer [67] is closest to our method in terms of architecture and training protocol852

but also assumes temporally-extended motion planner actions. As a result, these systems require853

privileged knowledge of the geometry of the environment to ensure safety. In contrast, OPTIMUS854

uses a Transformer architecture that is efficient to train and scale, fast-to-execute, consumes raw855

observations, and outputs low-level control actions.856

E.3 Task and Motion Planning857

Task and Motion Planning (TAMP) [27] addresses controlling a hybrid system through planning858

a sequence of discrete of manipulation types (task planning) realized through continuous motions859

(motion planning). TAMP approaches consume kinematic or dynamic models [44] of individual860

manipulation types and search over combining them in a manner that achieves a goal. Classically,861

these models are engineered; however, recently, they have been learned using methods such as862

Gaussian Processes [64] or Deep Neural Networks [65, 90, 91]. These mixed engineering-learning863

TAMP techniques can be quite effective, but they impose a strong human design bias, capping policy864

performance. Also, they are too computationally expensive to be run in real-time, preventing them865

from quickly reacting to new observations.866

There has been recent interest in approaches that imitate planning [45, 46, 47]; however, these867

approaches generally focus on single-step motion generation. The exception is [28], which recently868

proposed an approach, Guided TAMP, that directly imitates TAMP. Our work builds on this direction869

in several ways. First, Guided TAMP primarily addresses control from privileged state, while we870

focus exclusively on visuomotor learning, which requires fewer assumptions. Second, Guided TAMP871

proposes a hierarchical policy that first predicts a discrete task-level action and then, conditioned on872

that action, predicts the next control. In order for the learner to predict a task-level action, they require873

a fixed set of ground actions, preventing the same policy from being deployed in tasks, for example,874

21



with varying numbers of objects. In contrast, our Transformer architecture does not explicitly reason875

about task-level actions and thus does not require grounding and fixing the objects in the scene.876

Finally, we identify new considerations when using TAMP as a data generation pipeline.877

22


	Agent Structure
	Additional Learning Results
	Ablations

	Environments
	Experiment Details
	Related Work
	Offline Learning from Demonstrations
	Transformers for Robot Control
	Task and Motion Planning


