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A Proofs from Subsection 3.1

A.1 Proof of Lemma 3.1

Proof. Fix πt = (xt, st, qt). For simplicity, we write Lt = Lt(π1:t−1 ⊕ πt) and LG,i
t =

LG,i
t (π1:t−1 ⊕ πt) in the remainder of this proof. For any (G, i) ̸∈ At(πt), we have that

V G,i
t = V G,i

t−1

nG,i
t = nG,i

t−1.

and hence LG,i
t = LG,i

t−1.

On the other hand, for any (G, i) ∈ At(πt), we have

V G,i
t = V G,i

t−1 + vδ(qt, st)

nG,i
t = nG,i

t−1 + 1.

Then, we can bound the change in loss for that group-bucket pair (G, i) ∈ At(πt) as follows:
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The first inequality (1) holds due to ex + e−x being monotone with respect to |x|, inequality (2)

follows from the fact that for 0 ≤ |x| ≤ 1
2 , exp(x) ≤ 1 + x+ 2x2, and

∣∣∣∣η · vδ(qt,st)

f(nG,i
t−1)

∣∣∣∣ ≤ 1
2 because

of the way we set η ∈ (0, 1/2) and the fact that |vδ(qt, st)| ∈ [0, 1] and f(nG,i
t−1) ≥ 1.

Therefore, we have the desired bound

Lt − Lt−1 =
∑

(G,i)∈At(πt)

LG,i
t − LG,i

t−1 ≤
∑

(G,i)∈At(πt)

ηvδ(qt+1, st+1)C
G,i
t−1 +
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t )2
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t .

A.2 Proof of Lemma 3.2

Proof. For any threshold q, let iq be the bucket index such that q ∈ Bm(iq). For simplicity, define

u(q, s) = vδ(q, s)
∑

(G,i)∈At(πt)

CG,i
t = vδ(q, s)C

q
t

where we overloaded the notation to write

Cq
t = C

iq
t =

∑
G∈G(xt)

C
G,iq
t .

Case (i) Ci
t−1 < 0 for all i ∈ [n]: With qt = 1, we have

E
qt∼QL,st∼QA

[u(qt, st)|xt] = C1
t−1(xt) E

st∼QA
[vδ(1, st)|xt] < 0

as vδ(1, dt) = 1− (1− δ) > 0.

Case (ii) Ci
t−1 > 0 for all i ∈ [n]: With qt = 0, we have

E
qt∼QL,st∼QA

[u(qt, st)|xt] = C0
t−1(xt) E

st∼QA
[vδ(0, st)|xt] < ρC0

t−1(xt) < ρLt−1.

as we have

E
st∼QA

[Cover(0, st)|xt]− (1− δ) ≤ E
st∼QA

[Cover(0, st)|xt] = Pr
st∼QA

[st = 0|xt] ≤ ρ

Case (iii) there exists i∗ ∈ [n − 1] such that Ci∗

t−1 · Ci∗+1
t−1 ≤ 0: First, consider the case where
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t−1 ≤ 0. Then, we have
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The first inequality follows from the fact that Cover( i
∗

n − 1
rn , s) ≤ Cover( i

∗

n , s) for any s. Now,
consider the other case where Ci∗

t−1 ≤ 0 and Ci∗+1
t−1 ≥ 0.
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The first inequality follows from the fact that
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A.3 Proof of Theorem 3.1

Proof. Fix any round t ∈ [T ] and transcript π1:t−1. For simplicity, we write Lt = Lt(π1:t). Then,
we can use Lemma 3.1 to prove the following lemma.

Lemma A.1. Fix any transcript π1:T . Then, for any round t ∈ [T ], we have

Lt ≤ Lt−1

1 +
ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 +

∑
(G,i)∈At(πt)

2η2

f(nG,i
t )2

 .

Proof. Fix transcript π1:T . Then at any round t, we have

Lt

= Lt−1 + Lt − Lt−1

≤ Lt−1 +
∑

(G,i)∈At(πt)

ηvδ(qt, (xt, st))C
G,i
t−1 +

2η2

f(nG,i
t )2

LG,i
t−1 (Lemma 3.1)

≤ Lt−1 +
∑

(G,i)∈At(πt)

ηvδ(qt, (xt, st))C
G,i
t−1 + Lt−1

∑
(G,i)∈At(πt)

2η2

f(nG,i
t )2

(
LG,i
t−1 ≤ Lt−1

)

≤ Lt−1

1 +
ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 +

∑
(G,i)∈At(πt)

2η2

f(nG,i
t )2

 .
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Applying Lemma A.1 recursively, we get

LT ≤ L0

T∏
t=1

1 +
ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 +

∑
(G,i)∈At(πt)

2η2

f(nG,i
t )2


(3)

≤ L0

T∏
t=1

exp

ηvδ(qt, (xt, st))

Lt−1
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(G,i)∈At(πt)

CG,i
t−1 +

∑
(G,i)∈At(πt)

2η2

f(nG,i
t )2


≤ L0 exp

 T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 +

T∑
t=1

∑
(G,i)∈At(πt)

2η2

f(nG,i
t )2


≤ L0 exp

 T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 +

∑
G∈G,i∈[m]

nG,i
T∑

n=1

2η2

f(n)2


≤ L0 exp

 T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 +

∑
G∈G,i∈[m]

∞∑
n=1

2η2

f(n)2


≤ L0 exp

 T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 + 2η2Kϵ|G|m


= 2|G|m exp

 T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 + 2η2Kϵ|G|m


where inequality (3) follows from 1 + x ≤ exp(x).

Taking the log of both sides, we have

ln(LT ) ≤ ln(2|G|m) +

T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 + 2η2Kϵ|G|m

for any π1:T .

By Observation 3.1, it suffices to upper bound maxG∈G,i∈[m]
|V G,i

T |
f(nG,i

T )
. We have:

max
G∈G,i∈[m]

|V G,i
T |

f(nG,i
T )

=
1

η
ln

(
exp

(
max

G∈G,i∈[m]

η|V G,i
T |

f(nG,i
T )

))

=
1

η
ln

(
max

G∈G,i∈[m]
exp

(
η|V G,i

T |
f(nG,i

T )

))

≤ 1

η
ln

 ∑
G∈G,i∈[m]

exp

(
η|V G,i

T |
f(nG,i

T )

)
≤ 1

η
ln

 ∑
G∈G,i∈[m]

exp

(
ηV G,i

T

f(nG,i
T )

)
+ exp

(
−ηV G,i

T

f(nG,i
T )

)
=

ln(LT )

η

≤ 1

η

ln(2|G|m) +

T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 + 2η2Kϵ|G|m

 .
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Taking expectation over π1:T on both sides, we get

E
π1:T

[
max

G∈G,i∈[m]

|V G,i
T |

f(nG,i
T )

]

≤ E
π1:T

1
η

ln(2|G|m) +

T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 + 2η2Kϵ|G|m


≤ 1

η

ln(2|G|m) + 2η2Kϵ|G|m+ E
π1:T

 T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1

 .

Let us focus only on the third term:

E
π1:T

 T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1


= E

π1:T−1

E
πT

 T∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1

∣∣∣∣∣∣π1:T−1


= E

π1:T−1

T−1∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 +

η

LT−1
E
πT

vδ(qT , (xT , sT ))
∑

(G,i)∈AT (πT )

CG,i
T−1

∣∣∣∣∣∣π1:T−1


(4)

≤ E
π1:T−1

T−1∑
t=1

ηvδ(qt, (xt, st))

Lt−1

∑
(G,i)∈At(πt)

CG,i
t−1 + ηρ


≤ . . .

≤ ηρT

where inequality (4) comes from Lemma 3.2.

In other words, we have

E
π1:T

[
max

G∈G,i∈[m]

|V G,i
T |

f(nG,i
T )

]
≤ 1

η

(
ln(2|G|m) + 2η2Kϵ|G|m+ ηρT

)
=

ln(2|G|m)

η
+ 2η|G|mKϵ + ρT

≤
√

4Kϵ|G|m ln(|G|m) + ρT

where the last inequality follows from setting η =
√

ln(|G|m)
2Kϵ|G|m . Note that η < 1/2 as 2 ln(|G|m) <

Kϵ|G|m because Kϵ ≥ 1.

B Experiments

In this section, we evaluate MVP and compare it to more traditional methods of conformal prediction
on a variety of tasks. In each comparison, we use the same model and conformal score for MVP and
for the methods we compare against — the only difference is the type of the conformal prediction
wrapper. Our code is available at https://github.com/ProgBelarus/MultiValidPrediction.

First in Section B.1 we study a synthetic regression problem in a simple exchangeable (i.i.d.) setting,
and compare to split conformal prediction [Lei et al., 2018]. We show that even when we measure
only marginal empirical coverage, MVP improves over split conformal prediction when the regression
function must be learned. This is because to maintain the exchangeability of conformal scores, split
conformal prediction must split the data into two sets — one for training the regression function and
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one for calibrating the prediction sets.B.1 In contrast, our method does not require exchangeability, so
we can both train the regression model and calibrate our prediction sets on the entire dataset. Then,
we modify our regression problem so that there are 20 overlapping sub-populations, and one of the
sub-populations (consisting of half of the data points) has higher label noise. We measure group-wise
coverage for MVP, for naive split conformal prediction that has no knowledge of the groups to be
covered, and the method of Foygel Barber et al. [2020] which guarantees (conservative) group-wise
coverage for intersecting groups. We find that MVP significantly improves on both methods. Finally
we run all three of these methods on real data drawn i.i.d. from a U.S. Census dataset provided by
the Folktables package [Ding et al., 2021], where we ask for group-wise coverage on groups defined
by race and sex designations. Again, we find that MVP consistently obtains the closest to its target
group-wise coverage while providing narrower prediction intervals.

Next, in Section B.2 we study a regression problem in the presence of covariate shift. First we
replicate an experiment of Tibshirani et al. [2019], in which a synthetic covariate shift (with known
propensity scores and known changepoint) is simulated on a UCI dataset. The method of Tibshirani
et al. [2019] reweights the calibration set using the propensity scores. MVP can also take advantage
of propensity scores when they are known: we give MVP a “warm start” from the same portion of
the dataset that split conformal prediction uses for calibration, sampled with replacement after being
re-weighted by the propensity scores. Both algorithms are then evaluated on the shifted distribution.
We find both algorithms perform comparably. We then experiment with unknown and unanticipated
covariate shift simulated on datasets derived by U.S. Census data provided from the Folktables
package [Ding et al., 2021]: We compare to split conformal prediction calibrated on the California
data (this time without re-weighting) and evaluated on the Pennsylvania data. Similarly, we again
give MVP a warm start on the California data (again without reweighting), and then measure its
performance on 2018 Pennsylvania Census data. We find that MVP obtains the correct coverage rate
and smaller interval widths compared to the split conformal method despite having no knowledge of
the distribution shift.

In Section B.3 we evaluate MVP on time series data — 20 years of stock returns, in a volatility
prediction task. We compare MVP to the Adaptive Conformal Inference (ACI) method of Gibbs and
Candes [2021], which guarantees marginal (but not threshold calibrated) coverage for adaptively
chosen data. When evaluated in terms of marginal coverage, we find that MVP and ACI perform
comparably: ACI obtains average coverage slightly closer to the target, whereas MVP predicts a
more stable sequence of thresholds. We then complicate the experiment to exhibit the two advantages
of MVP (groupwise coverage and threshold calibrated coverage). First we define 20 intersecting
groups defined as the trading days that are multiples of 1, 2, . . . , 20. We add perturbations to the stock
returns that differ across these groups, and find that MVP continues to produce the correct group-wise
coverage, whereas ACI fails to. Next, we produce a fully adversarial sequence by presenting examples
to the algorithms not in time order but in sorted order by their conformal scores. By construction,
this sequence would cause split conformal prediction methods to have 0 coverage, but both ACI and
MVP are required to obtain the correct marginal coverage on this sequence. However, we find that
given this sequence, ACI reduces to a strategy that, similar to the uninformative “cheating” strategy
mentioned in the Introduction, predicts the trivial coverage interval (all of [0, 1]) on most days —
which guarantees marginal but not threshold calibrated coverage, and does not produce non-trivial
average interval widths. In contrast, MVP, by virtue of its threshold calibration condition, produces
a sequence of coverage thresholds that correctly track the sequence of conformal scores of the true
labels in the data, and hence produces prediction intervals with the correct widths.

Finally in Section B.4 we compare MVP to the work of Angelopoulos et al. [2020] on a large-scale
ImageNet classification task. We find that MVP obtains comparable coverage rates and prediction set
sizes, despite the fact that the setting is favorable to Angelopoulos et al. [2020] — i.e. the data is i.i.d.
and we measure only marginal coverage.

B.1 Exchangeable Data

B.1.1 Basic Experimental Setup and Marginal Coverage

We simulate a synthetic linear regression problem in which the regression model must be trained
in tandem with the conformal predictor. The feature domain consists of 10 binary features and 290

B.1This is not just a theoretical requirement — split conformal prediction fails badly otherwise.
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Figure B.1: The plot on the left is a histogram of the empirical marginal coverage of MVP and split
conformal prediction over 500 repeated trials; the right hand plot is similarly a histogram of the
average interval width for both methods. We see that MVP gets both empirical coverage that is more
tightly concentrated around its target (0.9) and narrower coverage interval width.

continuous features. For any input x, the binary features are drawn from a uniform distribution
and each continuous feature is drawn from a normal distribution N (0, σ2

x). Each example’s label is
governed by an ordinary least squares model:

y = ⟨θ, x⟩+N (0, σ2
y)

for some fixed vector θ ∈ R300 unknown to the learner.

We run both MVP and split conformal prediction [Lei et al., 2018] using the conformal score
st(x, y) = |ft(x)− y|. When running MVP, we train ft using least squares regression on all points
(xt′ , yt′) for t′ < t. For split conformal prediction, we divide points evenly between a calibration set
and a training set (points from odd time steps go into the calibration set, points from even time steps
go into the training set), and ft is trained using least squares regression on all points in the training
set at time t− 1. (We also tried training ft on all points, but this causes split conformal prediction to
fail catastrophically).

Results We set σ2
x = 0.1, σ2

y = 0.2 and run 500 independent trials of our experiment, each for
T = 2000 steps. θ is independently selected for each trial. The results are shown in Figure B.1. MVP
simultaneously obtains empirical coverage that is more tightly concentrated around its target and
obtains narrower coverage intervals compared to split conformal prediction. Despite the fact that
we are in a setting that is extremely favorable to split conformal prediction (i.i.d. data and marginal
coverage evaluation), MVP has the advantage that it can use a regression function ft trained on all
past data, without the need to set aside a calibration set. This is needed for split conformal prediction
to maintain the exchangeability of the conformal scores.

B.1.2 Multi-Group Coverage

We now compare the coverage of MVP to that of split conformal prediction not just marginally, but
group-wise. We use the same feature generation process and conformal score as for our marginal
coverage experiment described in Section B.1.1. Recall that the first 10 of the 300 features in our
data domain are binary, which we now use to define 20 (intersecting) groups defined by the value
of each of the 10 binary features. Labels are still generated according to an ordinary least squares
model, but now the noise rate depends on the groups that each datapoint is a member of. Specifically:

y = ⟨θ, x⟩+N

(
0, σ2 +

10∑
i=1

σ2
i xi

)
for some fixed vector θ ∈ R300, and for fixed values of σi, each associated with one of the binary
features indicating groups.

We run MVP parameterized to promise multi-valid coverage for the set of 20 intersecting groups
defined by the first 10 binary features of the input: For each i ∈ {0, 1, · · · , 19}, we define Gi = {x ∈
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Figure B.2: On the left we plot the median over 100 independent trials of the coverage conditional on
membership in each of our 20 groups. On the right we plot the median of the average interval width
conditional on membership in each of the 20 groups. Compared to the split conformal prediction
methods, we see that MVP obtains the target coverage level on each group (neither under nor over
covering), and obtains narrower interval widths. The error bars represent 25th and 75th quantiles, and
they are not easily visible in this figure as they are quite narrow: for conformal with groups, both bar
endpoints are within ±0.0039 from the median, for conformal without groups, within ±0.0054 from
the median, and for MVP, within ±0.0021 from the median.

X | x⌈(i+1)/2⌉ ≡2 i} and let G = {Gi | 0 ≤ i ≤ 19}. At each time-step t, we train a regression
model ft on all past data.

We compare to two benchmark conformal prediction methods. First, we compare to naive split
conformal prediction (which ignores the group structure), just as in Section B.1.1. This method offers
no guarantees about group-wise coverage. Second, we compare to the method of Foygel Barber
et al. [2020] which separately computes a calibration threshold for each of the 20 groups marginally,
and on each example xt, uses the most conservative (i.e. largest) threshold associated with any of
the groups for which xt is a member. This method guarantees coverage at least the target coverage
level, but does not guarantee coverage approaching the target. Note there are 210 different subsets
of groups that each example might be a member of, and so the method of Romano et al. [2020a]
which separately calibrates on disjoint groupings of the data cannot be run without having roughly
1000-fold more data. For both conformal prediction methods we equally split the data between a
training set used for training the regression model ft and a calibration set used for calibrating the
prediction intervals. We run MVP with m = 40 calibration buckets.

Results We run 100 independent trials of our experiment, each for T = 20, 000 data points. Our
results are plotted in Figure B.2. We set σ2

1 = 3.0 and σ2
2 = . . . = σ2

10 = 0.1 so that G0 is a “low
noise” group and G1 is a “high noise” group. We keep the values of the σi fixed across all trials, but
each is run with an independently drawn θ. As expected, we find that naive split conformal prediction
fails to meet its coverage target, over-covering on the low noise group and under-covering on the
high noise group, and uses a uniform interval width. In contrast, both MVP and the conservative
method of Foygel Barber et al. [2020] use different average interval widths for different groups.
The conservative method of Foygel Barber et al. [2020] always gets at least the target coverage, but
significantly over-covers on every group except for the high noise group. In contrast MVP obtains the
target coverage on every group. MVP also has lower average interval width on every group compared
to Foygel Barber et al. [2020], and (correctly) produces significantly narrower intervals on the low
noise group.

B.1.3 Multi-Group Coverage with Folktables Data

We now evaluate the group-wise performance of MVP against the same two split conformal prediction
methods on a real dataset derived from the 2018 Census American Community Survey Public Use
Microdata provided by the Folktables package [Ding et al., 2021]. The dataset includes instances of
people from all the states in the USA; for this experiment, we consider only those instances from
the state of California. There are 195665 instances of this kind, and we subsample this data (0.1 for
training, 0.1 for testing).
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Our goal in this experiment is to generate prediction sets for a person’s income. The Folktables
dataset has nine different codes for raceB.2 and two codes for sexB.3. Note that the race and sex groups
intersect. We define groups for five out of nine of the race groups (the remaining four have very little
data) and groups for both sexes, for a total of seven groups. We run MVP with m = 40 buckets, and
parametrized to promise multi-valid coverage for each of these seven groups, and compare against
both conformal prediction methods introduced in Section B.1.2.

Using the training data, we train a linear regression model f to predict income and use it to define
the conformal score s(x, y) = |f(x) − y| for all three methods. An initial calibration set of size
1000 (taken from the test data) is used for both split conformal methods, and is used as a "warm
start" for MVP (i.e. this data is used to update variables used in the algorithm, but we do not record
performance over these instances). The remaining test data is used to compare performance between
methods. For the split conformal methods, the calibration set grows to include the previously observed
examples from the test set as time goes on.

Results We run 100 independent trials of our experiment with random subsampling of training
and test data from the Folktables dataset. The results are shown in Figure B.3. While MVP obtains
the desired coverage across all groups, the naive split conformal prediction method under-covers on
some groups and over-covers on others, and the method of Foygel Barber et al. [2020] significantly
over-covers on some groups (G3, G4 and G6). Additionally, MVP consistently predicts smaller-width
prediction intervals in comparison to both other methods.

B.2 Covariate Shift

B.2.1 Known Covariate Shift with UCI Airfoil Data

We first study the setting of known covariate shift considered by Tibshirani et al. [2019] (which
introduced the weighted split conformal prediction method that we use as our point of comparison)
and replicate their design. Following Tibshirani et al. [2019], we use the airfoil dataset from the
UCI Machine Learning Repository [Dua and Graff, 2017] which consists of data of NACA 0012
airfoils. The dataset contains N = 1503 total instances of d = 5 features (frequency in Hz, angle
of attack in degrees, chord length in meters, free-stream velocity in meters per second, and suction
side displacement thickness in meters) The target feature for prediction is scaled sound pressure in
decibels. In this setting, the data available for calibration is drawn from a different distribution from
the data that is used for evaluation, but the distributions differ only in their relative weighting of
feature vectors, and the relative weightings (likelihood ratios) are known.

Weighted split conformal prediction uses the likelihood ratios between the training and evaluation
distributions to find weighted quantiles of the conformal scores on the evaluation data distribution.
We note that MVP can also make use of these likelihood ratios when they are known. We do so
by “warm starting” MVP by running it on the data that weighted split conformal prediction uses
for calibration, but re-sampled with replacement using rejection sampling according to the known
likelihood ratiosB.4.

Following the protocol in Tibshirani et al. [2019], for both methods, we use 25% of the data to train
the underlying linear regression model that will be given to both MVP and weighted split conformal
prediction. (It is necessary to use a separate split of the data for the method of Tibshirani et al. [2019],
but for our method we could have shared data between training and calibration, which would give
us an advantage of the sort we demonstrated in Section B.1. We do not do this in this experiment
to disentangle different aspects of the comparison between our techniques). The weighted split
conformal prediction algorithm is then given a calibration dataset of 25% of the data to compute the
residual quantiles and finally samples with replacement 50% of the remaining points for the evaluation
dataset, with probabilities proportional to w(x) = exp(xTβ), where β = (−1, 0, 0, 0, 1). This final

B.21. White alone, 2. Black or African American alone, 3. American Indian alone, 4. Alaska Native alone, 5.
American Indian and Alaska Native tribes specified; or American Indian or Alaska Native, not specified and no
other races, 6. Asian alone, 7. Native Hawaiian and other Pacific Islander alone, 8. Some Other Race alone, 9.
Two or More Races.

B.31. Male, 2. Female.
B.4We could have similarly reweighted the data in our potential function using the likelihood ratios, but we

choose this method instead so as to apply our algorithm as a black box.

9



0 1 2 3 4 5 6
Groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ve

ra
ge

 (M
ed

ia
n)

  desired
  coverage

                    Group Descriptions 
 Group 0: Race = White alone 
 Group 1: Race = Black or African American alone 
 Group 2: Race = Asian alone 
 Group 3: Race = Some other race alone 
 Group 4: Race = Two or More Races 
 Group 5: Sex = Male 
 Group 6: Sex = Female

Comparison of group-wise coverage: Split-Conformal vs. MVP 

Split-Conformal: Without groups
Split-Conformal: With groups, conservative approach
MVP

0 1 2 3 4 5 6
Groups

0

20000

40000

60000

80000

100000

120000

140000

160000

In
te

rv
al

 W
id

th
 (M

ed
ia

n)

                    Group Descriptions 
 Group 0: Race = White alone 
 Group 1: Race = Black or African American alone 
 Group 2: Race = Asian alone 
 Group 3: Race = Some other race alone 
 Group 4: Race = Two or More Races 
 Group 5: Sex = Male 
 Group 6: Sex = Female

Comparison of group-wise interval-width: Split-Conformal vs. MVP 

Split-Conformal: Without groups
Split-Conformal: With groups, conservative approach
MVP

0 1 2 3 4 5 6
Groups

0

2000

4000

6000

8000

10000

12000

Si
ze

 o
f g

ro
up

                    Group Descriptions 
 Group 0: Race = White alone 
 Group 1: Race = Black or African American alone 
 Group 2: Race = Asian alone 
 Group 3: Race = Some other race alone 
 Group 4: Race = Two or More Races 
 Group 5: Sex = Male 
 Group 6: Sex = Female

Comparison of group sizes

Figure B.3: The first plot shows the median over 100 independent trials of the marginal coverage
conditional on membership in each group. The second plot shows the median of average interval
width conditional on membership in each group. The third plot shows the average group size (number
of elements in each group) over all 100 trials. Details about groups are to the right of each plot. The
error bars represent 25th and 75th quantiles, and they are not easily visible in the first and third plot
as they are quite narrow.
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Figure B.4: The left-hand figure shows a histogram of the coverage rate of MVP and weighted split
conformal prediction over 500 trials; the right-hand figure is a histogram of the median prediction
interval widths over the same 500 trials.

fold simulates a synthetic covariate shift and in our comparison the weighted split conformal method
that has oracle access to the shift likelihood ratios. When running MVP, we use this 25% of the
dataset in a comparable way: we sample the calibration fold of the remaining data with replacement
with probilities proportional to w(x) and use it to run MVP as a warm start (i.e. the predictions
that MVP makes on this fold are not recorded in the metrics we report). This uses the known
conformal scores in a similar way to how they are used in weighted split conformal prediction. MVP
is then evaluated on an evaluation dataset obtained the same way as for weighted split conformal,
by sampling 50% of the remaining data with probabilities proportional to w(x). We run MVP with
m = 40 threshold-calibration buckets.

Figure B.4 shows a histogram of the coverage rate and median prediction interval width of both
methods over 500 trials of the experiment, where each trial indicates a different train-test split of
the data and a different sampling of the shifted data for the algorithm. We see that MVP obtains
coverage that is significantly more tightly concentrated around its target (0.9) compared to weighted
split conformal prediction and comparable interval widths. We note that this is even without letting
MVP train its regression model on the calibration dataset.

B.2.2 Unknown Shift with Folktables Data

Next we evaluate split conformal prediction and MVP on real data exhibiting distribution shift,
in which the distribution changepoint and propensity scores are unknown (and so cannot be used
to weight the calibration set as in our earlier experiment). Here we use the Folktables package
[Ding et al., 2021]. The dataset consists of N = 263973 (CA: 195665,PA: 68308) instances each
comprising of d = 9 features. We subsample the dataset (.4 of CA, .2 of PA), thus using N = 91927
overall. The features of the data are Census demographic attributes and the target prediction variable
is income. We follow Ding et al. [2021] in investigating covariate shift that results from using data
derived from different states related to the same task.

As in all of our experiments, MVP is trained using m = 40 buckets for calibration. For both MVP
and split conformal prediction we use the quantile-regression based conformal score from Romano
et al. [2019], using a quantile regression model trained on half of the available California data. We
then use the remaining California data as the calibration dataset, used to “warm start" MVP and
compute the residual quantiles for split conformal prediction. Finally, we evaluate MVP and split
conformal on the Pennsylvania data and report a histogram of the empirical coverage and interval
widths for both methods over 50 trials in Figure B.5. MVP comes very close to its coverage target
(0.9), whereas split conformal prediction significantly over-covers. Similarly, MVP obtains narrower
average prediction interval widths. Here the empirical coverage for both methods is much more
tightly concentrated than it is for the UCI Airfoil dataset: this is because the dataset we are using in
this experiment is roughly 60 times larger.
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Figure B.5: The left-hand figure shows a histogram of the coverage for MVP and split conformal
prediction over 50 trials; the right-hand figure shows a histogram of the prediction interval width.

B.3 Time Series Data

B.3.1 Basic Experimental Setup and Marginal Coverage

In this set of experiments, we run MVP on stock market data and compare our performance to the
Adaptive Conformal Inference (ACI) algorithm of Gibbs and Candes [2021], a recent method that
guarantees marginal coverage for adversarially chosen data. In contrast to MVP, ACI promises only
marginal coverage (in particular, its guarantees are not threshold calibrated), and so we expect its
convergence to be faster but that its thresholds will fluctuate more; our experiments bear this out.

To directly compare to ACI, we use the same dataset and model construction as in Gibbs and Candes
[2021]. Specifically, we start with WSJ daily open price dataB.5 for AMD stock in 2000-2020
(corresponding to T = 5283 price points p1, . . . , pT ). We calculate daily returns rt as rt =

pt−pt−1

pt−1

for every day t. Based on the returns, we then calculate the (realized) daily volatility as vt = r2t for
t ∈ [T ]. For our prediction task we train a model to estimate daily volatility levels vt. Following
Gibbs and Candes [2021], we use a standard sequential prediction model called GARCH [Bollerslev,
1986]; every day, GARCH makes volatility prediction σt, and autoregressively updates the model
once it sees the realized volatility vt. The conformal score we use on day t is the normalized
regression score st(t, v) = |vt − σt|/σt. Here σt is the prediction that the GARCH model makes at
round t, and possible realizations of the volatility vt play the role of the label. We run MVP and ACI,
for miscoverage target δ = 0.1, on the (rescaled) scoresB.6 s̃1, . . . , s̃T of the GARCH model trained
to predict AMD stock volatility. In all our experiments with ACI, we set the ACI hyperparameters
as follows: γ = 0.005 (step size), lookback = 100, offset = 10. Figure B.6 shows the sequences
of conformity thresholds for MVP and ACI. In general we find that even when we only measure
marginal prediction, MVP performs comparably to ACI. Both methods obtain coverage close to the
target rate of 0.9, where ACI consistently gets a bit closer to the target rate. We visually observe that
MVP makes more stable predictions compared to ACI, locally converging to a small stable set of
threshold values (and moving over to the next stable set of thresholds once the scores have drifted
sufficiently far), whereas ACI uses continuously fluctuating threshold values (this is expected, since
it is not aiming for threshold calibrated coverage).

B.3.2 Multigroup Coverage

Next, we augment the experimental setup to investigate multigroup coverage. We define a set of
groups based on whether the index of the trading day is divisible by 1, . . . , 20: Define xt = t, and let

B.5Available at https://www.wsj.com/market-data
B.6MVP assumes that the input scores st ∈ [0, 1], but in this set of experiments we can only guarantee that the

normalized regression score st = |vt − σt|/σt ∈ [0,∞). Due to this, we feed MVP (and ACI, for consistency)
modified scores s̃t = st

1+st
∈ [0, 1]. This type of rescaling works more generally in any setting where MVP’s

input scores belong to [0,∞) and need to be rescaled to be in [0, 1]: indeed, observe that the mapping x ↣ x
1+x

is a monotonic continuous bijection from [0,∞) to [0, 1).
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Figure B.6: A single trajectory of ACI and MVP thresholds plotted together; for convenience,
threshold values are only displayed once MVP and ACI thresholds have risen above 0.8. One can
see that MVP and ACI trajectories have somewhat similar shapes, but MVP exhibits a more stable
behavior.

G = {G1, . . . , G20}, where Gi is defined as the set of all t such that t ≡ 0 mod i. In other words,
G1 consists of the set of all time steps, G2 consists of even time steps, G3 consists of time-steps
that are multiples of 3, and so on. As these sub-groups mutually intersect, it is not possible to run a
separate copy of ACI on each one.

To provide sub-group variability, we artificially introduce varying levels of group-specific additive
noise into the stock return data: for each i ∈ [20], we add noise sampled from N (0, σ̂ret) to the stock
return rt on all days t that fall into group Gi, where σ̂ret is the empirical standard deviation of the
returns sequence. This noise is additive: so the returns on a day that falls into multiple groups are
perturbed by the sum of the group-specific perturbations.

We now run ACI and MVP on the scores produced by GARCH when it is trained on this noisy data.
MVP is given the set of groups G. Figure B.7 shows a plot of the median coverage rates (over 20
independent trials) for both ACI and MVP on each of the 20 groups. As expected, MVP achieves
close to its target coverage on each group, whereas ACI — although getting very close to its target
marginal coverage (see group 1) undercovers on most other groups, sometimes significantly as a
result of the extra added noise.

B.3.3 Adversarial Ordering

Finally, we present an experiment which tests MVP and ACI on a fully adversarial sequence of
conformal scores: a sequence that linearly grows from 0.0 to 0.5 in T = 5283 equal stepsB.7, as
shown in Figure B.8a. In this ordering, the next score is always larger than the algorithm has ever seen
before — hence traditional conformal prediction methods that rely on the exchangeability assumption
would obtain 0 coverage on this sequence.

As expected, ACI struggles when it sees scores that are always increasing. ACI and MVP are
both guaranteed to approach the target marginal coverage, but this sequence serves to elucidate the
difference between simple marginal coverage and threshold calibrated coverage. The trajectory of
ACI’s predicted thresholds on all rounds is shown in Figure B.8c. ACI’s threshold oscillates rapidly
between just below the current score and the maximum value (1) that its trajectory appears to fill the
space between the score sequence and 1. We also show the histogram of ACI’s thresholds over its
full trajectory, which shows that most of them in fact correspond to the trivial prediction interval
corresponding to the maximum threshold value. This reveals that on an increasing sequence, ACI
obtains its target coverage by using a strategy that is very similar to the uninformative “cheating”
strategy that we have discussed before: namely, ACI predicts the trivial prediction interval (all of
[0, 1]) on many of the rounds, and periodically tries to predict lower threshold values (on which it
miscovers and is forced back into predicting the full interval). These prediction intervals are not
threshold calibrated. In contrast, MVP’s sequence of predicted thresholds have to be threshold-
calibrated hence (as shown in Figure B.8b) they closely track the actual score sequence, resulting in
much more informative coverage intervals.

Beyond recognizing that ACI’s thresholds, as opposed to MVP’s, are uninformative in this setting,
we can also see a concrete drawback of ACI’s strategy by looking at its average prediction set
width. Namely, suppose that the linearly increasing sequence of scores represent regression scores

B.7That is, the sequence is { 0.5·i
T−1

}T−1
t=0 , where T = 5283 is chosen to be the same as in the above experiments
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Figure B.7: MVP and ACI median coverage (over 20 indep. trials) on groups 1-20 on noisy data
(group j consists of days t such that t ≡ 0 mod j). MVP closely matches desired coverage level on
all groups, whereas ACI significantly undercovers (within 10-20% from the target). In interpreting
the plot, note that Group 1 consists of all of the rounds (and so represents overall marginal coverage),
and that each group j consists of a 1/j fraction of the data, so the groups become increasingly small
from left to right. Note the very small (barely visible) error bars (spanning 25th to 75th quantile
coverage): For ACI, the largest error quantile width across groups is 0.0303, whereas for MVP it is
even smaller: 0.007.

st(yt, ŷt) = |yt − ŷt| in a simple regression problem. Then, each threshold qt generated by ACI or
MVP will produce an interval of width 2qt. In this case, the average width attained by MVP will
be 0.526, whereas the average width attained by ACI will be 1.839. What is more, note that MVP’s
thresholds closely track the magnitude of the presented sequence of scores, while ACI’s threshold
is 1 most of the time no matter what subrange of [0, 1] the observed scores are in. Therefore, if we
generate increasing scores from 0 to b (above, we took b = 0.5), where b can be set arbitrarily small,
we will get examples of adversarial data on which the prediction interval widths of ACI are arbitrarily
worse than the prediction widths produced by MVP.

B.4 A Classification Task: ImageNet

In this section, we compare the performance of MVP against an existing conformal prediction method
for the task of generating prediction sets in image classification. The recent work of Angelopoulos
et al. [2020] details and implements an algorithm, Regularized Adaptive Prediction Sets (RAPS)
which, given a trained image classifier, generates small-sized prediction sets of image labels with
marginal coverage guarantees. This is done by defining a modified conformal score which empirically
produces smaller and more stable sets compared to previously used scores [Romano et al., 2020b].

Using ResNet-152 as the base image classifier, we use calibration data of size 1000 from
ImageNet to train RAPS. For a fair comparison, we allow RAPS to be randomized like MVP by
setting flag “randomized=True”. We also have RAPS and MVP use the same hyperparameters for the
conformal score. This same data is used as a “warm-start” training set for MVP (i.e. MVP predicts
sets for this data and uses it to update variables used in the algorithm; MVP’s performance over
these time-steps is not recorded). MVP is run with m = 40 calibration buckets. The results shown in
Figure B.9 detail the performance of both methods (using the same conformal score) on a held-out
validation dataset of size 30,000.
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Figure B.8: MVP and ACI behavior on a sequence of sorted scores. Figure (a) plots the sequence of
scores fed to both MVP and ACI. Figure (b) plots the sequence of thresholds chosen by MVP — note
that it closely tracks the sequence of scores. Figure (c) plots the sequence of thresholds chosen by
ACI. It appears to fill the upper diagonal region because it fluctuates so rapidly between the maximum
value (1) and just below the score sequence. Figure (d) gives a histogram for the thresholds chosen
by ACI, showing that ACI is almost always choosing the uninformative maximum threshold.

Results The marginal coverage achieved by RAPS across all T = 30000 images is 0.90523, and
the marginal coverage achieved by MVP is 0.902133. The average prediction-set size for RAPS and
MVP are 2.0506 and 2.13986 respectively, and the distribution across prediction-set sizes is similar
for both methods. Once again we achieve competitive performance with “traditional” state of the art
conformal prediction methods, even in a setting favorable to them (i.e. a setting with i.i.d. data in
which only marginal coverage is measured).
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Figure B.9: A bar graph showing the size of prediction-sets generated by MVP and RAPS over a
dataset of 30,000 images. MVP achieves prediction-set sizes on par with RAPS.
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