
Proceedings of Machine Learning Research 297, 2025 Machine Learning for Health (ML4H) 2025

MedVLThinker: Simple Baselines for Multimodal Medical
Reasoning

Xiaoke Huang xhuan192@ucsc.edu

UC Santa Cruz

Juncheng Wu jwu418@ucsc.edu

UC Santa Cruz

Hui Liu huiliulayne@gmail.com

Amazon Research

Xianfeng Tang tangxianfeng@outlook.com

Amazon Research

Yuyin Zhou yzhou284@ucsc.edu

UC Santa Cruz

Abstract

Large Reasoning Models (LRMs) have in-
troduced a new paradigm in AI by enabling
models to “think before responding” via chain-
of-thought reasoning. However, the absence
of open and reproducible recipes for build-
ing reasoning-centric medical LMMs hinders
community-wide research, analysis, and com-
parison. In this paper, we present MedVL-
Thinker, a suite of simple yet strong baselines.
Our fully open recipe consists of: (1) system-
atic data curation for both text-only and image-
text medical data, filtered according to varying
levels of reasoning difficulty, and (2) two train-
ing paradigms: Supervised Fine-Tuning (SFT)
on distilled reasoning traces and Reinforce-
ment Learning with Verifiable Rewards (RLVR)
based on final answer correctness. Across ex-
tensive experiments on the Qwen2.5-VL model
family (3B, 7B) and six medical QA bench-
marks, we find that RLVR consistently and sig-
nificantly outperforms SFT. Additionally, un-
der the RLVR framework, a key, counter-
intuitive finding is that training on our cu-
rated text-only reasoning data provides a more
substantial performance boost than training on
multimodal image-text data. Our best open 7B
model, trained using the RLVR recipe on text-
only data, establishes a new state-of-the-art on
existing public VQA benchmarks, surpassing all
previous open-source medical LMMs. Further-
more, scaling our model to 32B achieves per-
formance on par with the proprietary GPT-4o.
We release all curated data, models, and code
to provide the community with a strong, open
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Figure 1: MedVLThinker provides a simple yet
strong baseline for multimodal medical reasoning.
Notably, MedVLThinker-32B yields performance
on par with the closed-source GPT-4o model.

foundation for future research in multimodal
medical reasoning.
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Figure 2: The data filtering and training pipeline. (A) We first filter both text-only m23k dataset and image-
text PMC-VQA dataset, by generating multiple answers per question with Qwen2.5-VL-Instruct. Then we
filter those questions are answered all wrong or almost correct. (B) Based on the filtered two datasets,
we conduct supervised finetuning (SFT), reinforcement learning with verfiable rewaresd (RLVR), and their
combination to train a herd of multimodal medical large reasoning models.

1. Introduction

The practice of healthcare increasingly involves pro-
cessing vast amounts of multimodal medical data
(e.g., text, imaging, lab results). Clinicians must
integrate information from different sources (clini-
cal notes, radiology images, lab reports) to make
diagnoses and treatment decisions. Large Multi-
modal Models (LMMs) have recently emerged as
general-purpose foundation models that can perceive
and reason about visual inputs Li et al. (2023); Liu
et al. (2023b, 2024); Hurst et al. (2024); Chen et al.
(2024b); Xie et al. (2024b). Given that medical data
are natively multimodal (e.g., microscopy slides, CT
and MRI scans, X-rays), LMMs have a natural ap-
peal for medical AI and have begun to be adopted
in modality-rich clinical settings with the potential
to improve diagnosis Chen et al. (2024b); Li et al.
(2023); Liu et al. (2023a), treatment planning Zhou
et al. (2023), and patient monitoring Alshibli et al.
(2025).

Parallel to this, Large Reasoning Models (LRMs)
extend large language models with a new response
paradigm: the model “thinks” through a chain-of-
thought before producing a final answer. This allows
the model to devote more computation at inference
time to reasoning, often improving performance on
complex tasks Guo et al. (2025); Guha et al. (2025);
Jaech et al. (2024). Early medical adaptations of
text-only LRMs have demonstrated strong perfor-
mance on medical QA tasks Huang et al. (2025); Chen
et al. (2024a); Wu et al. (2025); Jiang et al. (2025);
Xie et al. (2024a). The ability to generate detailed
reasoning steps at test time appears to confer signif-
icant gains in accuracy on challenging questions Zuo

et al. (2025). However, how to best combine this
reasoning paradigm with multimodal understanding
remains underexplored. While there have been ef-
forts to build medical multimodal reasoning models,
they are often limited in openness—being either en-
tirely closed-source Su et al. (2025); Liu et al. (2025),
releasing only model weights without data or train-
ing code Sellergren et al. (2025), or, if fully open,
are confined to narrow datasets or specific domains
(e.g., CT or MRI only) Lai et al. (2025); Pan et al.
(2025). As a consequence, the field lacks a compre-
hensive analysis of how critical factors such as data
modality, curation pipelines, and training strategies
affect model performance.

In this paper, we provide MedVLThinker, the
very first fully open-source recipe for building and
evaluating generalized Medical Vision-Language Rea-
soning Models. Our comprehensive framework pro-
vides a complete workflow, from data curation and
training pipelines to a standardized evaluation pro-
tocol. This enables, for the first time, a fair and sys-
tematic comparison across diverse multimodal medi-
cal QA benchmarks. Figure 2 provides an overview of
our approach. We first curate two types of train-
ing data: a text-only QA dataset and an image-text
(multimodal) QA dataset. Using a general-purpose
multimodal LLM (Qwen2.5-VL-Instruct) Bai et al.
(2025), we probe each question with multiple trials to
estimate its difficulty. Specifically, for each question,
we generate multiple candidate answers and count
how many times the model answers correctly (the
“pass count”). Questions that are consistently an-
swered correctly (too easy) or never answered cor-
rectly (too hard) are filtered out, yielding a focused
training set of medium-difficulty questions. We then
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employ strong teacher models to generate detailed
reasoning chains (long chains-of-thought, CoTs) for
the remaining questions. For text-only questions, we
use the DeepSeek Guo et al. (2025) model (a powerful
text-based LRM) as the CoT teacher, and for image-
based questions, we use GPT-4o Hurst et al. (2024)
(a vision-enabled GPT-4 variant).

Using these data, we train the base multimodal
LLM under two paradigms: (1) Supervised fine-
tuning (SFT) on the teacher-generated CoT traces,
and (2) Reinforcement Learning with Verifiable Re-
wards (RLVR) on the question-answer pairs (with-
out CoTs). SFT directly teaches the model to re-
produce high-quality reasoning and answer traces,
whereas RLVR uses only binary rewards from an-
swer correctness to encourage the model’s own rea-
soning. We implement RLVR via Group Relative Pol-
icy Optimization (GRPO) Shao et al. (2024), an effi-
cient policy-gradient algorithm that requires no value
estimator or critic model. In RLVR training, the
model generates multiple reasoning traces for each
question; each trace is verified for correct answer for-
mat and correctness of the final answer, yielding a +1
or -1 reward. These binary rewards are normalized
(whitened) across the batch and fed into the GRPO
update step, which applies a PPO-style clipped objec-
tive. This process gradually concentrates the model’s
generation probability mass on verifiably correct rea-
soning traces while limiting divergence from the orig-
inal model output distribution.

We conduct extensive experiments on six multi-
modal medical QA benchmarks to investigate
the properties of our MedVLThinker. We use the
Qwen2.5-VL series as the base models (in 3B, 7B, and
32B parameter sizes). Our evaluations cover both
general medical visual QA and modality-specific QA
(covering specialties like pathology, radiology, etc.).
The results reveal several important, and at times
counter-intuitive, findings: First, regarding training
paradigms, models trained with RLVR consistently
outperform those trained with SFT across both 3B
and 7B scales. Second, in terms of data modality,
text-only training outperforms image-text training.
Notably, SFT on distilled text-only CoT data de-
grades performance relative to the base model (e.g.,
MedVLThinker-7B accuracy drops from 53.5% to
43.8%), whereas SFT on image-text data yields per-
formance similar to the untrained base model. In con-
trast, RLVR on text-only data provides the largest
performance boost, improving the 7B model from
53.5% to 54.9%. RLVR on image-text data also im-

proves performance, but to a lesser extent. Moreover,
combining text, only and image-text data—either
through SFT+RL or sequential RL, does not yield
additional gains beyond using text-only data alone.
Third, model scale has a clear impact: 7B models
consistently outperform their 3B counterparts across
all configurations.

Among existing open-source 7B medical LMMs,
MedVLThinker-7B (trained with RLVR on text-
only data) achieves a new state-of-the-art average ac-
curacy of 54.9% across six benchmarks. To evaluate
the effect of model scaling, we further train a 32B
variant. As shown in Figure 1, MedVLThinker-32B
performs competitively with the proprietary GPT-4o,
demonstrating the potential of open models to close
the performance gap with commercial systems. To
accelerate community-driven development and fos-
ter future innovation, we will release our complete
research toolkit, including all models, code, and
pipelines for data curation, training, and evaluation.

2. Related Works

2.1. Large Reasoning Models and Medical
Adaptation

Large Reasoning Models (LRMs) endow large lan-
guage models with the ability to articulate step-
by-step reasoning before finalizing an answer Wei
et al. (2022); Guo et al. (2025); Team et al. (2025);
Jaech et al. (2024). This test-time “think then an-
swer” approach allows extended reasoning and has
yielded impressive gains in domains such as math-
ematical problem Zeng et al. (2025); Yang et al.
(2025); Muennighoff et al. (2025) solving and code
generation Jaech et al. (2024); Yang et al. (2024).
One way to train LRMs is via Reinforcement Learn-
ing with Verifiable Rewards (RLVR), which forgoes
supervised chain-of-thought data and instead uses
binary feedback on answer correctness Chen et al.
(2025); Yu et al. (2025). RLVR eliminates the need
to curate lengthy reasoning exemplars; it directly in-
centivizes correct reasoning by rewarding only the fi-
nal outcome. In practice, an efficient implementation
of RLVR is crucial. Group Relative Policy Optimiza-
tion (GRPO) Shao et al. (2024) has been adopted
for its efficiency, removing the need for a separate
value network (critic) during RL updates. An al-
ternative approach is to distill the reasoning traces
of stronger models via supervised fine-tuning (SFT).
For example, one can use a GPT-4 level model to
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generate high-quality explanations (CoTs) for medi-
cal questions, and then fine-tune a smaller model on
this data Chen et al. (2024a). Recent work shows that
fine-tuning medical-focused LRMs (either via SFT on
expert traces or via RL on answer rewards) can sig-
nificantly improve medical question answering perfor-
mance Wu et al. (2025); Huang et al. (2025); Jiang
et al. (2025). Our work extends these ideas to the
multimodal realm, examining whether similar rea-
soning enhancements hold when visual information
is involved.

2.2. Multimodal Medical Large Language
Models

Given that clinical data often includes images (ra-
diology Lau et al. (2018), pathology Ikezogwo et al.
(2023), etc.), there is growing interest in extending
LLMs to handle visual inputs for medical applica-
tions. Med-Flamingo Moor et al. (2023) was among
the first to propose an interleaved vision-language
training pipeline for a medical LLM, enabling it to
handle image-text pairs in a single prompt. LLaVA-
Med Li et al. (2023) introduced a two-stage ap-
proach: first, connect a vision encoder with an LLM
via a learned projection (connector) and fine-tune
on general images; second, fine-tune the combined
model on medical image–text instruction data to spe-
cialize it. PMC-VQA Zhang et al. (2023) is one
such large-scale multimodal instruction dataset, con-
structed from PubMed Central articles (figures and
captions) using GPT-3.5 as an annotator. However,
the quality of GPT-3.5-generated questions and an-
swers in PMC-VQA is limited by the base model’s
capacity, and the dataset likely contains noise or in-
sufficiently detailed questions. Other contemporane-
ous efforts include HuatuoGPT-Vision Chen et al.
(2024b), which scales up LLaVA-Med’s pipeline by
generating a much larger set of QA pairs from a med-
ical corpus and training larger models (up to 34B
parameters). There are also modality-specific medi-
cal VLMs such as RadFM Wu et al. (2023) and Sk-
inGPT Zhou et al. (2024) that follow similar pipelines
but focus on particular domains (e.g., radiology, der-
matology) with domain-specific image-text data. In
summary, several open-source medical LMMs have
been proposed, but integrating an explicit reasoning
mechanism (as in LRMs) into these models has not
been thoroughly studied prior to our work.

2.3. Concurrent Works

Very recently, a few works have begun exploring the
idea of eliciting medical reasoning in LLMs. For
text-only medical QA, HuatuoGPT-o1 uses a PPO-
based RL approach Schulman et al. (2017) with an
external reward model to train a medical reason-
ing LLM Chen et al. (2024a), and MedS3 leverages
Process-Reward Models (PRMs) for RL to improve
stepwise reasoning Jiang et al. (2025). Another ap-
proach, denoted M1 in a recent preprint, distills the
reasoning traces of a GPT-4-based model (denoted
R1) into a smaller model via SFT Huang et al. (2025).
In the multimodal domain, MedVLM-R1 Pan et al.
(2025) demonstrates the effectiveness of RLVR on a
small scale of multimodal data (fewer than 1K train-
ing samples), and Med-R1 Lai et al. (2025) applies
a similar RLVR scheme on separate modality-specific
datasets. However, these models are trained on lim-
ited data and are not generalizable across different
types of medical visual questions. GMAI-VL-R1 Su
et al. (2025) is a general multimodal medical LLM
trained with an RLVR paradigm, but its training
data and code are not publicly available. In contrast,
our work provides an open-source recipe for build-
ing multimodal medical reasoning models with both
SFT and RL techniques, and we conduct a thorough
experimental study across varying model scales (3B,
7B, 32B) and diverse benchmarks. To our knowledge,
this is the first work to systematically compare su-
pervised CoT distillation and RLVR for multimodal
medical QA, and to benchmark the resulting models
against prior open medical LMMs and closed models
like GPT-4.

3. Methods

We describe our data curation process and training
methodologies for MedVLThinker. Figure 2 illus-
trates the overall pipeline of data filtering and model
training.

Data Curation and Filtering. We gather two
datasets for training: a text-only medical QA dataset
and a multimodal (image+text) medical QA dataset.
For text-only data, we use the m23k Huang et al.
(2025), which compiles 23,493 multiple-choice med-
ical questions from the training splits of MedQA Jin
et al. (2021), MedMCQA Pal et al. (2022), and
HeadQA Vilares and Gómez-Rodŕıguez (2019). Each
question in m23k is accompanied by a set of candidate
answers, and we have access to high-quality reason-
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ing chains (CoTs) for these questions distilled from
the DeepSeek-R1 Guo et al. (2025) model. For multi-
modal data, we adopt PMC-VQA Zhang et al. (2023),
a large dataset of 176,948 visual QA pairs derived
from biomedical literature figures and captions (cov-
ering about 149k images). PMC-VQA was generated
using GPT-3.5 and covers a broad range of medical
topics, making it a general-purpose multimodal med-
ical QA resource (unlike modality-specific datasets
such as PathVQA He et al. (2020), SLAKE Liu et al.
(2021), VQA-Rad Lau et al. (2018), which target one
type of image).

Not all questions in these datasets are equally use-
ful for training a reasoning model; some are too easy
(already trivial for the base model) and some are too
hard (unsolvable even with reasoning). Following re-
cent curriculum learning insights Muennighoff et al.
(2025), we perform a difficulty-based filtering on both
datasets. We prompt three variants of a general mul-
timodal model (Qwen2.5-VL-Instruct with 3B, 7B,
32B parameters) to answer each question 16 times
(using nucleus sampling with temperature 1.0). For
each question, we record the pass count, i.e. the
number of trials (out of 16) that produced the cor-
rect answer. Figure 3 shows the distribution of pass
counts on the text-only m23k and image-based PMC-
VQA, for each model size. As model scale increases,
more questions achieve high pass counts (e.g. the 32B
model answers a larger fraction of questions correctly
in a majority of trials). This indicates that the base
model’s capability improves with scale, which in turn
means that a sufficiently large model can solve many
of the questions reliably given enough attempts. For
the purposes of training data selection, we focus on
medium-difficulty questions that are neither always
solved nor hopelessly unsolved. Concretely, we use
the results of the 3B model to filter the data: any
question with pass count = 0 (all trials wrong) or
≥ 7 (correct in at least 7 out of 16 trials) is removed.
This retains questions that a smaller model finds nei-
ther trivial nor impossible, under the assumption that
these medium-difficulty questions will benefit most
from reasoning training. After filtering, the text-
only dataset is reduced to 16,512 questions and the
image-text dataset to 115,456 questions. These fil-
tered datasets are used for all subsequent training of
3B, 7B, and 32B models, ensuring a fair comparison
across model scales.

3.1. Training Strategies

We train our MedVLThinker models on the filtered
data under different strategies, as outlined above. We
perform SFT and RLVR on the text-only and image-
text datasets separately to isolate the effect of each
data modality. In addition, we experiment with two
combined strategies: (a) SFT on text-only data fol-
lowed by RL on image-text data (denoted SFTT +
RL I ), and (b) RL on text-only data followed by RL
on image-text data (RLT + RL I ). Figure 2(B) il-
lustrates the training variants. Below, we describe
the two core training paradigms in detail:

Supervised Fine-Tuning (SFT). Supervised
fine-tuning forms the foundation of our pipeline.
Starting from a general-purpose pretrained multi-
modal language model (Qwen2.5-VL), we minimize
the token-level cross-entropy loss on the curated
question-answer pairs (with their reasoning traces).
Using teacher-forced learning on the high-quality
CoT annotations provides a dense supervision sig-
nal, allowing the model to quickly internalize domain-
specific medical knowledge, terminology, answer for-
matting, and the nuanced conventions of clinical ex-
planations. For text-only questions, we use long-form
rationales generated by the DeepSeek-R1 model as
targets, and for image-based questions, we use GPT-
4o-generated rationales. This SFT step teaches the
model to emulate the step-by-step reasoning of supe-
rior teachers.

Reinforcement Learning with Verifiable Re-
wards (RLVR). After SFT, we further refine the
model using RL on answer correctness as feed-
back. We adopt Group Relative Policy Optimization
(GRPO), a variant of PPO that operates on a group
of sampled outputs. For each question, we sample
N reasoning trace rollouts from the model (we use
N = 8 in our experiments). A deterministic verifier
then checks each output: if the answer is given in the
expected format (e.g., the model produces a chain-
of-thought delineated by special tokens and then a
final answer choice) and the final answer is correct,
a reward +1 is assigned; otherwise, a reward −1 is
assigned. We normalize (whiten) these binary re-
wards across the group of outputs to obtain advan-
tage estimates. The GRPO algorithm then updates
the model policy using a PPO-style clipped objec-
tive, where the usual learned value function is re-
placed by group-based advantage computation. This
yields a KL-regularized, contrastive policy update

5



MedVLThinker

that steadily pushes the model to generate more ver-
ifiably correct reasoning traces (i.e. reasoning that
leads to the correct answer) while constraining it to
stay close to the behavior policy (to avoid degener-
ation). Importantly, RLVR does not require explicit
CoT annotations, only a reliable way to verify final
answer correctness, making it an appealing method
to enhance reasoning using the same data. In our
setting, all questions are multiple-choice or otherwise
have objectively correct answers, so the reward signal
is automatically obtained.

4. Experiments

4.1. Implementation Details

We initialize our models from the Qwen2.5-VL check-
point. For SFT, we fine-tune the model for 3 epochs
with a batch size of 32 and learning rate 1 × 10−4.
For RLVR, we train using GRPO for 5 epochs on the
text-only data and 1 epoch on the image-text data,
with a learning rate of 1 × 10−6. We set the total
batch size to 128 for text-only RL (sufficient to sam-
ple 8 rollouts per question) and 256 for image-text RL
(since each sample includes image features). For ex-
periments where RL is continued on a second dataset
(e.g., applying RL on PMC-VQA after an SFT on
m23k), we reduce the batch size (to 64) during the
second stage to accommodate the longer sequence
lengths (the combined image+CoT+answer sequence
can reach ∼2048 tokens). All models are trained on
8×H100 GPUs using mixed precision, except the 32B
model, which is trained on 32 GPUs.

4.2. Evaluation

We evaluate our models on a suite of six multimodal
medical QA benchmarks, which can be divided into
two categories: (1) general-domain medical QA and
(2) modality-specific QA. The general-domain evalu-
ations include the test set of PMC-VQA Zhang et al.
(2023) (for direct comparison, since our models train
on a filtered subset of its training data), the vali-
dation set of MMMU-Health Yue et al. (2024) (the
health and medicine portion of the MMMU bench-
mark), and MedXpert-MM Zuo et al. (2025), a chal-
lenging benchmark requiring complex reasoning over
multimodal inputs. The modality-specific evalua-
tions include PathVQA He et al. (2020) (pathology
images), SLAKE Liu et al. (2021) (slit-lamp ophthal-
mology images) and VQA-Rad Lau et al. (2018) (ra-
diology X-rays). Together, these six datasets cover a

broad range of medical visual question answering sce-
narios, from generic biomedical knowledge to highly
specialized imaging tasks.

For each benchmark, we report the accuracy (%
of questions answered correctly). Model responses
are generated using greedy decoding (temperature 0)
to evaluate base capability without sampling vari-
ance. We note that even with deterministic decoding,
slight nondeterminism in the inference engine (due to
floating-point precision) can cause minimal variabil-
ity; thus, we run each evaluation 3 times and report
the average accuracy (the standard deviation was be-
low 0.1 and is provided in the appendix for complete-
ness). In the result tables, we use the notation T to
indicate models trained on the text-only (m23k) data
and I for models trained on the image-text (PMC-
VQA) data. For example, “SFTT ” denotes a model
fine-tuned on text-only CoT data, and “RLT +RL I

” denotes a model first trained with RL on text-only
data then further with RL on image-text data.

4.3. Results

Impact of Training Paradigm (SFT vs.
RLVR). Table 1 summarizes the performance of
the Qwen2.5-VL 3B and 7B models under various
training recipes. We observe that RLVR-trained
models consistently outperform SFT-trained mod-
els of the same size across all benchmarks. For
the 3B base, RLVR on text-only data (RLT )
achieves 53.19% average accuracy, versus 32.80% for
SFT on text-only (SFTT ) (a dramatic drop below
the 49.14% base performance). Similarly, the 7B
RLT model reaches 54.88% average, compared to
43.83% for SFTT (again, SFT underperforms even
the 53.50% base model). These results confirm that
simply fine-tuning on distilled CoT data does not
guarantee better performance – in fact, it may over-
load the model with long, possibly mismatched ratio-
nales that hurt its effectiveness on multimodal QA.
In contrast, RLVR directly optimizes the model’s own
reasoning policy and proves markedly more effective
at improving accuracy.

Impact of Training Data (Text-only vs. Image-
text). The choice of training data modality also
has a significant effect. From Table 1, training on
the text-only data tends to yield better results than
training on the image-text data. For instance, the 7B
RLT (54.88% avg) outperforms RL I (53.66% avg).
However, SFT on the text-only CoT data consistently
harms performs relative to the base model (43.83%
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Table 1: Performance on multimodal medical benchmarks for our baselines. We use greedy decoding to
evaluate the ability of the models. T means text-only data; I means image-text data.

Model PMC MMMU MedX-M PathVQA SLAKE VQA-Rad Avg.

Qwen2.5-VL-3B-Instruct 44.77 44.12 20.69 61.96 61.30 62.01 49.14
SFT(T m23k) 28.53 32.55 16.00 42.74 43.91 33.09 32.80
SFT( I PMC) 54.55 47.84 21.46 52.76 65.79 58.58 50.16
SFT(T m23k)+RL( I PMC) 46.32 44.31 20.52 43.85 58.49 50.98 44.08
RL(T m23k) 47.32 52.16 22.90 62.28 63.38 71.08 53.19
RL( I PMC) 54.22 48.43 21.51 51.61 75.56 62.38 52.28
RL(T m23k)+RL( I PMC) 51.33 48.43 22.60 49.71 66.11 60.17 49.72

Qwen2.5-VL-7B-Instruct 49.30 52.94 18.89 65.39 65.71 68.75 53.50
SFT(T m23k) 34.58 46.86 16.40 56.35 54.97 53.80 43.83
SFT( I PMC) 54.67 49.80 21.39 53.02 67.71 57.72 50.72
SFT(T m23k)+RL( I PMC) 43.18 47.84 21.84 51.43 60.34 55.15 46.63
RL(T m23k) 50.67 56.86 24.43 66.83 65.79 64.71 54.88
RL( I PMC) 55.38 55.29 24.11 57.09 66.59 63.48 53.66
RL(T m23k)+RL( I PMC) 56.37 50.98 25.80 48.24 59.13 58.09 49.77

for 7B SFTT ), whereas SFT on the multimodal
data yields a slight improvement over base on some
benchmarks (e.g., +1-2% on PathVQA, SLAKE) but
overall comparable average (50.72% SFT I vs 53.50%
base). We hypothesize that the long, text-only ra-
tionales distilled from a text-based LRM (DeepSeek)
may not align well with the needs of a multimodal
model that also has to interpret images. The image-
based data, while noisy, at least engages the model’s
visual processing during training, which might ex-
plain why SFT I does not drastically degrade perfor-
mance. Nonetheless, the strongest gains come from
RLVR on text-only data, which boosts performance
substantially (e.g., +4.05% for 3B, +1.38% for 7B,
compared to base). RLVR on the multimodal data
also improves over base, but to a lesser degree. These
results highlight that in RLVR, high-quality textual
QA data (with verifiable answers) can be more valu-
able than larger but noisier image-based data for
training the reasoning capability of multimodal mod-
els. Improving the quality of multimodal training
data remains an important challenge (see Discus-
sion).

Combined Training Strategies. We also eval-
uated whether combining text-only and image-text
training yields further benefits. Two combinations
were tried: SFT on text then RL on images (SFTT

+RL I ), and RL on text then RL on images (RLT

+RL I ). As Table 1 shows, neither strategy provided
gains over the single-modality RL training. In fact,

for the 7B model, SFTT +RL I (53.07% avg) was
worse than RL I alone (53.66%), and RLT +RL I

(49.77%) fell behind RLT (54.88%). For the 3B
model, similar results are observed. It appears that
after a model has been optimized on the text-only
data, adding the image-text data (even via RL) can
hinder the reasoning capability, resulting in a net
drop in performance. We conclude that the best
recipe in our study is to apply RLVR directly on a
high-quality text-only reasoning dataset. This pro-
duces the top results for both 3B and 7B. In most
cases, adding an SFT stage or an extra RL stage on
image data does not help, and in the worst case, it
reduces accuracy.

Effect of Model Scale. Increasing the model size
clearly improves performance across the board. The
7B models outperform the 3B models in every cor-
responding setting (comparing rows in Table 1). For
example, the base 7B is 4.36% higher on average than
base 3B; the RLT 7B is +1.69% higher than its coun-
terpart 3B; and SFT I 7B is +0.56% higher than
SFT I 3B. On certain benchmarks like MedXpert-
MM (which is especially challenging and requires
complex reasoning), the gap is more pronounced: the
best 7B (RLT ) attains 24.43% versus 22.90% for the
best 3B, and 7B SFTT achieves 16.40% vs 16.00%
for 3B (both quite low). This trend suggests that
larger models have more capacity to learn medical
knowledge and to benefit from the reasoning train-
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Table 2: Performance on multimodal medical benchmarks with other methods. We use greedy decoding to
evaluate the ability of the models. T means text-only data. Open Weights (OW): only the model parameters
are released; Open Recipe (OR): data, code, and training details are released, enabling full reproducibility.

Model OW OR PMC MMMU MedX-M PathVQA SLAKE VQA-Rad Avg.

General LMM

GPT-4o-mini % % 51.90 63.53 28.55 63.33 75.24 66.91 58.24

GPT-4o % % 58.55 68.82 35.95 72.43 76.44 70.22 63.74

Gemme 3 4B ! % 44.42 46.67 21.89 59.24 66.59 56.86 49.28

Gemme 3 27B ! % 52.05 60.78 30.80 65.70 72.60 65.20 57.86

Qwen2.5-VL-3B-Instruct ! % 44.77 44.12 20.69 61.96 61.30 62.01 49.14

Qwen2.5-VL-7B-Instruct ! % 49.30 52.94 18.89 65.39 65.71 68.75 53.50

Qwen2.5-VL-32B-Instruct ! % 53.28 63.92 27.68 67.98 73.24 75.12 60.20

Medical LMM

MedGemma 4B ! % 42.73 32.55 8.17 59.64 83.49 78.55 50.86

MedGemma 27B ! % 36.75 35.88 12.13 62.09 77.40 72.67 49.49

Llava Med v1.5 Mistral 7B ! ! 34.28 31.37 22.56 56.52 62.82 56.74 44.05

HuatuoGPT-Vision-7B ! ! 53.39 50.59 22.00 63.53 75.00 63.60 54.69

HuatuoGPT-Vision-34B ! ! 52.54 57.06 21.80 66.72 78.85 74.26 58.54

MedVLThinker-3B RL(T m23k) ! ! 47.32 52.16 22.90 62.28 63.38 71.08 53.19

MedVLThinker-7B RL(T m23k) ! ! 50.67 56.86 24.43 66.83 65.79 64.71 54.88

MedVLThinker-32B RL(T m23k) ! ! 54.37 70.00 34.60 68.82 73.96 76.96 63.12

ing. Pushing to even larger scales may continue to
yield gains (we test a 32B model below).

Comparison to Previous Models. In Table 2,
we compare our MedVLThinker models against
prior open-source medical VLMs and against GPT-4-
based models. Our 7B RLVR-trained model achieves
an average score of 54.88%, which is 3–4% higher than
the reported performance of HuatuoGPT-Vision-7B-
Qwen2.5 (48.60% avg) and also above LLaVA-Med
v1.5 (Mistral-7B). On general-domain benchmarks
like MedXpert-MM, our advantage is even larger:
MedVLThinker-7B scores 24.43% vs HuatuoGPT-
Vision’s 22.00%. This demonstrates the benefit of our
focused reasoning training. HuatuoGPT-Vision was
primarily trained with instruction tuning on multi-
modal data (and a bit of RLHF), and it underper-
forms on challenging reasoning questions. We also
note that HuatuoGPT-Vision reportedly suffered a
large performance drop on generic medical QA after
its multimodal fine-tuning (similar to our observa-
tion that SFT on image data can hurt general QA).
In contrast, our RLVR approach improved perfor-
mance without such trade-offs. Finally, our Med-
VLThinker-32B (RL on text-only) reaches 63.12%
average accuracy, surpassing the GPT-4o-mini model

(58.24%) and essentially matching the full GPT-4o
(63.74%) on these benchmarks. This is a notable re-
sult: it suggests that with sufficient model size and
proper training, open models can approach the per-
formance of proprietary models like GPT-4 on spe-
cialized tasks. We emphasize that our entire training
pipeline, data, and models are open-source, providing
a foundation for the community to build upon.

Qualitative Results. We provide a few anecdo-
tal examples of our model’s outputs in Figure 4 to
illustrate the reasoning quality of text-only RLVR
training. More qualitative results of 3B, 7B, and 32B
models can be found in the supplemental materials.

5. Conclusion

In this work, we presented MedVLThinker, a set of
baseline multimodal medical reasoning models built
by combining large vision-language models with ad-
vanced reasoning training paradigms. We carried out
a systematic study of supervised CoT fine-tuning ver-
sus reinforcement learning (GRPO-based RLVR) for
teaching a multimodal model to reason about med-
ical questions. Our experiments show that RLVR
is markedly more effective than CoT fine-tuning in
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improving model performance, especially when us-
ing high-quality text-only medical QA data. We also
found that models trained on text-only data gener-
alize better than those trained on image-text data,
highlighting a data quality issue in current multi-
modal corpora. By training models at multiple scales,
we demonstrated a clear benefit to larger model size:
our 7B MedVLThinker achieves state-of-the-art re-
sults among open models on six benchmarks, and a
32B variant reaches parity with a GPT-4-based com-
petitor. Our work provides not only strong baseline
models for the community but also insights into train-
ing strategies for multimodal reasoning. In future
work, we plan to address the limitations identified
(data quality, curriculum, broader tasks) and hope
that MedVLThinker will inspire further research
in reliable and transparent medical AI.
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Charles Lau, et al. Medgemma technical report.
arXiv preprint arXiv:2507.05201, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseek-
math: Pushing the limits of mathematical rea-
soning in open language models. arXiv preprint
arXiv:2402.03300, 2024.

Yanzhou Su, Tianbin Li, Jiyao Liu, Chenglong
Ma, Junzhi Ning, Cheng Tang, Sibo Ju, Jin

10



MedVLThinker

Ye, Pengcheng Chen, Ming Hu, et al. Gmai-
vl-r1: Harnessing reinforcement learning for
multimodal medical reasoning. arXiv preprint
arXiv:2504.01886, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi
k1. 5: Scaling reinforcement learning with llms.
arXiv preprint arXiv:2501.12599, 2025.

David Vilares and Carlos Gómez-Rodŕıguez. Head-
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Appendix A. Implementation Details

We implement our training pipeline using two
stages: supervised fine-tuning (SFT) followed by
reinforcement learning with verifiable rewards
(RLVR). For SFT, we employ distributed train-
ing using PyTorch’s torchrun with FSDP (Fully
Sharded Data Parallel) configuration across 8 GPUs
per node. The SFT stage uses a learning rate of
1e-5 with cosine scheduler, warmup ratio of 0.05,
weight decay of 1e-4, and trains for 5 epochs with a
global batch size of 16. We utilize gradient check-
pointing and bf16 precision to optimize memory
usage. For the RLVR stage, we use the VERL
framework with GRPO (Group Relative Policy
Optimization) as the advantage estimator. The RL
training employs a smaller learning rate of 1e-6,
KL divergence regularization with coefficient 0.01,
and generates 8 samples per prompt during rollout.
We implement a custom reward function that com-
bines format adherence (ensuring responses follow
the <think>...</think> <answer>...</answer>

structure) with accuracy rewards based on exact
answer matching. The training uses VLLM for
efficient inference during rollout generation with
tensor model parallelism across 2 GPUs and 60%
GPU memory utilization. Throughout both stages,
we use the instruction prompt template below.

Prompt Template

You will solve a problem/request.

You should provide your thoughts

within <think> </think> tags before

providing the answer.\nWrite your

final answer within <answer> </answer>

tags.\n{{ Question }}\n{{ Options }}

Appendix B. Qualitative Results

More qualitative results (text-only RLVR 3B, 7B, and
32B) can be found in the supplemental material.

Appendix C. Discussions

Quality of Training Data. One striking observa-
tion is the performance gap between models trained

on text-only data versus image-text data. In our ex-
periments, models trained purely on the PMC-VQA
image-text corpus often lost exhibit capability rela-
tive to their starting point (especially for general QA
tasks), whereas models trained on the m23k text-
only corpus made clear gains. We suspect the pri-
mary cause is the quality of the training data. The
PMC-VQA dataset was generated automatically by
GPT-3.5 from journal figures and captions. Many
of the questions may be simplistic or flawed, and
the answers might not always require deep reason-
ing (or could even be incorrect in some cases). In
contrast, the text-only m23k dataset is derived from
human-authored exam questions and has higher fac-
tual and linguistic quality, supplemented by expert-
generated reasoning chains. Unfortunately, besides
PMC-VQA, other “general” multimodal medical QA
datasets compiled from various sources (e.g., Omn-
iMedQA Hu et al. (2024), GMAI-Bench Ye et al.
(2024)) currently do not contain training splits and
thus are not directly usable for model training. This
highlights the need for better multimodal medical
QA data. An encouraging direction is the emergence
of high-quality, human-curated medical image report
datasets (radiology reports, pathology reports, etc.),
which could be leveraged to generate more realistic
multimodal QA pairs. In future work, we plan to
incorporate such sources to improve the image-text
training signal.

Difficulty-Based Filtering. In applying RLVR, it
is important to present the model with training exam-
ples of appropriate difficulty. We performed a simple
filtering by removing questions that a smaller model
got either 0/16 or >7/16 correct. This “one-size-fits-
all” filter was then applied uniformly for training all
model sizes. In reality, different model scales have
different ability levels, and an optimal curriculum
might adjust the filtering threshold per model (a form
of capacity-aware data selection). More adaptive
curriculum learning strategies could further improve
RLVR training by continuously calibrating question
difficulty to the model’s growing competence. We
leave a full exploration of curriculum learning for
medical reasoning to future work.

Effectiveness of RLVR in the Medical Domain.
Our results validate that RLVR is a powerful ap-
proach for improving reasoning in medical QA, con-
sistent with findings in other domains. With only a
few epochs of RL (a relatively small compute bud-
get compared to pretraining), we observed signifi-
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Figure 3: Probing the questions difficulty with Qwen2.5-VL-Instruct. For each question, we generate 16
answers. Then we draw the pie plots for the pass count. When the scale of the multimodal LLM increased,
the number of high pass count questions increased. This indicate the potential of the models, especially for
latter RLVR training, which encourage the models improve this possibility to answer questions correctly.
The pass count are used for latter data filtering.

cant gains in the model’s ability to arrive at correct
answers. This improvement can be interpreted as
an increase in sampling efficiency : after RLVR, the
model is far more likely to produce a correct answer
in a single try, whereas the base model might need
multiple attempts (as illustrated by Figure 3). Of
course, RLVR is not a magic bullet; its success still
depends on the diversity and difficulty of the train-
ing questions and the reliability of the reward sig-
nal. In our case, we used exact-match answer check-
ing, which is straightforward for multiple-choice ques-
tions. Extending RLVR to open-ended generation or
multi-step clinical reasoning (where reward shaping is
harder) is an interesting challenge. We believe scal-
ing up the RLVR approach, with larger verification
datasets and more compute, could yield even stronger
medical reasoners. This work provides a first step in
that direction using openly available tools.

Task Scope and Future Work. So far, we
have limited training and evaluation to single-turn
question-answering tasks. However, real-world med-
ical scenarios often involve more interactive and
diverse tasks: multi-turn dialogues with patients,
grounding textual descriptions in images (e.g., locat-

ing findings in an image), and reasoning about tem-
poral sequences of images or data. Our current Med-
VLThinker could potentially be adapted to some
of these tasks, but we have not specifically trained
or tested it on them. In the future, we aim to ex-
tend our framework beyond QA format, incorporat-
ing vision-language grounding tasks, dialogue agents
for patient interaction, and other medically relevant
capabilities. We are hopeful that the combination
of explicit reasoning and multimodal understanding,
as demonstrated in MedVLThinker, can serve as a
foundation for more advanced clinical AI systems.

Appendix D. Limitations

While MedVLThinker aims to advance the state of
multimodal medical QA, there are several limitations
to acknowledge. First, the quality of the image-text
training data (PMC-VQA) is a concern. Because this
dataset was synthetically generated by MLLMs, it
likely contains noise and biases, which in turn limited
the gains from training on it. Future improvements
will require either cleaning this data or obtaining
higher-quality human-curated multimodal data. Sec-
ond, our difficulty-based filtering strategy was static
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and based on the 3B model’s performance. This may
not have been optimal for the larger models; a more
dynamic or model-specific curriculum could yield bet-
ter results. Third, our RLVR training was relatively
short and task-specific, leveraging only QA-format re-
wards. As a result, the models are specialized to the
QA task format and may not generalize to other in-
teractions (e.g., multi-turn conversations or explana-
tory responses) without additional fine-tuning. Fi-
nally, although we tested a 32B model, even larger
models or more diverse pretraining might be needed
to capture the full complexity of real-world medical
reasoning. We release our models and code in hopes
that the community can build on them to address
these limitations.
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Dataset: PMC VQA

Question: What did the imaging reveal about the patient's pericardial fluid?

Options: A. Very little; B. A moderate amount; C. A massive amount; D. None

<think> To determine the amount of pericardial fluid in the patient, let's analyze the provided images: 1. Chest X-ray (Left
Image): The chest X-ray shows a widened mediastinum, which can be indicative of pericardial effusion. However, the X-ray
alone is not definitive for quantifying the amount of fluid. 2. CT Scan (Right Image): The CT scan provides a more detailed view
of the pericardial space. The image shows a significant amount of fluid surrounding the heart, which is consistent with a
pericardial effusion. The fluid appears to be extensive, filling the pericardial space and compressing the heart, which is
characteristic of a massive pericardial effusion. Given the visual evidence from both the chest X-ray and the CT scan, the
pericardial fluid appears to be extensive and significant. </think> <answer>C. A massive amount</answer>

Dataset: MedXpertQA-MM

Question: You are shown images of the right and left distal common
carotid arteries, respectively. Which of the following is the MOST
likely diagnosis?

Options: A. Intra-aortic balloon pump; B. Carotid artery dissection; C.
Mitral insufficiency; D. Subclavian steal; E. Aortic insufficiency

<think> To determine the most likely diagnosis, let's analyze the provided images and the options: 1. Images Analysis: The left
image shows the right distal common carotid artery (CCA) with a velocity of 98.0 cm/s in the proximal segment (PS) and 0.0
cm/s in the distal segment (ED). This suggests a significant reduction or absence of flow in the distal segment. The right image
shows the left distal common carotid artery (CCA) with a velocity of 149.1 cm/s in the proximal segment (PS) and 0.0 cm/s in the
distal segment (ED). This also indicates a significant reduction or absence of flow in the distal segment. 2. Key Observations:
The absence of flow in the distal segments of both carotid arteries is a critical finding. The presence of a "reversed" flow pattern
in the distal segments (indicated by the color inversion in the images) suggests retrograde flow, which is often associated with
conditions that cause a pressure gradient or flow reversal. 3. Diagnosis Consideration: This condition causes a diastolic runoff
of blood from the aorta back into the left ventricle, leading to a characteristic diastolic flow reversal in the carotid arteries. The
images show a significant reduction or absence of flow in the distal segments, which is consistent with aortic insufficiency. 4.
Conclusion: The most likely diagnosis is Aortic insufficiency because it explains the flow reversal and the significant
reduction in flow in the distal segments of both carotid arteries. </think> <answer>E. Aortic insufficiency</answer>

Dataset: PathVQA

Question: Does this image show burkits lymphoma?

Options: A. Intra-aortic balloon pump; B. Carotid artery dissection;
C. Mitral insufficiency; D. Subclavian steal; E. Aortic insufficiency

<think> To determine whether the image shows Burkitt's lymphoma, let's analyze the key features: 1. Histological Appearance:
Burkitt's lymphoma is characterized by a highly mitotic, starry-sky appearance. This is due to the presence of numerous mitotic
figures and scattered macrophages (often referred to as "starry sky" because of the scattered appearance of these cells). 2.
Starry-Sky Pattern: In Burkitt's lymphoma, the lymphoma cells are small to medium-sized, with a high nuclear-to-cytoplasmic
ratio, and are often arranged in a diffuse pattern. The presence of tingible body macrophages, which are macrophages that
engulf apoptotic bodies, is a hallmark feature that gives the "starry-sky" appearance. 3. Image Analysis: The provided image
shows a diffuse population of cells with a high mitotic rate. There are scattered cells with a more prominent appearance, which
could be tingible body macrophages. The overall pattern is consistent with the "starry-sky" appearance typical of Burkitt's
lymphoma. 4. Conclusion: Based on the histological features observed in the image, it is consistent with the appearance of
Burkitt's lymphoma. </think> <answer>A. Yes</answer>

Figure 4: Case study on multiple medical VQA benchmarks with our 32B text-only RLVR model. Out
MedVLThinker demonstrates robust reasoning capability across various imaging modalities.
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