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A.1 Details on Proposition 1

We first provide the proof of Proposition 1 for cumulative risk-averse regret Eq. (3) with known
variance-proxy ρ2(·) (see Definition 1) (Appendix A.1.1). We further provide data-independent
bounds for βT (Appendix A.1.2) and maximum information gain γT (Appendix A.1.3) that together
conclude the proof for sub-linear on T regret guarantees for most of the popularly used kernels.

A.1.1 Proof Proposition 1

Proposition 1. Consider any f ∈ Hκ with ‖f‖κ ≤ Bf and sampling model from Eq. (1) with known
variance-proxy ρ2(x). Let {βt}Tt=1 be set as in Lemma 1 with λ = 1. Then, with probability at least
1− δ, RAHBO attains cumulative risk-averse regret RT = O

(
βT
√
TγT (%̄2 + 1)

)
.

Proof. The main steps of the proof are as follows: In Step 1, we derive the upper and the lower
confidence bounds, ucbMV

t (xt) and lcbMV
t (xt), on MV(xt) at iteration t. In Step 2, we bound

the instantaneous risk-averse regret r(xt) := MV(x∗) − MV(xt). In Step 3, we derive mutual
information I(y1:T , f1:T ) in case of the heteroscedastic noise. In Step 4, we bound the sum of
variances

∑T
t=1 σt−1(xt) via mutual information I(y1:T , f1:T ). In Step 5, we bound the cumulative

regret RT =
∑T
t=1 r(xt) based on the previous steps.

Step 1: On the confidence bounds for MV(x).
In case of known variance-proxy ρ2(x), the confidence bounds for MV(x) at iteration t can be directly
obtained based on the posterior µt(x) and σt(x) for f(x) defined in Eqs. (5) and (6). Particularly,
for βt = βt(δ) defined in Eq. (8), Pr

{
lcbMV

t (x) ≤ MV(x) ≤ ucbMV
t (x) ∀x ∈ X ,∀t ≥ 0

}
≥ 1− δ

with the confidence bounds:

lcbMV
t (x) := µt−1(x)− βtσt−1(x)− αρ2(x), (18)

ucbMV
t (x) := µt−1(x) + βtσt−1(x)− αρ2(x). (19)

Step 2: On bounding the instantaneous risk-averse regret rt(x). We have

r(xt) = MV(x∗)−MV(xt)

≤ ucbMV
t (x∗)− lcbMV

t (xt)

≤ ucbMV
t (xt)− lcbMV

t (xt) = 2βtσt−1(xt),

where the first inequality is due to the definition of confidence bounds, the second is due to the
acquisition strategy xt ∈ arg maxx∈X ucbMV

t (x); and the equality further expands lcbMV
t (x) and

ucbMV
t (x). Thus, the cumulative regret can be bounded as follows:

RT =

T∑
t=1

r(xt) ≤
T∑
t=1

2βtσt−1(xt) ≤ 2βT

T∑
t=1

σt−1(xt), (20)

where the last inequality holds since {βt}Tt=1 is a non-decreasing sequence.

Step 3: On mutual information I(y1:T , f1:T ) and maximum information gain γT .
Mutual information I(y1:T , f1:T ) between the vector of evaluations y1:T ∈ RT at pointsA = {xt}Tt=1

and f1:T = [f(x1), . . . , f(xT )]> is defined by

I(y1:T , f1:T ) = H(y1:T )−H(y1:T |f1:T ),

where H(·) denotes entropy. Under the modelling assumptions f1:T ∼ N (0, λ−1KT ) and ξ1:T ∼
N (0,ΣT ) for the noise ξ1:T = [ξ(x1), . . . , ξ(xT )]>, the measurements are distributed as y1:T ∼
N (0, λ−1KT + ΣT ) and yt|y1:t−1 ∼ N (µt−1(xt), ρ

2(xt) + σ2
t−1(xt)), where σ2

t−1(·) is defined in
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Eq. (6). Hence, the entropy of each new measurement yt conditioned on the previous history y1:t−1 is:

H(yt|y1:t−1) =
1

2
ln
(
2πe

(
ρ2(xt) + σ2

t−1(xt)
))

=
1

2
ln

(
2πeρ2(xt)

(
1 +

σ2
t−1(xt)

ρ2(xt)

))
=

1

2
ln

(
2πeρ2(xt)

)
+

1

2
ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
,

H(y1:T ) =

T∑
t=1

H(yt|y1:t−1) =
1

2

T∑
t=1

ln

(
2πeρ2(xt)

)
+

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
,

H(y1:T |f1:T ) =

T∑
t=1

H(yt|ft) =
1

2

T∑
t=1

ln(2πeρ2(xt)).

Therefore, the information gain for y1:T is:

I(y1:T , f1:T ) = H(y1:T )−H(y1:T |f1:T ) =
1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
. (21)

Then, by definition of maximum information gain:

γT := max
A⊂X , |A|=T

I(y1:T , f1:T ) ≥ 1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
. (22)

Step 4: On bounding
∑T
t=1 σt−1(xt).

T∑
t=1

σt−1(xt) =

T∑
t=1

ρ(xt)

ρ(xt)
σt−1(xt) ≤

√√√√T

T∑
t=1

ρ2(xt)
σ2
t−1(xt)

ρ2(xt)

≤

√√√√T

T∑
t=1

1

ln(1 + ρ−2(xt))
ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)

≤

√√√√√√√
2T

ln(1 + %̄−2)

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
︸ ︷︷ ︸

mutual information Eq. (21)

, (23)

where the first inequality follows from the Cauchy-Schwarz inequality. The second one is due to
the fact that for any s2 ∈ [0, ρ−2(xt)] we can bound s2 ≤ ρ−2(xt)

ln(1+ρ−2(xt))
ln(1 + s2), that also holds

for s2 := ρ−2(xt)σ
2
t−1(xt) since ρ−2(xt)σ

2
t−1(xt) ≤ ρ−2(xt)λ

−1κ(xt, xt) ≤ ρ−2(xt) for λ ≥ 1.
The third inequality is due to ρ(x) ∈ [%, %̄].

Step 5: Bounding risk-averse cumulative regret RT =
∑T
t=1 r(xt).

Combining the previous three steps together: Eq. (20), Eq. (22), and Eq. (23) we finally obtain:

RT ≤
T∑
t=1

2βtσt−1(xt) ≤ 2βT

T∑
t=1

σt−1(xt) ≤ 2βT

√
2T

ln(1 + %̄−2)
γT

Also, note that for any α ≥ 0 the bound ln(1 + α) ≥ α
1+α holds, thus 1

ln(1+%̄−2) ≤
1+%̄−2

%̄−2 = %̄2 + 1.

Therefore, the cumulative regret can be also bounded as RT = O(βT
√
TγT (%̄2 + 1)).
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A.1.2 Bounds for βT

We provide the bounds for the data-dependent βT that appear in the regret bound (see Eq. (8)).
Following our modelling assumptions f1:T ∼ N (0, λ−1KT ) and ξ1:T ∼ N (0,ΣT ), the information
gain I(y1:T , f1:T ) = H(y1:T )−H(y1:T |f1:T ) is given as follows:

I(y1:T , f1:T ) =
1

2
ln
(

det(2πe(λ−1KT + ΣT ))
)

︸ ︷︷ ︸
H(y1:T )

− 1

2
ln
(

det(2πeΣT )
)

︸ ︷︷ ︸
H(y1:T |f1:T )

=
1

2
ln

(
det(KT + λΣT )

det(λΣT )

)
.

(24)

By definition then γT = max
A⊂X , |A|=T

I(y1:T , f1:T ) ≥ 1
2 ln

(
det(KT+λΣT )

det(λΣT )

)
. On the other hand, βT

defined in Lemma 1 can be expanded in a data-independent manner as follows:

βT :=

√
2 ln

(
det(λΣT +KT )1/2

δ det(λΣT )1/2

)
+
√
λ‖f‖κ

=

√
2 ln

1

δ
+ ln

(
det(λΣT +KT )

det(λΣT )

)
+
√
λ‖f‖κ ≤

√
2 ln

1

δ
+ γT +

√
λBf . (25)

A.1.3 Bounds for γT

Here, we show the relation between the information gains under heteroscedastic and homoscedastic
noise. Note that for the latter the upper bounds are widely known, e.g., [35]. To distinguish between
the maximum information gain for heteroscedastic noise with variance-proxy ρ2(x) and the maximum
information gain for homoscedastic noise with fixed variance-proxy σ2, we denote them as γρxT and
γσT respectively. Recall that %2(·) ∈ [%2, %̄2] for some constant values %̄2 ≥ %2 > 0.

Below, we show that γρxT ≤ γσT
%̄2

%2 with σ2 set to %̄2, that only affects the constants but not the main
scaling (in terms of T ) of the known bound for the homoscedastic maximum information gain.

γρxT
1
= max

A⊂X ,|A|=T

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt|ρ2(xt))

ρ2(xt)

) 2

≤ max
A⊂X ,|A|=T

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt|%̄2)

%2

)
(26)

3
= max

A⊂X ,|A|=T

1

2

T∑
t=1

ln

(
1 +

%̄2

%2

σ2
t−1(xt|%̄2)

%̄2

) 4

≤ max
A⊂X ,|A|=T

1

2

T∑
t=1

%̄2

%2
ln

(
1 +

σ2
t−1(xt|%̄2)

%̄2

)
(27)

5
= max

A⊂X ,|A|=T

%̄2

%2

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt|σ2)

σ2

)
=
%̄2

%2
γσT , (28)

where 1 follows from Eq. (21). In 2 , we lower bound the denominator ρ2(xt) and upper bound the
numerator σ2

t−1(xt) (due to monotonicity w.r.t. noise variance, i.e., σ2
t−1(xt|Σt) ≤ σ2

t−1(xt|%̄2It)).
In 3 , we multiply by 1 = %̄2/%̄2. In 4 we use Bernoulli inequality since %̄2/%2 ≥ 1. The obtained
expression can be interpreted as a standard information gain for homoscedastic noise and, particularly,
with the variance-proxy σ2 set to %̄2 due to 5 . Finally, the upper bounds on γσT typically scale
sublinearly in T for most of the popularly used kernels [35], e.g, for linear kernel γT = O(d log T ),
and for squared exponential kernel γT = O(d(log T )d+1).

γT = O(d(log T )d+1)
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A.2 Tighter bounds for the variance-proxy ρ2
η(x).

Assumption 2 states that noise η(x) from Eq. (13) is ρ2
η(x)-sub-Gaussian with variance-proxy ρ2

η(x)

being known. In practice, ρ2
η(x) might be unknown. Here, we describe a way to estimate ρ2

η(x) under
the following two assumptions: the evaluation noise ξ(x) is strictly sub-Gaussian (that is already
reflected in the Assumption 1) and the noise η(x) of variance evaluation is also strictly sub-Gaussian,
that is, Var[η(x)] = ρ2

η(x) and Var[ξ(x)] = ρ2(x).

(i) Reformulation of the sample variance. We first rewrite the sample variance defined in Eq. (12) as
the average over squared differences over all pairs {y1(x), . . . , yk(x)}:

ŝ2
k(x)

1
=

1

2k(k − 1)

k∑
i=1

k∑
j=1

(yi(x)− yj(x))2
2
=

1

2k(k − 1)

k∑
i=1

k∑
j=1

(ξi(x)− ξj(x))2, (29)

where 2 is due to yi(x) = f(x) + ξi(x), and 1 is equivalent to the Eq. (12) due to the following:

1

2k(k − 1)

k∑
i=1

k∑
j=1

(yi − yj)2 =
1

2k(k − 1)

k∑
i=1

k∑
j=1

(yi − m̂k + m̂k − yj)2 (30)

=
1

2k(k − 1)

k∑
i=1

k∑
j=1

[(
yi − m̂k

)2
+
(
yj − m̂k

)2 − 2
(
yi − m̂k

)(
yj − m̂k

)]
=

1

2k(k − 1)

k∑
i=1

k∑
j=1

[(
yi − m̂k

)2
+
(
yj − m̂k

)2]
=

1

k − 1

k∑
i=1

(yi − m̂k)2. (31)

(ii) Variance of the sample variance Var[ŝ2
k(x)]. In Eq. (29), we show that sample variance can

be written in terms of the noise ξ(x). In [4] (see Eq. (37)), it is shown that for i.i.d observations
{ξ1(x), . . . , ξk(x)}, sampled from a distribution with the 2nd and 4th central moments Var[ξ(x)]
and µ4(x) = E[ξ4(x)], respectively, the variance of the sample variance can be computed as follows:

Var[ŝ2
k(x)] = E[

(
ŝ2
k(x)

)2
]− E[ŝ2

k(x)]2 =
µ4(x)

k
− (k − 3)Var2[ξ(x)]

k(k − 1)
.

Since ξ(x) is strictly ρ(x)–sub-Gaussian, the latter can be further adapted as

Var[ŝ2
k(x)] =

µ4(x)

k
− (k − 3)ρ4(x)

k(k − 1)
.

(iii) Due to η(x) being strictly sub-Gaussian, i.e., ρ2
η(x) = Var[η(x)] = Var[ŝ2

k(x)], the derivation
above also holds for the variance-proxy ρ2

η(x):

ρ2
η(x) =

µ4(x)

k
− (k − 3)ρ4(x)

k(k − 1)
.

(iv) Bound 4th moment µ4(x). The 4th moment µ4(x) can expressed in terms of the distribution
kurtosis that is bounded under our assumptions. Particularly, kurtosis Kurt[ξ] := E[(ξ−E[ξ])4]

Var2(ξ) is
measure that identifies the tails behaviour of the distribution of ξ; Kurt(ξ) = 3 for normallly
distribute ξ and Kurt(ξ) ≤ 3 for strictly sub-Gaussian random variable ξ (see [2]). This implies

µ4(x) = Kurt
(
ξ(x)

)
ρ4(x) ≤ 3ρ4(x).

(v) Bound variance-proxy. There

ρ2
η(x) ≤ 3(k − 1)ρ4(x)− (k − 3)ρ4(x)

k(k − 1)
=

3k − 3− k + 3

k(k − 1)
ρ4(x) =

2ρ4(x)

k − 1
.
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In case of the known bound %̄2 ≥ ρ2(x), we bound the unknown ρ2
η(x) as follows:

ρ2
η(x) ≤ 2%̄4

k − 1
.

A.3 Method details: GP-estimator of variance-proxy ρ2

According to the Assumption 2, variance-proxy ρ2 ∈ Hκvar is smooth, and η(x) = ŝ2
k(x)− ρ2(x)

is ρη(x)-sub-Gaussian with known variance-proxy ρ2
η(x). In this case, confidence bounds for ρ2(x)

follow the ones derived in Lemma 1 with βvart based on Σvart . Particularly, we collect noise
variance evaluations {xt, ŝk(xt)}Tt=0. Then the estimates for µvarT (x) and σvarT (x) for ρ2 follow the
corresponding estimates for f(x). Particularly,

µvart (x) = κvart (x)T (Kvar
t + λΣvart )−1ŝ1:t, (32)

σvart (x)2 =
1

λ
(κvar(x, x)− κvart (x)>(Kvar

t + λΣvart )−1κvart (x)), (33)

where Σvart = diag[ρ2
η(x1), . . . , ρ2

η(xt)], κvart (x) = [κvar(x1, x), . . . , κvar(xt, x)]T and
(Kvar

t )i,j = κvar(xi, xj). The confidence bounds are then:

ucbvart (x) = µvart−1(x) + βvart σvart−1(x)

lcbvart (x) = µvart−1(x)− βvart σvart−1(x),

with {βvart }Tt=1 set according to Lemma 1.

A.4 Proof of Theorem 1

Theorem 1. Consider any f ∈ Hκ with ‖f‖κ ≤ Bf and sampling model in Eq. (1) with unknown
variance-proxy ρ2(x) that satisfies Assumptions 1 and 2. Let {xt}Tt=1 denote the set of actions chosen
by RAHBO (Algorithm 1) over T rounds. Set {βt}Tt=1 and {βvart }Tt=1 according to Lemma 1 with
λ = 1, R2 = maxx∈X ρ

2
η(xt) and ρ(·) ∈ [%, %̄]. Then, the risk-averse cumulative regret RT of

RAHBO is bounded as follows:

Pr

{
RT ≤ βT k

√
2T γ̂T

ln(1 + k/%̄2)
+ αβvarT k

√
2TΓT

ln(1 +R−2)
, ∀T ≥ 1

}
≥ 1− δ. (34)

Proof. The main steps of our proof are as follows: In Step 1, we derive the upper and the lower
confidence bounds, ucbMV

t (xt) and lcbMV
t (xt), on MV(xt) at iteration t. In Step 2, we bound the

instantaneous risk-averse regret r(xt) := MV(x∗)−MV(xt). In Step 3, we derive mutual information
both for function and variance-proxy evaluations. In Step 4, we bound the sum of variances via
mutual information. In Step 5, we bound the cumulative regret RT =

∑T
t=1 r(xt) based on the

previous steps.

Step 1: On confidence bounds for MV(x).

(i) On confidence bounds for ρ2(x). According to Eq. (33), with probability 1 − δ the following
confidence bounds hold with {βvart }Tt=1 set according to Lemma 1:

ucbvart (x) = µvart−1(x) + βvart σvart−1(x),

lcbvart (x) = µvart−1(x)− βvart σvart−1(x).

(ii) On confidence bounds for f(x). Here we adapt confidence bounds introduced in Eq. (18)-(19)
since Eq. (5) relies on the unknown variance-proxy ρ2(x) incorporated into ΣT . Conditioning on the
event that ρ2(x) is upper bounded by ucbvart (x) ≥ ρ(x)2 defined in (i), the confidence bounds for f
with probability 1− δ are:

ucbft (x) = µt−1(x|Σ̂t−1) + βtσt−1(x|Σ̂t−1), (35)

lcbft (x) = µt−1(x|Σ̂t−1)− βtσt−1(x|Σ̂t−1), ∀x, t. (36)
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(iii) On confidence bounds for MV(x). Finally, combining (i) and (ii) and using the union bound, with
probability 1− 2δ, we get lcbMV

t (x) ≤ MV(x) ≤ ucbMV
t (x) with

ucbMV
t (x) = ucbft (x)− αlcbvart (x), (37)

lcbMV
t (x) = lcbft (x)− αucbvart (x), ∀x, t. (38)

Step 2: On bounding the instantaneous regret.
First, we bound instantaneous regret of a single measurement at point xt, but with unknown variance-
proxy ρ2(x) as follows:

rt := MV(x∗)−MV(xt) ≤ ucbMV
t (x∗)− lcbMV

t (xt)

≤ ucbMV
t (xt)− lcbMV

t (xt)

= ucbft (xt)− lcbft (xt) + α(ucbvart (xt)− lcbvart (xt))

= 2βtσt−1(xt|Σ̂t−1) + 2αβvart σvart−1(xt). (39)

The second inequality is due to the acquisition algorithm. The last equality is due to the fact
that ucbft (x) − lcbft (x) = 2βtσt−1(xt) by definition, as well as ucbvart (x) − lcbvart (x) =
2βvart σvart−1(xt).

Note that at each iteration t we take k measurements, hence the total number of measurements is Tk.
Thus, we can bound the cumulative regret by

RT =

T∑
t=1

kr(xt) ≤ k
T∑
t=1

2βtσt−1(xt|Σ̂t−1) + k

T∑
t=1

2αβvart σvart−1(xt)

≤ 2kβT

T∑
t=1

σt−1(xt|Σ̂t−1) + 2kαβvarT

T∑
t=1

σvart−1(xt). (40)

Step 3: On bounding maximum information gain.
We follow the notion of information gain I(m̂1:T , f1:T ) computed assuming that m̂1:T =

[m̂k(x1), . . . , m̂k(xT )]T with m̂k(xt) = 1
k

∑k
i=1 yi(xt) (Eq. (12)). Under the modelling assump-

tions f1:T ∼ N (0, λ−1KT ), and m̂1:T ∼ N (f1:T , diag(%̄2/k)) with variance-proxy %̄2/k, the
information gain is:

I(m̂1:T , f1:T ) :=

T∑
t=1

1

2
ln

(
1 +

σ2
t−1(xt|diag(%̄2/k))

%̄2/k

)
. (41)

We define the corresponding maximum information gain γ̂T = maxA⊂X ,|A|=T I(m̂1:T , f1:T )

γ̂T := max
A⊂X ,|A|=T

T∑
t=1

1

2
ln

(
1 +

σ2
t−1(xt|diag(%̄2/k))

%̄2/k

)
. (42)

Analogously, for ρ(x) with the posterior N (µvart (x), (σvart (x))2), the information gain is defined as:

I(ŝ2
1:T , ρ

2
1:T ) :=

1

2

T∑
t=1

ln

(
1 +

(σvart−1)2(x)

ρ2
η(xt)

)
. (43)

Then, the corresponding maximum information gain ΓT is as follows:

ΓT := max
A⊂X ,|A|=T

I(ŝ2
1:T , ρ

2
1:T ) = max

A⊂X ,|A|=T

1

2

T∑
t=1

ln

(
1 +

(σvart−1)2(x)

ρ2
η(xt)

)
, (44)

where A is again a set of size T with points {x1, . . . , xT } .
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Step 4: On bounding
∑T
t=1 σt−1(xt|Σ̂t−1) and

∑T
t=1 σ

var
t−1(xt)

We repeat the corresponding derivation for known ρ2(x), recalling that ρ2(x) ≤ %̄2,∀x ∈ X :

T∑
t=1

σt−1(xt|Σ̂t−1) =

T∑
t=1

%̄

%̄
σt−1(xt|Σ̂t−1) ≤

√√√√T

T∑
t=1

%̄2

k

σ2
t−1

(
xt|diag(%̄2/k)

)
%̄2/k

≤

√√√√T
%̄2

k

k/%̄2

ln(1 + k/%̄2)

T∑
t=1

ln

(
1 +

σ2
t−1

(
xt|diag(%̄2/k)

)
%̄2/k

)

≤

√√√√√√√
2T

ln(1 + k/%̄2)

T∑
t=1

1

2
ln

(
1 +

σ2
t−1

(
xt|diag(%̄2/k)

)
%̄2/k

)
︸ ︷︷ ︸

mutual information Eq. (41)

. (45)

Here, the first inequality follows from Cauchy-Schwarz inequality and the fact that σt(xt|Σ̂t) ≤
σt(xt|diag(%̄2/k)). The latter holds by the definition of Σ̂t, particularly:

σ2
t (xt|Σ̂t) =

1

λ
(κ(x, x)− κt(x)>(Kt + λΣ̂t)

−1κt(x)),

σ2
t

(
xt|diag(%̄2/k)

)
=

1

λ
(κ(x, x)− κt(x)>

(
Kt + λdiag(%̄2/k)

)−1
κt(x)),

Σ̂t = 1
kdiag

(
min{ucbvart (x1), %̄2}, . . . ,min{ucbvart (xt), %̄

2}
)
,

then Σ̂t � diag(%̄2/k), and −(Kt + λΣ̂t)
−1 � −(Kt + λdiag(%̄2/k))−1. That implies

σ2
t (xt|Σ̂t)− σ2

t

(
xt|diag(%̄2/k)) = −κt(x)>

(
Kt + λΣ̂t)

−1κt(x)
)

+ κt(x)>(Kt + λdiag(%̄2/k))−1κt(x)
)

≤ 0.

The second inequality in Eq. (45) is due to the fact that for any s2 ∈ [0, k/%̄2(xt)] we can bound

s2 ≤ k/%̄2(xt)
ln(1+k/%̄2(xt))

ln(1 + s2), that also holds for s2 :=
σ2
t−1

(
xt|diag(%̄2/k)

)
%̄2/k since for any λ ≥ 1

σ2
t−1

(
xt|diag(%̄2/k)

)
%̄2/k

≤ λ−1κ(xt, xt)

%̄2/k
≤ k/%̄2.

Similarly, we bound

T∑
t=1

σvart−1(xt) =

T∑
t=1

ρη(xt)

ρη(xt)
σvart−1(xt) ≤

√√√√T

T∑
t=1

ρ2
η(xt)

(σvart−1)2(xt)

ρ2
η(xt)

≤

√√√√√√√
2T

ln(1 +R−2)

T∑
t=1

1

2
ln

(
1 +

(σvart−1)2(xt)

ρ2
η(xt)

)
︸ ︷︷ ︸

mututal information Eq. (43)

, (46)

in the above we defineR2 := maxx∈A ρ
2
η(x), A = {x1, . . . , xT }.

Step 5: On bounding cumulative regret RT =
∑T
t=1 kr(xt)

Combining the above three steps together, we obtain with probability 1− 2δ

RT ≤ βT k

√
2T γ̂T

ln(1 + k/%̄2)
+ αβvarT k

√
2TΓT

ln(1 +R−2)
. (47)
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A.5 Proof of Corollary 1.1

Corollary 1.1 Consider the setup of Theorem 1. Let A = {xt}Tt=1 denote actions selected
by RAHBO over T rounds. Then, with probability at least 1 − δ, the reported point x̂T :=

arg maxxt∈A lcbMV
t (xt), where lcbMV

t (xt) = lcbft (x) − α ucbvart (x), achieves ε-accuracy, i.e.,

MV(x∗)−MV(x̂T ) ≤ ε, after T ≥ 4β2
T γ̂T / ln(1+k/%̄2)+4α(βvart )2ΓT / ln(1+R−2)

ε2 rounds.

Proof. We select the maximizer of lcbMV
t (xt) over the past points xt:

x̂T := xt∗ , where t∗ := arg max
t
{lcbMV

t (xt)} = arg min
t
{MV(x∗)− lcbMV

t (xt)},

since adding a constant does not change the solution. We denote r̂(xt) := MV(x∗) − lcbMV
t (xt).

Then we obtain the following bound

MV(x∗)−MV(xt∗) ≤ MV(x∗)− lcbMV
t∗ (xt∗) =

1

T

T∑
t=1

r̂(xt∗)

≤ 1

T

T∑
t=1

r̂(xt) =
1

T

T∑
t=1

(
MV(x∗)− lcbMV

t (xt)
)

≤ 1

T

T∑
t=1

(
ucbMV

t (x∗)− lcbMV
t (xt)

)
≤ 1

T

T∑
t=1

(
ucbMV

t (xt)− lcbMV
t (xt)

)
. (48)

In the above, the first inequality holds with high probability by definition lcbMV
t∗ (xt∗) ≤ MV(xt∗),

the second inequality is due to t∗ := arg mint r̂(xt) and therefore r̂(xt∗) ≤ r̂(xt) ∀t = 1, . . . , T.

The third inequality holds since ucbMV
t (x) ≥ MV(x) with high probability, and the fourth is due to

ucbMV
t (xt) ≥ ucbMV

t (x) for every x, since xt is selected via Algorithm 1.

Recalling Eq. (47), note that the following bounds hold:

RT =

T∑
t=1

kr(xt) ≤
T∑
t=1

k(ucbMV
t (xt)− lcbMV

t (xt)) ≤ βT k

√
2T γ̂T

ln(1 + k/%̄2)
+ αβvarT k

√
2TΓT

ln(1 +R−2)
.

(49)

Combining the above Eq. (49) with Eq. (48) we can get the following upper bound

MV(x∗)−MV(xt∗) ≤
βT k

√
2T γ̂T / ln(1 + k/%̄2) + αβvarT k

√
2TΓT / ln(1 +R−2)

kT

≤

√
4
(
kβ2

T γ̂T / ln(1 + k/%̄2) + αk(βvart )2ΓT / ln(1 +R−2)
)

√
kT

.

Therefore, for Tk samples with Tk ≥ 4(kβ2
T γ̂T / ln(1+k/%̄2)+αk(βvart )2ΓT / ln(1+R−2))

ε2 we finally obtain

MV(x∗)−MV(xt∗) ≤ ε.

A.6 Experimental settings and extended results

Implementation and resources We implemented all our experiments using Python and BoTorch
[3].3 We ran our experiments on an Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz machine.

3https://botorch.org/
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A.6.1 Example function

We provide additional visualizations for the example sine function in Fig. 6. These examples
demonstrate that exploration-exploitation trade-off (as in GP-UCB) might not be enough to prefer
points with lower noise and GP-UCB might tend to acquire points with higher variance. In contrast,
RAHBO, initialized with the same point, prefers points with lower risk inherited in noise.

Figure 6: Additional examples for Section 4 (each row corresponds to one initialization). GP models
fitted for GP-UCB (left column) and RAHBO (right column) for sine function. After initialization
with the same sampled points, GP-UCB concentrates on the high-noise region whereas RAHBO
prefers small variance.

A.6.2 Branin

We provide additional visualizations, experimental details and results. Firstly, we plot the noise-
perturbed objective function in Fig. 7 in addition to the visualization in Fig. 1c. In Fig. 8, we plot
cumulative regret and simple mean-variance regrets that extends the results in Fig. 5a with RAHBO-
US. The general setting is the same as described for Fig. 5a: we use 10 initial samples, repeat each
evaluation k = 10 times, and RAHBO-US additionally uses 10 samples for learning the variance
function with uncertainty sampling. During the optimization, RAHBO-US updates the GP model
for variance function after every acquired point.

(a) Unknown objective (b) Unknown variance (c) Noise-perturbed evaluations

Figure 7: Visualization of noise-perturbed function landscape:(a) Unknown objective with 3 global
maxima marked as (A, B, C). (b) Heteroscedastic noise variance over the same domain: the noise
level at (A, B, C) varies according to the sigmoid function. (c) Noise-perturbed evaluations: A is
located in the noisiest region.
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Figure 8: Branin: (a) Cumulative regret. (b) Suboptimality w.r.t. MV

A.7 Random Forest tuning

Experiment motivation: Consider the motivating example first: the optimized RF model will be
exploited under the data drift over time, e.g., detecting fraud during a week. We are interested not
only in high performance on average but also in low variance across the results. Particularly, the first
can be a realization of the decent result in the first days and unacceptable result in the last days, and
the latter ensures lower dispersion over the days while keeping a reasonable mean. In this case, when
training an over-parametrized model that is prone to overfitting (to the training data), e.g., Random
Forest (RF) with deep trees, high variance in validation error might be observed. In contrast, a model
that is less prone to overfitting can result into a similar validation error with lower variance.

RF specifications: We use scikit-learn implementation of RF. The RF search spaces for BO are
listed in Table 1 and other parameters are the default provided by scikit-learn. 4 During BO, we
transform the parameter space to the unit-cube space.

Dataset: We tune RF on a dataset of fraudulent credit card transactions [23] originally announced
for Kaggle competition.5 It is a highly imbalanced dataset that consists of 285k transactions and
only 0.2% are fraud examples. The transactions occurred in two days and each has a time feature that
contains the seconds elapsed between each transaction and the first transaction in the dataset. We
use the time feature to split the data into train and validation sets such that validation transactions
happen later than the training ones. The distribution of the fraud and non-fraud transactions in time is
presented in Fig. 9.

In BO, we collect evaluation in the following way: we fix the training data to be the first half of the
transactions, and the rest we split into 5 validation folds that are consecutive in time. The RF model
is then trained on the fixed training set, and evaluated on the validations sets. We use a balanced
accuracy score that takes imbalance in the data into account.

task hyperparameter search space

RandomForest
n_estimators [1, 100]

max_features [5, 28]
max_depth [1, 15]

Table 1: Search space description for RF.

4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

5https://www.kaggle.com/mlg-ulb/creditcardfraud
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Figure 9: Distribution of non-fraud (left) and fraud (right) transactions in the dataset

A.7.1 Tuning Swiss free-electron laser (SwissFEL)
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(a) Mean-variance tradeoff (SwissFEL)
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Figure 10: (a) We plot standard deviation error bars for f(x) and ρ2(x) at the reported point by the
best observed value x(T ) = arg maxxt yt(xt) after BO completion for SwissFEL. The mean and std
of the error bars are taken over the repeated BO experiments. The results demonstrate, that reporting
based on the best observed value inherits high noise and as the result all methods perform similarly.
Intuitively, when noise variance is high, it is possible to observe higher values. That however also
inherits observing much lower value at this point, this leading to very non-robust solutions. (b-c)
Cumulative regret for α = 2 and α = 5.
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