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Abstract001

Multi-agent systems have emerged as a promis-002
ing approach for enhancing the reasoning ca-003
pabilities of large language models in com-004
plex problem-solving. However, current MAS005
frameworks are limited by poor flexibility and006
scalability, with underdeveloped optimization007
strategies. To address these challenges, we pro-008
pose ReSo, which integrates task graph genera-009
tion with a reward-driven two-stage agent selec-010
tion process. The core of ReSo is the proposed011
Collaborative Reward Model, which can pro-012
vide fine-grained reward signals for MAS coop-013
eration for optimization. We also introduce an014
automated data synthesis framework for gen-015
erating MAS benchmarks, without human an-016
notations. Experimentally, ReSo matches or017
outperforms existing methods. ReSo achieves018
33.7% and 32.3% accuracy on Math-MAS and019
SciBench-MAS SciBench, while other meth-020
ods completely fail. Code is available at: ReSo021

1 Introduction022

Increasing inference time has emerged as a critical023

method to enhance the reasoning capabilities of024

large language models (LLMs)(Snell et al., 2024).025

Two primary approaches have been explored: (1)026

optimizing a large reasoning model (Xu et al.,027

2025) by reinforcement learning and reward mod-028

els during post-training, which could generate inter-029

mediate reasoning steps before answering (OpenAI030

et al., 2024b; DeepSeek-AI et al., 2025) and (2)031

leveraging multi-agent system (MAS) collabora-032

tion to complete complex tasks that are difficult to033

solve by single inference (Han et al., 2024; Guo034

et al., 2024; Wang et al., 2024b; Tran et al., 2025).035

Compared to the success of inference time scal-036

ing on the single LLM, MAS faces multiple chal-037

lenges. (1) Most are handcrafted, with limited scal-038

ability and adaptability. The lack of an effective039

agent self-organization mechanism hinders large-040

scale cooperation. (2) Most assume all agent abili-041

ties are fully known while assigning tasks, which042

is unrealistic for LLM-based agents. (3) Reward 043

signals are restricted to missing, self-evaluation or 044

outcome only, resulting in poorly defined optimiza- 045

tion objectives. (4) Existing MASs lack mecha- 046

nisms for dynamically optimizing agent networks, 047

making it difficult to achieve data-driven improve- 048

ments. To address these limitations, we ask: Can 049

we design a self-organizing MAS to learn directly 050

from data via reward signals without handcrafting? 051
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Figure 1: Overview of ReSo pipeline. ReSo first de-
composes the task into a DAG; and then constructs an
agent graph by topological sorting. First, it searches
for agent candidates for each subtask node from the
dynamic agent database (DADB). Then it leverages the
Collaborative Reward Model (CRM) to choose the best
agent and update the agent estimation in DADB.

To realize this potential, we propose ReSo, a 052

reward-driven self-organizing MAS that integrates 053

task graph generation and agent graph construction. 054

The key innovation of our approach is the incor- 055

poration of fine-grained reward signals by the Col- 056

laborative Reward Model (CRM), which leads to 057

dynamic optimization of agent collaboration. Dif- 058

ferent from existing MASs, our approach is both 059

scalable and optimizable, achieving state-of-the-art 060

performance on complex reasoning tasks. 061

While extensive datasets exist for evaluating the 062

reasoning capabilities of LLMs (Chang et al., 2023; 063

Guo et al., 2023), high-quality MAS evaluation 064

benchmarks are scarce. Therefore, we propose 065

an automatic data synthesis method to generate 066

various MAS tasks by converting existing LLM 067
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benchmarks into complex collaboration problems.068

This method provides step-by-step reward signals069

without additional human annotations, enabling070

efficient and scalable MAS evaluation.071

Our contributions can be summarized as:072

• We propose ReSo, the first scalable and opti-073

mizable self-organizing MAS framework.074

• We first propose a Collaborative Reward075

Model, which can provide fine-grained reward076

signals for multi-agent collaboration.077

• We present an automatic data synthesis078

method to generate arbitrarily complex MAS079

tasks from existing LLM benchmarks.080

• Experimental results demonstrate the superior081

performance of ReSo on challenging tasks.082

2 Related Work083

2.1 Reward Guidance084

The reward model has become a critical compo-085

nent in enhancing the capabilities of LLMs through086

post-training (Wang et al., 2024d). By providing087

feedback on the quality of LLM outputs, RMs facil-088

itate performance improvement, enabling models089

to generate more accurate and detailed responses.090

The concept of reward-guided learning was first091

introduced in InstructGPT (Ouyang et al., 2022),092

which uses human feedback to fine-tune LLMs,093

aligning their behavior with user intent. In addition094

to outcome-based supervision, process-based su-095

pervision has been shown to improve the reasoning096

process itself (Uesato et al., 2022), enhancing not097

just the final answer but also the steps leading to it.098

Building on this, (Lightman et al., 2023) intro-099

duced a process reward model (PRM) fine-tuned100

on PRM800K, which provides fine-grained and101

interpretable rewards for every reasoning step.102

Similarly, (Wang et al., 2024c) developed Math-103

Shepherd, an approach capable of autonomously104

generating process supervision data. Despite the ad-105

vantages of neural-based reward models in terms of106

generalization, they also suffer from reward hack-107

ing (Gao et al., 2022; Skalse et al., 2022). To108

mitigate this, some recent approaches have em-109

ployed rule-based rewards (DeepSeek-AI et al.,110

2025) or fixed inference budgets (Muennighoff111

et al., 2025), which have also proven effective. No-112

tably, DeepSeek-R1 (DeepSeek-AI et al., 2025)113

incorporates both output accuracy and reasoning114

format evaluation, achieving the performance on115

par with OpenAI-O1 (OpenAI et al., 2024b; Qin116

et al., 2024). DeepSeek-R1 demonstrates that only 117

using large-scale reinforcement learning based on 118

rule-based reward during post-training can stim- 119

ulate LLM’s excellent reasoning ability, without 120

supervised fine-tuning. 121

2.2 Multi-Agent System 122

Recent advances in LLM-based MAS have raised 123

expectations for their ability to tackle increasingly 124

complex reasoning tasks (Han et al., 2024; Guo 125

et al., 2024; Wang et al., 2024b; Tran et al., 2025). 126

Predefined cooperation in MAS relies on struc- 127

tured interactions and role assignments before col- 128

laboration. Early works focus on MAS infrastruc- 129

ture, including Camel, AutoGen, and AgentVerse 130

(Li et al., 2023; Wu et al., 2023; Chen et al., 2023). 131

Some approaches adopt standard operating proce- 132

dures for structured task decomposition, as seen in 133

MetaGPT and ChatDev (Hong et al., 2024; Qian 134

et al., 2024a; Dong et al., 2024). Fixed topologies 135

are most adopted, such as hierarchical structures 136

in MOA (Wang et al., 2024a) and directed acyclic 137

graphs in MacNet and MAGDI (Qian et al., 2024b; 138

Chen et al., 2024c). Predefined role interactions are 139

also widely used such as debate (Du et al., 2023), 140

criticism (Chen et al., 2024b), and certain math rea- 141

soning patterns (Gou et al., 2024; Lei et al., 2024; 142

Xi et al., 2024). Predefined MASs exhibit several 143

limitations including: (1) Scalability and adaptabil- 144

ity being constrained by the imposition of rigid role 145

assignments and fixed topological structures. (2) 146

The unrealistic assumption that the agent’s abilities 147

are fully known when assigning tasks, which is 148

particularly problematic for LLM-based agents. 149

Optimizable cooperation in MAS aims to dynam- 150

ically adapt interaction topology and agent roles. 151

GPTSwarm (Zhuge et al., 2024) formulates MAS 152

as optimizable computational graphs, refining node 153

prompts and inter-agent connectivity via evolution- 154

ary algorithms. DyLAN (Liu et al., 2024b) em- 155

ploys a layerwise feedforward agent network and a 156

mutual rating mechanism to dynamically optimize 157

MAS. G-Designer (Zhang et al., 2025a) utilizes 158

variational graph auto-encoders to optimize MAS. 159

Current optimizing approaches are highly under- 160

explored. They often lack reliable, fine-grained 161

reward signals for MAS collaboration, relying in- 162

stead on outputs or self-generated reward mecha- 163

nisms. Meanwhile, dynamic network optimization 164

algorithms for MAS are also lacking. 165
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Figure 2: Illustration of our proposed ReSo. (a) We decompose the question into a subtask DAG. (b) The training
of ReSo: we first use the UCB score to perform a coarse search in DADB and select top-k agents, then score the
inference results using CRM, and update DADB by rewards. Repeat the above process for each node in DAG
by topological order. (c) The testing of ReSo: we directly select the best agent from DADB without CRM. The
determined agent collaboration pattern is the best path with the highest UCB score in the decision tree.

3 Methods166

To tackle the existing challenges in MAS research,167

we propose two core innovations: (1) ReSo, a168

reward-driven self-organizing MAS, which is capa-169

ble of autonomously adapting to complex tasks and170

a flexible number of agent candidates, eliminating171

the need for handcrafted solutions. (2) Introduction172

of a Collaborative Reward Model (CRM), specifi-173

cally tailored to optimize MAS performance. CRM174

can deliver fine-grained reward signals on multi-175

agent collaboration, enabling data-driven MAS per-176

formance optimization.177

3.1 Problem Formulation178

We define a MAS algorithm fMAS as a function179

that, given a natural language question Q, generates180

a graph-structured task decomposition, solves each181

subtask, and produces a final answer:182

fMAS(Q)→
(
G = (V,E), AV , AQ

)
(1)183

Here, G = (V,E) represents the task decom-184

position graph, which is structured as a directed185

acyclic graph (DAG). The set of nodes V =186

{v1, v2, . . . , vn} corresponds to the subtasks de-187

rived from Q, while the edges E ⊆ V × V188

define the dependencies between these subtasks.189

The system produces subtask answers AV =190

{av1 , av2 , . . . , avn} and ultimately derives the fi- 191

nal answer AQ. To achieve this, we decompose 192

fMAS into two sub-algorithms: 193

fMAS(Q) = fagent ◦ ftask(Q) (2) 194

ftask is responsible for constructing the task de- 195

composition graph from the input question, ensur- 196

ing a structured breakdown of the problem into 197

subtasks and dependencies. fagent dynamically se- 198

lects and assigns appropriate agents to solve the 199

identified subtasks. This modular design enables 200

independent optimization of each component, al- 201

lowing for greater flexibility and scalability. 202

For the MAS-generated answer AQ to be con- 203

sidered correct, the following conditions must be 204

satisfied: (1) All subtask answers must be correct. 205

(2) All directed edges must correctly enforce the 206

dependency relationships among subtasks. (3) The 207

final output AQ must be correct. 208

3.2 Task Graph Construction 209

In the proposed method, ftask first transforms the 210

question Q into a directed acyclic task graph G: 211

ftask : Q → G = (V,E) (3) 212

where G represents the decomposition of the origi- 213

nal task Q. Each node vi ∈ V is a natural language 214
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subtask, and each directed edge (vi → vj) ∈ E215

indicates that the subtask vj depends on the suc-216

cessful completion of vi.217

In practice, we perform supervised fine-tuning218

(SFT) on an LLM to perform this step of task de-219

composition. Using our synthetic data, we explic-220

itly require the LLM to decompose Q into logical221

sub-problems, specify their execution order and222

dependencies, and output in a format of DAG.223

3.3 Two-Stage Agent Search224

Once the task graph is obtained, we need to assign225

each subtask to the most appropriate agent. We226

denote this agent assignment procedure as fagent.227

Conceptually, fagent classifies each node in the task228

graph according to the most suitable agent from a229

large agent pool A, constructing an agent graph230

that maps each node to one or more selected agents.231

fagent : vi ∈ V → ai ∈ A (4)232

Since A can contain a large number of agents,233

we first introduce the concept of Dynamic Agent234

Database. Then we decompose the agent graph235

construction on every subtask into two search al-236

gorithms from coarse to fine-grained: first, select a237

subset of candidates from DADB then utilize the238

reward model to evaluate and select the best agent.239

3.3.1 Dynamic Agent Database240

To increase MAS’s scalability and flexibility, we241

propose the Dynamic Agent Database (DADB),242

denoted as A, which enables adaptive agent selec-243

tion by maintaining both static and dynamic agent244

profiles. For each agent ai ∈ A, its static profile in-245

cludes the base model, role settings, initial prompt,246

long-term memory, and tools. The dynamic pro-247

file, continuously updated via the reward model,248

tracks the agent’s average reward R(ai), computa-249

tional cost C(ai), and task count n(ai). Initially,250

agents have only static attributes, while training251

iteratively refines their evaluations by the process252

reward model, optimizing future selection.253

Given an input task vj , the DADB assigns a pre-254

liminary quality score Q(ai, vj) to each agent ai,255

balancing task-agent similarity, historical perfor-256

mance, and computational costs:257

Q(ai, vj) = sim(ai, vj) · perform(ai) (5)258

where sim(ai, vj) represents the similarity between259

the subtask’s target profile and the agent’s static260

profile. In practice, we employ a Heaviside func-261

tion which ensures that only agents exceeding a262

predefined similarity threshold Vth are considered: 263

sim(ai, vj) = H[⟨qi,ai⟩ − Vth] where qi,ai 264

are text embedding of subquestion and the agent 265

static profile. The perform(ai) term is given by 266

perform(ai) = R(ai) − βC(ai), where β con- 267

trols the trade-off between the agent’s historical 268

performance and cost. 269

3.3.2 Coarse Agent Search by UCB 270

Given a DADB A and a subtask vj , our first objec- 271

tive is to retrieve a promising subset of k candidate 272

agents. To take advantage of the known informa- 273

tion in DADB, also to explore unused agents, we 274

adopt an Upper Confidence Bound value: 275

UCB(ai, qj) = Q(ai, qj) + c

√
N

n(ai) + ε
(6) 276

where N is the total number of agent selections 277

and n(ai) the number of times agent i is se- 278

lected, ε ≪ 1. c is a constant controlling the 279

exploration-exploitation trade-off. Agents with 280

higher UCB scores are more likely to be selected, 281

helping the MAS to explore potentially under- 282

utilized agents. For each subtask qi, we sort agents 283

by their UCB(ai, qj) and choose the top k agents 284

as the candidate set Acand = { a1, a2, . . . , ak}. 285

3.3.3 Fine-grained Agent Evaluation by CRM 286

Once the candidate agents Acand are selected, we 287

evaluate their performance on the current subtask 288

vj using a Collaborative Reward Model (CRM). 289

This evaluation process is straightforward: each 290

candidate agent ai generates an answer to the sub- 291

task vj : ai(vj), and then we assess the quality of 292

that answer based on a reward signal: 293

r(ai, vj) = RewardModel
(
ai, vj , ai(vj)

)
(7) 294

where RewardModel evaluates the quality of the 295

solution based on the given agent’s profile, subtask, 296

and previous reasoning process. After evaluating 297

the agents, we assign the agent with the highest 298

reward, a∗j , to the subtask node vj , which means 299

a∗j ’s solution is used as vj’s answer. This process 300

is repeated for each subtask on the graph. 301

The reward r(ai, vj) is computed using the 302

CRM, which can be either rule-based (e.g., binary 303

correctness: 0 for incorrect, 1 for correct) or neural- 304

based (providing a score between 0 and 1 for qual- 305

ity). The reward model evaluates how well the 306

agent’s response aligns with the expected outcome, 307

factoring in both the solution’s correctness and its 308

collaboration within the MAS. 309
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3.4 Training and Inference Stage310

Our multi-agent system can operate in two modes:311

training and testing. During training, we leverage312

a high-quality reward r(ai, vj) available for evalu-313

ating the correctness of every step of MAS. Upon314

receiving r(ai, vj) for each candidate agent, we315

update that agent’s dynamic profile in DADB. For316

instance, we may maintain a running average of317

rewards:318

R(ai) ←
n(ai) ·R(ai) + r(ai, vj)

n(ai) + 1
(8)319

similar for updating costc(ai, vj). By iteratively320

learning from data, the DADB can dynamically321

update agent evaluations based on historical reward,322

facilitating adaptive agent selection and improving323

both efficiency and performance. During testing,324

the reward model is no longer required. Instead, we325

leverage the learned DADB to select the best agent326

candidates and the best answer to each subtask.327

3.5 The Perspective of MCTS328

The task graph, after topological sorting, forms a329

decision tree where each node represents a subtask330

and the edges denote dependencies. At each level,331

we use UCB to prune the tree and select a subset332

of promising agents, then simulate each agent and333

evaluate their performance using the CRM. The re-334

sulting reward updates the agent’s dynamic profile,335

refining the selection strategy. The MAS construc-336

tion is essentially finding the optimal path from the337

root to the leaves, maximizing the UCB reward for338

the best performance.339

Consider there are N agents and a task requiring340

D agents to collaborate. Assume that the average341

inference cost is c and the matching cost in DADB342

is s ≪ c per agent. A brute-force search has a343

complexity of O(c·ND), which becomes infeasible344

as D and D grow. In contrast, our self-organizing345

strategy, selecting topk per step, reduces the cost to346

O((s ·N +N logN + k · c) ·D), offering a near-347

linear scaling with N and D, making the approach348

highly scalable for large N and D.349

4 Data Synthesis350

A key challenge in MAS is the lack of structured351

datasets for evaluating and training agent collabo-352

ration. To address this, we propose an automated353

framework that converts existing LLM datasets into354

structured, multi-step MAS tasks, enabling fine-355

grained evaluation without human annotations.356

Random DAG Generation We begin by gener- 357

ating a DAG, G = (V,E). Each node vi ∈ V 358

will be filled with a subtask (qi, ai), where qi is 359

the textual description of the task, and ai is its nu- 360

merical answer. The subtasks are sampled from 361

the existing LLM benchmarks. The edges E will 362

encode dependency constraints between subtasks, 363

ensuring that the solution to one subtask is required 364

as an input for another, modeling the sequential 365

reasoning process of multi-agent collaboration. 366

Subtask Selection and Filling To populate the 367

nodes of G, we construct a master pool of candidate 368

subtasks, denoted as P . Each candidate subtask 369

pi ∈ P consists of a textual problem description 370

si, and a numerical answer ai. After obtaining 371

P , we randomly sample from it and fill one ques- 372

tion per node into the generated DAG. Candidate 373

subtasks should have clear numerical or option an- 374

swers, such as SciBench (Wang et al., 2024f), Math 375

(Hendrycks et al., 2021), GPQA (Rein et al., 2023), 376

etc. To ensure that the problem is computationally 377

feasible for later dependency construction, we ex- 378

tract a numerical constant ci ∈ R from the problem 379

text. If the extracted constant is valid, the subtask 380

is retained in P; otherwise, it is discarded. This 381

ensures that only problems with well-defined nu- 382

merical attributes are incorporated. 383

Dependency Edge Construction After all nodes 384

are populated, we generate natural language depen- 385

dency descriptions for edges. Each edge (vj → vk) 386

should represent a relationship which connects pre- 387

vious subtask vj’s answer aj , with subsequent sub- 388

task vk’s question parameter ck. For each edge, we 389

generate a textual description ejk, such as “in this 390

question, ck = previous answer + 3.” Formally, it is 391

an algorithm that constructs a string from two num- 392

bers: eij = f(aj , ck). f can be implemented using 393

elementary arithmetic and text templates, ensuring 394

that no answers or parameters in the original sub- 395

task need to be manually modified. Once the DAG 396

is fully constructed, we refine node descriptions by 397

removing any explicitly given numerical constants 398

{ci} that are now dependent on the results of prior 399

nodes. Finally, an entire graph described in natural 400

language is a piece of synthetic data. 401

The proposed data synthesis framework gener- 402

ates structured, multi-step reasoning tasks with ad- 403

justable sizes, ensuring diverse and scalable prob- 404

lem structures. The synthesized dataset supports 405

both training and testing, enabling fine-grained 406

evaluation without human annotations. 407
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Method Math-MAS SciBench-MAS
Easy Medium Hard Tokens Easy Medium Hard Tokens

GPT-4o 27.5 9.0 0.0 2.2k 39.3 12.5 1.6 2.1k
Gemini-2.0-Flash 69.2 24.7 9.0 3.0k 64.5 33.8 9.7 2.5k
Claude-3.5-Sonnet 12.1 0.0 0.0 1.0k 22.4 6.2 3.2 1.4k
Qwen2.5-Max 44.0 13.5 4.5 2.9k 55.1 30.0 4.8 2.8k
DeepSeek-V3 52.7 24.7 12.4 2.2k 52.3 31.3 12.9 2.3k

MetaGPT 30.8 12.4 2.2 16.1k 48.6 2.5 0.0 14.6k
DyLAN 40.7 9.0 0.0 64.1k 48.6 2.5 0.0 77.8k
GPTSwarm 35.2 5.6 4.5 14.9k 31.8 6.3 1.6 18.2k
GDesigner 14.2 5.6 0.0 16.9k 24.3 12.5 0.0 19.0k
ReSo (ours) 79.1 56.2 33.7 14.6k 67.3 51.3 32.3 20.7k

Table 1: Accuracy and average token usage on Math-MAS and SciBench-MAS. Bold and underlined represent
optimal and suboptimal results, respectively. Tokens denotes the average number of tokens consumed per task.

5 Experiments408

In Sec 5.1, we first use public datasets to create409

complex MAS benchmarks and fine-tune ReSo’s410

task decomposition and collaborative reward mod-411

els. All code, datasets, and models are publicly412

available. In 5.2, we train and evaluate ReSo on413

both public and synthetic datasets. Sec 5.3 presents414

ablation studies on task decomposition, agent se-415

lection, and reward guidance mechanisms.416

5.1 Data Synthesis and Model Fine-tuning417

5.1.1 Data Synthesis418

MATH (Hendrycks et al., 2021) consists of prob-419

lems from diverse mathematical domains, while420

SciBench (Wang et al., 2024f) includes scientific421

reasoning tasks spanning physics, chemistry, and422

mathematics. Using these datasets, we apply the423

synthetic data generation method outlined in Sec424

4 to create two datasets: one for single LLM fine-425

tuning and another for benchmarking. Difficulty is426

categorized by the number of subtasks—Easy (3),427

Medium (5), and Hard (7).428

Fine-tuning data For fine-tuning task decom-429

position LLM, we generate 14,500 questions and430

answers from the MATH training set, with numbers431

of subtasks ranging from 2 to 6. For fine-tuning the432

neural-based CRM, we generate 5,000 questions433

from the same set, with 5 subtasks per question.434

MAS Benchmarks We select 201 questions from435

SciBench as the sub-question data pool and syn-436

thesized complex data using the method in 4.437

This forms the SciBench-MAS dataset, comprising438

200 easy-level training questions and 247 testing439

questions (107 easy, 80 medium, 62 hard). For 440

MATH (Hendrycks et al., 2021), 348 level-5 ques- 441

tions are selected, from which we generate the 442

Math-MAS dataset, consisting of 269 test ques- 443

tions for ReSo (91 easy, 89 medium, 89 hard). 444

5.1.2 Model Fine-tuning 445

Task Decomposition Model Training To ensure 446

high-quality task composition, we fine-tune a spe- 447

cialized model for task decomposition based on 448

Qwen2.5-7B-Instruct. We use 14500 dialogues on 449

task decomposition as described in 5.1.1, and fine- 450

tune the model under a batch size of 128 and a 451

learning rate of 1e-4 for 3 epochs. The fine-tuned 452

model can reliably produce task decomposition in 453

a structured format. 454

CRM Training The proposed CRM is fine-tuned 455

based on Qwen2.5-Math-PRM-7B (Zhang et al., 456

2025b), which can provide effective process reward 457

signals on MAS collaborative reasoning tasks. We 458

use 5000 samples of sub-tasks with their answers as 459

described in 5.1.1. We follow a simplified training 460

scheme of PRMs, where the model should only 461

perform binary classification on the special token 462

at the end of the answer. The model is trained with 463

a batch size of 128 and a learning rate of 1e-4 for 464

5 epochs. The fine-tuned model can output the 465

probability of the answer being correct, which is 466

then taken as the collaborative reward signal. 467

5.2 Main Results of ReSo 468

Models and MASs We compare ReSo with state- 469

of-the-art LLM and MAS methods. Our single- 470

LLM baselines include GPT-4o (OpenAI et al., 471

2024a), Gemini-2.0-Flash (Team et al., 2024), 472
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Figure 3: ReSo outperforms other MAS methods by a significant margin in complex reasoning accuracy.

Claude-3.5-Sonnet (Anthropic, 2024), Qwen2.5-473

Max (Yang et al., 2024), DeepSeek-V3 (Liu et al.,474

2024a). For ReSo, we build an agent database475

that includes these base models, extended to 63476

agents with different prompts. For MAS, we eval-477

uate MetaGPT (Hong et al., 2024), DyLAN (Liu478

et al., 2024b), GPTSwarm (Zhuge et al., 2024),479

GDesigner (Zhang et al., 2025a), SEDM (Li et al.,480

2024b). All MAS baselines use GPT-4o as the481

backbone.482

ReSo Training We train our ReSo framework us-483

ing the SciBench-MAS training data as described484

in 5.1.1. Figure 4 shows that ReSo’s accuracy in-485

creases with the training process, demonstrating486

that DADB effectively updates the estimation of487

each agent’s capability and gradually learns to build488

a better agent graph.489
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Figure 4: Training Curve of ReSo.

Comparisons with LLMs As shown in Table 1,490

most single-model agents exhibit a sharp decrease491

in accuracy as the difficulty increases. At the hard492

difficulty level, their accuracy approaches zero, sug-493

gesting that single LLMs struggle with composi-494

tional reasoning. In particular, we show the results495

of these single LLMs on single Math and Scibench496

datasets in Appendix A.2, with accuracy rates of497

80%-90%. This means that a single LLM can suc- 498

cessfully solve a single sub-problem in the dataset, 499

but its generalization ability for combined complex 500

problems is very limited. 501

Comparisons with MASs Notably, ReSo out- 502

performs other approaches in both the Math-MAS 503

and SciBench-MAS datasets. At the hard difficulty 504

level, ReSo reaches an accuracy of 33.7% on Math- 505

MAS and 32.3% on SciBench-MAS, while other 506

MAS methods almost completely fail. 507

Token Efficiency Table 1 also compares the av- 508

erage number of tokens consumed per task. ReSo 509

maintains a relatively moderate token usage, which 510

is significantly lower than certain baselines like 511

DyLAN (14.6k vs 64.1k, 20.7k vs 77.8k). This bal- 512

ance between performance and computational cost 513

underlines ReSo’s practical efficiency in real-world, 514

large-scale scenarios. 515

Results on Existing Benchmarks Our method 516

excels not only on complex task datasets but also 517

on existing commonly used benchmarks. Table 2 518

shows our evaluation of the original MATH and 519

SciBench datasets, where ReSo (ours) achieves the 520

highest accuracy across all the tasks. Notably, it 521

outperforms GPT-4o and other baselines, reaching 522

89.8% on MATH and leading across SciBench cat- 523

egories. These results demonstrate ReSo’s strong 524

generalization and effectiveness in mathematical 525

and scientific reasoning. 526

Table 2: Accuracy on existing benchmarks.

Method MATH SciBench

Math Phys Chem

GPT-3.5-Turbo 34.1 25.56 14.83 32.11
GPT-4o 81.1 66.8 53.4 60.1
SEDM - 61.4 50.3 56.1
GPTSwarm 81.0 60.5 36.6 49.7
ReSo (ours) 89.8 71.9 60.6 61.9
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Figure 5: Results of ablation studies. (a) Fine-tuning on domain-specific training data can significantly improve the
decomposition quality, thus enhancing overall system performance. (b) Our robust agent selection strategy within
the MAS is significant to the performance. (c) Compared to general reward models, our fine-tuned reward model is
more task-specific and brings more precise reward signals, thus improving the system performance.

5.3 Ablation Studies527

We conduct ablation studies on our proposed multi-528

agent system, examining three core designs: task529

decomposition, agent selection, and reward signal.530

Task Decomposition We compare three differ-531

ent approaches to task decomposition: (1) Ground532

Truth, representing an upper bound with human-533

crafted, meticulously designed task breakdowns;534

(2) GPT-4, which autonomously decomposes com-535

plex tasks into sub-tasks without targeted fine-536

tuning; and (3) Qwen2.5-7B-SFT, a model fine-537

tuned on our dataset based on Qwen2.5-7B, specif-538

ically adapted to generate more effective decompo-539

sitions for complex questions. Figure 5(a) presents540

the reasoning accuracy under different decompo-541

sition strategies. The ground-truth decomposition542

consistently yields the highest accuracy, underscor-543

ing the critical role of precise subproblem segmen-544

tation. Meanwhile, the fine-tuned task generator545

surpasses the naive GPT-4 approach, demonstrating546

that even a small amount of domain-specific train-547

ing data can significantly improve decomposition548

quality and enhance overall system performance.549

Agent Selection We compare three strategies for550

agent selection: a random strategy, a greedy strat-551

egy that always selects the most matching profile,552

and our proposed ReSo approach. As shown in553

Figure 5(b), ReSo significantly outperforms other554

strategies across all the datasets, which emphasizes555

the importance of a robust agent selection strategy556

within the multi-agent framework. By strategically557

assigning each sub-task to the most suitable agent,558

the system can handle increasingly complex tasks559

with markedly better accuracy.560

Reward Signal We investigate the impact of dif- 561

ferent reward signals on system optimization, con- 562

sidering three approaches: (1) Rule-based, which 563

provides strictly accurate, predefined evaluations 564

for sub-task solutions; (2) General Reward Model, 565

using Qwen2.5-Math-PRM-7B as a reward func- 566

tion without task-specific fine-tuning; and (3) Fine- 567

tuned Reward Model, i.e., our CRM proposed 568

in Section 3.3.3. Figure 5(c) presents the results 569

of training our MAS under these reward schemes 570

on the SciBench-MAS dataset. The rule-based re- 571

ward yields the best results, confirming the im- 572

portance of precise reward signals. Besides, our 573

CRM brings a slight improvement compared to the 574

original Qwen2.5-Math-PRM-7B model. We also 575

observe an instance of reward hacking when using 576

the Qwen reward model: specifically, Qwen2.5- 577

Max tends to receive inflated scores when acting as 578

the reasoning agent. As a result, during inference, 579

the MAS disproportionately selects Qwen2.5-Max 580

to handle sub-tasks, even in cases where it does not 581

necessarily produce the best solutions. 582

6 Conclusion 583

In this work, we introduce ReSo, a reward-driven 584

self-organizing MAS for complex reasoning. By 585

integrating a collaborative reward model, ReSo au- 586

tomates agent selection and collaboration, improv- 587

ing scalability and adaptability. The automated 588

data synthesis framework eliminates manual anno- 589

tations. Experiments show that ReSo outperforms 590

existing MAS and single LLM baselines. All codes, 591

models, and data have been open-sourced. We ex- 592

pect ReSo to enable co-optimization of MAS and 593

LLM to further enhance reasoning capabilities. 594
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7 Limitations595

Although the base model for the agents is a fixed596

model, ReSo has demonstrated strong optimizabil-597

ity and scalability as well as good performance. A598

further interesting research question is: Can the599

optimization of MAS be performed together with600

the optimization of a single LLM agent? Specifi-601

cally, can the reward signal given to the model by602

our CRM in each step of cooperation be combined603

with the reinforcement learning-based post-training604

of a single model to further optimize MAS at both605

the macro and micro levels? This means a dynamic606

agent cooperation network, where agents can not607

only learn how to interact with each other but also608

fine-tune their weights through feedback from co-609

operation. We look forward to follow-up research.610

8 Ethical Considerations611

While our proposed ReSo framework focuses on612

reasoning tasks in the domains of mathematics613

and science, it has the potential to be applied in614

other, possibly unethical, contexts. Such misuse615

could pose significant threats to human society. We616

strongly urge readers to carefully consider these617

ethical implications and to adopt a conscientious618

approach in the development and application of619

these methods.620
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A Appendix1145

A.1 Related work on LLM Reasoning Policy1146

Reward model is usually combined with different reasoning policies to enhance its effect such as majority1147

voting (Wang et al., 2023), Chain of Thought (COT) (Wei et al., 2023) and Monte Carlo Tree Search1148

(MCTS) (Browne et al., 2012). OmegaPRM (Luo et al., 2024) enhances reasoning with a divide-and-1149

conquer MCTS strategy. ReST-MCTS (Zhang et al., 2024) refines reasoning traces using inferred stepwise1150

rewards. RethinkMCTS (Li et al., 2024a) improves code generation by leveraging execution feedback. In1151

contrast, Critical Plan Step Learning (Wang et al., 2024e) employs hierarchical MCTS to generalize across1152

reasoning tasks. Additionally, AlphaMath (Chen et al., 2024a) and TS-LLM (Feng et al., 2024) enhance1153

reasoning by incorporating a value model and iterative tree search, with TS-LLM further leveraging an1154

AlphaZero-like framework and policy distillation.1155

A.2 Model Performance1156
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Figure 6: Performance of different models on our selected Math and SciBench dataset subproblems.

A.3 Case Study1157

Complex Task Synthesis

sub-question-0:
{

"problem": "The sum of two numbers is 15. Four times the smaller number is 60 less than
twice the larger number. What is the larger number?",↪→

"level": "Level 5",
"type": "Prealgebra",
"question_id": "Prealgebra 1762.json",
"answer_number": 20.0,
"q_vals": 15.0,

},

sub-question-1:
{

"problem": "Determine the largest possible integer $n$ such that $942!$ is divisible by
$15^n$.",↪→

"level": "Level 5",
"type": "Number Theory",
"question_id": "Number Theory 43.json",
"answer_number": 233.0,

1158
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"q_vals": 942.0,
},

sub-question-2:
{

"problem": "Let $(a_1, a_2, \\dots, a_n)$ be a sequence of positive real numbers, such
that\n\\[\\sum_{i = 1}^n a_i = 96, \\quad \\sum_{i = 1}^n a_i^2 = 144, \\quad \\sum_{i
= 1}^n a_i^3 = 216.\\]Find the sum of all possible values of $n.$",

↪→
↪→
"level": "Level 5",
"type": "Intermediate Algebra",
"question_id": "Intermediate Algebra 2022.json",
"answer_number": 64.0,
"q_vals": 96.0,

},

first we choose three quesitons and then randomly generate the dag.
for example:

"dag": {
"0": [],
"1": [

0,
2

],
"2": []

},

so the complex promblem graph is like:
the question 0 depend on 1 result and the question 2 depend on 1 results.
then we mask a variable in question 1 and 2. they need to be caculused by their parents' answer.

when finish after all the questions, there will be a combined. need output the product of
Answer[0]*Answer[1]*Answer[2].↪→

for this case:
The following is a complex question composed of multiple sub-questions:\n\nDetermine the

largest possible integer $n$ such that $942.0!$ is divisible by $15^n$.. The answer is
recorded as Answer[1]\n\n

↪→
↪→

The sum of two numbers is UNK_0(a constant calculated by adding the sum of Answer[1] to the
number (-218.00). ). Four times the smaller number is 60 less than twice the larger number.
What is the larger number?. The answer is recorded as Answer[0]\n\n

↪→
↪→

Let $(a_1, a_2, \\dots, a_n)$ be a sequence of positive real numbers, such that\n\\[\\sum_{i =
1}^n a_i = UNK_2(a constant calculated by adding the sum of Answer[1] to the number
(-137.00). ), \\quad \\sum_{i = 1}^n a_i^2 = 144, \\quad \\sum_{i = 1}^n a_i^3 = 216.\\]
Find the sum of all possible values of $n.$. The answer is recorded as Answer[2]\n\n

↪→
↪→
↪→

Please use the answers to the above questions to perform the following calculations:\nPlease
calculate the value of Answer[0]*Answer[1]*Answer[2]. Conclude the answer by stating 'The
answer is therefore \\boxed{[ANSWER]}.'

↪→
↪→

the plan:
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'[{"task_id": "1", "dependent_task_ids": [], "instruction": "Determine the largest possible
integer $n$ such that $942.0!$ is divisible by $15^n$.. The answer is recorded as
Answer[1]"}, {"task_id": "2", "dependent_task_ids": ["1"], "instruction": "The sum of two
numbers is UNK_0(a constant calculated by adding the sum of Answer[1] to the number
(-218.00). ). Four times the smaller number is 60 less than twice the larger number. What
is the larger number?. The answer is recorded as Answer[0]"}, {"task_id": "3",
"dependent_task_ids": ["1"], "instruction": "Let $(a_1, a_2, \\\\dots, a_n)$ be a sequence
of positive real numbers, such that\\n\\\\[\\\\sum_{i = 1}^n a_i = UNK_2(a constant
calculated by adding the sum of Answer[1] to the number (-137.00). ), \\\\quad \\\\sum_{i =
1}^n a_i^2 = 144, \\\\quad \\\\sum_{i = 1}^n a_i^3 = 216.\\\\] Find the sum of all possible
values of $n.$. The answer is recorded as Answer[2]"}, {"task_id": "4",
"dependent_task_ids": [1, 2, 3], "instruction": "Please calculate the value of
Answer[0]*Answer[1]*Answer[2]. Conclude the answer by stating \'The answer is therefore
\\\\boxed{[ANSWER]}.\'"}]'

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Figure 7: An easy task with 3 subtasks in SciBench.
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Figure 8: Corresponding DAG.

A.4 Prompt1161

Prompt of Agents in the Pool

[gpt-4o_1]
model = gpt-4o
role = MechanicsExpert
prompt = You are a highly knowledgeable mechanics expert in a multi-agent system. You are given

a sub-task related to classical mechanics, statics, dynamics, kinematics, or fluid
mechanics. First, read and understand the previous questions and answers from other agents.
Identify the variables that have already been solved and ensure consistency with their
results. Then, systematically break down your sub-task, applying relevant physical laws
such as Newton’s laws, conservation principles, or motion equations. Justify your
reasoning, verify unit consistency, and cross-check with previous agent outputs before
providing a well-explained solution.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_2]
model = gpt-4o
role = ElectromagnetismExpert

1162
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prompt = You are an expert in electromagnetism within a multi-agent system. You are assigned a
sub-task related to electric fields, magnetic fields, circuit analysis, or electromagnetic
waves. First, read and understand the previous questions and answers from other agents,
extract solved variables, and ensure logical consistency. Apply fundamental principles such
as Maxwell’s equations, Gauss’s law, or Faraday’s law to solve your sub-task systematically.
Clearly outline your steps, justify the assumptions, and verify that your solution aligns
with previous agents' work. If discrepancies arise, propose possible resolutions.

↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_3]
model = gpt-4o
role = Thermodynamics&OpticsExpert
prompt = You are an expert in thermodynamics and optics in a multi-agent system. Your role is

to solve a specific sub-task while ensuring coherence with previous agents' results. First,
read and understand the previous discussions, extract solved variables, and align your
approach with existing solutions. Apply principles such as the first and second laws of
thermodynamics, heat transfer models, or optical laws (e.g., Snell’s law, diffraction, and
wave optics). Provide a detailed step-by-step solution, justify calculations, and validate
numerical consistency with prior agent outputs. If uncertainties arise, suggest possible
clarifications.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_4]
model = gpt-4o
role = InorganicChemistryExpert
prompt = You are an inorganic chemistry expert operating in a multi-agent system. Your sub-task

may involve chemical bonding, periodic trends, reaction mechanisms, or coordination
chemistry. Carefully review the previous questions and answers, identify already
determined variables, and ensure consistency with past calculations. Apply relevant
chemical principles to analyze and solve your assigned problem step by step. Provide
balanced chemical equations, validate reaction feasibility, and explain your reasoning
clearly. If your results depend on prior agents’ outputs, verify their correctness and
suggest refinements if necessary.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_5]
model = gpt-4o
role = OrganicChemistryExpert
prompt = You are an organic chemistry expert in a multi-agent system, responsible for solving a

sub-task related to molecular structures, reaction mechanisms, or synthetic pathways.
First, review previous discussions, extract key solved variables, and ensure consistency
with prior agent responses. Then, apply organic chemistry principles such as resonance
effects, nucleophilic-electrophilic interactions, and reaction kinetics to derive a
precise solution. Provide clear mechanistic explanations, reaction diagrams if necessary,
and cross-check results to maintain logical coherence within the system.

↪→
↪→
↪→
↪→
↪→
↪→

Figure 9: The prompt of agents in the pool.
1163

Prompt of the Task Plan Generator

"""
You are an AI assistant specialized in generating structured prompts for domain-specific

experts in a multi-agent system.↪→

**Task:**
Given a subquestion, analyze its domain, required expertise, and problem complexity. Then,

generate a structured prompt that precisely describes the expert’s role in solving the
problem. The generated prompt will be used for vector-based similarity matching to select
the most appropriate agent from an agent pool.

↪→
↪→
↪→

**Prompt Format:**

1164

17



"You are a [Expert Type], highly skilled in [Specific Knowledge Areas]. Your task is to analyze
the problem by first reviewing previously solved variables and solutions from other agents
in the multi-agent system. Apply domain-specific knowledge to reason rigorously and
provide a well-structured, logically sound answer. If calculations are required, show all
steps. If problem decomposition is needed, outline a systematic approach. Ensure
consistency with previous solutions in the multi-agent system and resolve any
discrepancies when necessary. Your role is to assist in solving complex reasoning problems
with precision and alignment with the broader system."

↪→
↪→
↪→
↪→
↪→
↪→
↪→

**Instructions for Prompt Generation:**
1. **Expert Type Selection**: Identify the most relevant expert type (e.g., MechanicsExpert,

AlgebraExpert, ThermodynamicsExpert).↪→
2. **Specific Knowledge Areas**: Define the precise knowledge fields required to solve the

problem.↪→
3. **Problem Scope & Complexity**: Determine whether the problem requires deep theoretical

knowledge, numerical computation, or practical modeling.↪→

**Output:**
Provide only the generated prompt without additional explanations."""

Figure 10: The prompt of the task plan generator.
1165

A.5 Agent Selection Visualization1166

The agent selection distribution during the testing phase of Scibench-MAS-Easy reveals that Gemini-2.0-1167

Flash-Exp and Qwen2.5-Max were the most frequently selected models after training.1168

gemini-2.0-flash-exp_GeometryExpert

31.5%

qwen2.5-max_ElectromagnetismExpert

41.8%

qwen2.5-max_Thermodynamics&OpticsExpert

4.0%

gemini-2.0-flash-exp_MechanicsExpert

7.9%

gemini-2.0-flash-exp_OrganicChemistryExpert

7.7%

gemini-2.0-flash-exp_Probability&StatisticsExpert

7.0%

Agent Selection Distribution

Figure 11: Testing stage on the easy-level tasks in Scibench-MAS.
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43.5%
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11.9%
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qwen2.5-max_Thermodynamics&OpticsExpert

4.4%

gemini-2.0-flash-exp_Probability&StatisticsExpert

11.7%

Agent Selection Distribution

Figure 12: Testing stage on the hard-level tasks in Scibench-MAS.

A.6 Hyperparameters 1169

During both training and testing, a set of weighted factors and constraints guide agent selection, al- 1170

lowing for dynamic adjustments. Specifically, similarity_weight = 0.6 regulates the influence of 1171

subproblem-agent similarity, reputation_weight = 1.0 balances agent selection based on past perfor- 1172

mance, and cost_weight = 1.0 accounts for computational overhead. A THRESHOLD = 0.6 establishes 1173

the similarity cutoff for specialized handling of certain subproblems, while EXPLORATION_CONST = 0.3 1174

encourages periodic assignments to underutilized agents. During testing, hyperparameters can be adjusted 1175

to fine-tune the selection process—modifying similarity_weight and THRESHOLD controls the search 1176

scope, adjusting reputation_weight increases the weight of agent reputation in scoring, and tweaking 1177

cost_weight alters the impact of computational overhead, enabling a flexible trade-off between efficiency 1178

and performance. Finally, TOP_K = 3 restricts the number of candidate agents per subproblem, balancing 1179

exploration and efficiency in the selection process. 1180
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Figure 13: Testing stage on the medium-level tasks in Scibench-MAS using reputation_weight 1.
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Figure 14: Testing stage on the medium-level tasks in Scibench-MAS using reputation_weight 2.
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Figure 15: Testing stage on the medium-level tasks in Scibench-MAS without training.

20


	Introduction
	Related Work
	Reward Guidance
	Multi-Agent System

	Methods
	Problem Formulation
	Task Graph Construction
	Two-Stage Agent Search
	Dynamic Agent Database
	Coarse Agent Search by UCB
	Fine-grained Agent Evaluation by CRM

	Training and Inference Stage
	The Perspective of MCTS

	Data Synthesis
	Experiments
	Data Synthesis and Model Fine-tuning
	Data Synthesis
	Model Fine-tuning

	Main Results of ReSo
	Ablation Studies

	Conclusion
	Limitations
	Ethical Considerations
	Appendix
	Related work on LLM Reasoning Policy
	Model Performance
	Case Study
	Prompt
	Agent Selection Visualization
	Hyperparameters


