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1 TEMPORAL ANALYSIS OF MSR-VTT
MSR-VTT is one of the most extensively utilized benchmarks for
video-text retrieval. We randomly sample 100 videos from the
MSRVTT test set to form a subset and manually assess the tem-
poral relevance of videos based on the video and its correspond-
ing text using the following rules: 1) the video contains a distinct
temporal-related activity, such as open/close; or 2) the video con-
tains consecutive activities with significant differences; or 3) the
video involves an apparent change in the state of an object; or 4)
the video contains observable changes in the position of an ob-
ject; 5) the corresponding text fully describes the temporal changes
presented in the video.

Following these rules, we find that only approximately 10% of
the videos in the subset demonstrate temporal relevance. This ob-
servation highlights that the MSR-VTT test set mainly focuses on
static information and lacks consideration of temporal aspects. Con-
sequently, the absence of harder-negatives in the test set allows
models to retrieve temporally relevant videos based solely on static
cues, making it insufficient to evaluate the temporal understand-
ing capability of video-text retrieval methods. We visualize some
examples in Fig. 1.

2 HUMAN-IN-THE-LOOP VERIFICATION
We put human in the verification loop to control the data quality.

In Seed Activity List Proposal, we conduct a comprehensive
examination of the action pairs generated by GPT-4. We eliminate
actions that lack temporal relevance, cannot be detected through
video, have mismatches between corresponding actions, or are rare.

In Activity List Enrichment, we conduct a comprehensive
examination of the verb-noun phrases generated by GPT-4 and
eliminate phrases that are rare or unreasonable.

In Raw Video Acquisition, to improve the overall quality, we
recruit seven workers to search videos using a video search engine.
They filter out activities that meet the following criteria: 1) the
activity can be identified without relying on temporal information.
2) the number of videos retrieved using this activity as a query is
less than 50. 3) less than 50% of all the videos retrieved based on
this activity correctly match this activity.

In Manual Annotation, we employ the following processes to
ensure the quality: 1) Training of Quality Assurance (QA) Personnel:
Project manager provides training to the QA personnel, explaining
the filtering and annotation guidelines while providing them with
examples. 2) First Round of Trial by QA Personnel: The project
manager meticulously review the samples annotated by the QA
personnel, providing detailed feedback and revisions to ensure
their understanding of the task aligned with the project manager’s
expectations. 3) QA Personnel Supervision of Eight Annotators:
Each annotator watches the training video provided by the project
manager and underwent comprehensive QA inspection of their

annotated samples. Similar to the previous step, iterative feedback
and revisions are given to rectify anymisunderstandings and ensure
consistency in the annotations.

3 PROMPTS FOR GPT-4
We leverage GPT-4 in our dataset construction process and we
present our prompts for GPT-4 below.

Seed Activity List Proposal in Step1. In this phrase, we pro-
vide GPT-4 with a few action pairs in initial list and instruct it to
generate more samples. Our prompt is demonstrated in Table 1.

Activity List Enrichment in Step2. In this phrase, we prompt
GPT-4 to substitute [something] in each activity list with concrete
objects to form a verb-noun activity list. Our prompt is demon-
strated in Table 2.

Rewriting for Diversity in Step3. In this phrase, we provide
GPT-4 with the human-written caption, and instruct it to rewrite
nine extra sentences. Our prompt is demonstrated in Table 3.

4 MORE STATISTICS ABOUT THE RTIME
Some activities (verb-noun combinations) and a word-cloud based
on the distribution of verb phrases are illustrated in Figure 2 and
Figure 3.

To assess the quality of GPT-4 generated captions, we calcu-
late the cosine similarity score between the manually annotated
captions and the rewritten captions for the same videos base on
their BERT [5] embedding. For comparison, we also randomly sam-
ple captions from other videos and compute the cosine similarity
scores. As depicted in Figure 4, the captions generated by GPT-4
have higher similarity scores with the human-written captions,
indicating that the rewritten captions relatively retain the original
meaning.

5 DETAILS OF COMPARED SOTA METHODS
- CLIP [14] is an image-text model pre-trained on 400M image-text
paired data. It includes a Visual Transformer (ViT) as image encoder
and a Transformer with casual mask as text encoder. An image-text
contrastive loss is used to cross-modal alignment. During inference,
a mean pooling is applied to aggregate multi-frame features.
- BLIP [8] is an image-text pre-trained model with ViT as the image
encoder and a Transformer as the text encoder. It employs image-
text constrastive loss and image-text matching loss for cross-modal
alignment. During inference, a mean pooling is applied to aggregate
multi-frame features.
- CLIP4Clip [12] adds a temporal transformer on top of CLIP’s
image encoder to enable cross-frame interaction, producing the
video-level feature. A video-text contrastive loss is used to align
video and text.
- TS2Net [11] is based on CLIP. It has a token shift module and
token selection module in the video encoder to further enhance
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Figure 1: Illustration of some video-text samples in MSR-VTT. (A): samples demonstrating temporal relevance. (B): samples
without temporal relevance.

Figure 2: Some example verbs (inner circle) and their top 5
noun objects (outer circle) in the activity list from RTime

the video representation. It also uses video-text contrastive loss to
align video and text.
- Singularity [7] uses ViT as the visual encoder and a Transformer
as the text encoder. It employs video-text contrastive, masked lan-
guage modeling, and video-text matching losses in training. It ran-
domly samples a frame from a video in pre-training, and concate-
nates multi-frame features in inference. We use the checkpoint
pre-trained on 17 million visual-text pairs, including WebVid-2M

Figure 3: Word-cloud of verb phrases in RTime dataset

[1], CC3M [15], COCO [10], Visual Genome [6], SBU Captions [13]
and CC12M [3, 15].
- VINDLU [4] provides a video-and-language pre-training recipe.
It implements several video encoders, text encoders, objective func-
tions. It pre-trained on 25 million visual-text pairs, including CC3M
[15], COCO [10], Visual Genome [6], SBU Captions [13], CC12M
[3] and WebVid-10M [1].
- UMT [9] has the same architecture as VINDLU for video and text
encoder. It utilizes a two-stage pretraining process with the CLIP
image encoder as the teacher, employing a masking strategy to
reduce training costs, and incorporates spatio-temporal attention
mechanisms [2] to facilitate cross-frame interactions. It pre-trained
on the same data as VINDLU.

For all the compared models, we follow their original experi-
mental setup conducted on the MSR-VTT dataset. Regarding the
fine-tuning process, we perform fine-tuning for 5 epochs with a
batch size of 128.
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Table 1: Prompts used in Seed Activity List Proposal

Figure 4: Cosine similarity score between different captions
based on their BERT embeddings. ’MC’ means manual cap-
tions for corresponding videos
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