Codes README
Highly Efficient Self-Adaptive Reward Shaping
for Reinforcement Learning

Contents
1 Requirements
2 Run SASR Algorithm

3 Run Experimental Results

1 Requirements
The SASR is implemented based on PyTorch which has been tested on:

pytorch==2.0.1+cull?

Install all dependent packages:

pip3 install -r requirements.txt

2 Run SASR Algorithm

Run the following command to train SASR algorithm on the task specified by <Task ID>:

python run-SASR.py --env-id <Task ID>

All available environments with sparse rewards evaluated in our paper are listed below:

\ R
L s
‘ L I -
AntStand AntSpeed AntFar AntVeryFar WalkerKeep ~ HumanStand ~— HumanKeep — RobotReach RobotPush ~ MountainCar

Figure 1: All available environments with sparse rewards

e Mujoco-Sparse tasks:

— MyMujoco/Ant-Height-Sparse: the AntStand task.

— MyMujoco/Ant-Speed-Sparse: the AntSpeed task.

— MyMujoco/Ant-Far-Sparse: the AntFar task.

— MyMujoco/Ant-Very-Far-Sparse: the AntVeryFar task.

— MyMujoco/Walker2d-Keep-Sparse: the WalkerKeep task.
— MyMujoco/HumanoidStandup-Sparse: the HumanStand task.
— MyMujoco/Humanoid-Keep-Sparse: the HumanKeep task.

e Robotics-Sparse tasks:

— MyFetchRobot/Reach-Jnt-Sparse-v0: the RobotReach task.
— MyFetchRobot/Push-Jnt-Sparse-v0: the RobotPush task.

e physical simulation tasks:
— MountainCarContinuous-v0: the MountainCar task.

All hyper-parameters are set as default values in the code. You can change them by adding arguments to
the command line. All available arguments are listed below:

--exp-name: the name of the experiment, to record the tensorboard and save the model.
--env-id: the task id

--seed: the random seed.

--cuda: the cuda device, default is O, indicating to use cuda.

--gamma: the discount factor.

--pa-buffer-size: the buffer size to replay experiences.
--rb-optimize-memory: whether to optimize the memory

—-batch-size: the batch size

--actor-1lr: the learning rate of the actor

--critic-1r: the learning rate of the critic

--alpha: the alpha to balance the maximum entropy term
--alpha-autotune: whether to autotune the alpha, default is True

--alpha-1lr: the learning rate of the alpha

--target-frequency: the target network update frequency
-—tau: the tau for the soft update of the target network
--policy-frequency: the policy network update frequency

--total-timesteps: the total timesteps to train the model

--learning-starts: the burn-in period to start learning

--reward-weight: the weight factor of the shaped reward
--kde-bandwidth: the bandwidth of the kernel density estimation
--kde-sample-burnin: the burn-in period to sample the KDE
--rff-dim: the dimension of the random Fourier features

--retention-rate: the retention rate

--write-frequency: the frequency to write the tensorboard

--save—-folder: the folder to save the model

3 Run Experimental Results

All experimental data are stored in ./experiments/exp-data.zip. Before plotting the figures, you need to
unzip the file to ./experiments/exp-data/ folder.
1. To evaluate the learning performance in comparison with baselines:

python ./experiments/comparison.py

AntStand AntSpeed AntFar AntVeryFar WalkerKeep

Episode returns

Episode returns

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 50100 150 200 250 300

“ Steps (x103
Ps) SASR ReLara ROSA ExploRS #Explo RND SAC TD3 PPO

Figure 2: Comparison of the learning performance of SASR with the baselines.

2. Ablation study #1: To compare SASR with or without the sampling process:

python ./experiments/abla-without-sampling.py

AntStand) AntFar HumanStand HumanKeep y RobotReach RobotPush

Episode returns

G a0 a0 w0 w0 o 0 a0 40 o s 1o G a0 a0 w0 w0 o 0 20 a0 a0 s0 1000 G a0 a0 o so 1o 0 20 40 ew w0 oo

Steps (X103) SASR (default) without Beta distribution

Figure 3: Comparison of the SASR with or without the sampling process.

3. Ablation study #2: To compare SASR with different retention rates:

python ./experiments/abla-retention-rate.py

AntStand AntFar HumanStand HumanKeep . RobotReach RobotPush

s0
0 U_AA‘A‘AA'AA&M
0 a0 a0 6 s 1000 O 20 a0 w0 s0 1000 O 20 a0 o %0 100 P T T R 0 200 40 w0 %0 100 6 a0 w0 w0 80 100

Steps (X103) $=1 ¢ = 0.1 (default) ¢=0.01

Episode returns

Figure 4: Comparison of SASR with different retention rates.

4. Ablation study #3: To compare SASR with different bandwidths h of Gaussian kernels:
python ./experiments/abla-bandwidth.py

5. Ablation study #4: To compare SASR with different RFF feature dimensions M:

AntStand AntFar HumanStand HumanKeep ’ RobotReach RobotPush

Episode returns

0 a0 a0 W0 100 O 200 a0 o 80100 A0 A0 w0 om0 100 0200 am e %0100 0 a0 a0 a0 80 100 O a0 a0 w0 80 100

w0 0
Steps (x103) h=0.01 =70 h=0.1 = h=0.2(default) h=1 0 h=0.5-0.1

Figure 5: Comparison of SASR with different bandwidths of Gaussian kernels.

python ./experiments/abla-rff-dim.py

AntStand HumanStand HumanKeep RobotReach RobotPush
"
5 “ o o
T m @ we e I R - T @ me o LS S S T me W w ® o
Steps (x103) = M=50 M=500 1 M=1000 (default) E M =2000

Figure 6: Comparison of SASR with different RFF feature dimensions.

6. Ablation study #5: To compare SASR with different scales of the shaped reward:

python ./experiments/abla-reward-weight.py

AntStand AntFar HumanStand HumanKeep RobotReach RobotPush
@ »
£ / : 200 " ! o
i o
5 ¢ ™
'; 40 50
2
ol v
R A N R R TR TR r—r P S T I R T
Steps (X103) A=02 A=0.4 [A=0.6 (default) A=08

Figure 7: Comparison of different weight factors for the shaped reward.

	Requirements
	Run SASR Algorithm
	Run Experimental Results

