
A Proofs

A.1 Proof and discussion of Theorem 1

Theorem 1. Given a random vector Y = (y1, y2, . . . , yd) where yi follows a positive-valued

distribution, and two arbitrary vectors with the same dimension, X,X 0 2 Rd
that xi, x0

i � 0, assume

that there exists a sequence S = {Xi}Ni=1 with X = X0 and X 0 = XN , where the vectors satisfy the

condition that cos(Xi, Y ) � cos(Xi+1, Y ), and each Xi+1 can be induced from its previous vector

Xi through one of the following two operations,

(i) arbitrarily exchanging two entries of Xi

(ii) multiplying one entry in Xi by ↵ 2 (0, 1]

Then Kendall’s rank correlations of Y with X and X 0
have the property that E [⌧(X,Y )] �

E [⌧(X 0, Y )], where the expectation is taken over Y satisfying cos(Xi, Y ) � cos(Xi + 1, Y ).

Proof. To prove this theorem, we show that the property holds when N = 2, i.e., S = {X,X 0},
which indicates that each one of the above operations on X would preserve the order of Kendall’s
rank correlation. The case when N � 3 can be trivially generalized using mathematical induction.

Since X and X 0 are two arbitrary vectors, it is safe to fix X that X = (x1, x2, . . . , xd). To analyze
the cosine similarities and Kendall’s rank correlation, X can be assumed to be in descending order,
i.e., x1 > x2 > · · · > xd, since the order of X 0 and Y can be changed correspondingly without
affecting the cosine similarities and Kendall’s rank correlation. Formally, we show in the following
proof that for a random vector Y following exponential distribution and an arbitrary vector X , if
the cosine similarities satisfy that cos(X,Y ) � cos(X 0, Y ), then their corresponding Kendall’s rank
correlations have the property that E [⌧(X,Y )] � E [⌧(X 0, Y )], where X 0 is generated from X by
(1) exchanging two entries and (2) scalar multiplications.

(1) Preservation under exchanging Following the assumption, we consider a random vector
Y = (y1, y2, . . . , yd) where yi positively distributed, and another vector X = (x1, x2, . . . , xd).
We define the new vector X 0 that is produced by arbitrarily exchanging two entries in X . Sup-
pose we exchange the p-th and q-th entry in X , where 1  p < q  d, then X 0 =
(x1, . . . , xp�1, xq, xp+1, . . . , xq�1, xp, xq+1, . . . , xd). We further assume both X and Y are nor-
malized, i.e., kXk = kY k = kX 0k = 1.

Now if we consider the cosine similarity and the assumption that cos(X,Y ) > cos(X 0, Y ), we then
have

cos(X,Y ) =
dX

i=1

xiyi > cos(X 0, Y ) =
dX

i 6=p,q

xiyi + xpyq + xqyp, (8)

which can be simplified as
(xp � xq)(yp � yq) > 0 (9)

For Kendall’s rank correlation, we denote that ⌦(X,Y ) =
P

i<j sign(xi � xj)sign(yi � yj), and
⌧(X,Y ) = 2

d(d�1)⌦(X,Y ). We notice that the difference between ⌦(X,Y ) and ⌦(X 0, Y ) only
occurs when xp and xq are involved. We can write down the explicit expression of ⌦(X,Y ) �
⌦(X 0, Y )

⌦(X,Y )� ⌦(X 0, Y ) = (sign(xp � xq)� sign(xq � xp)) sign(yp � yq)

+
X

p<i<q

(sign(xp � xi)� sign(xq � xi)) sign(yp � yi)

+
X

p<i<q

(sign(xi � xq)� sign(xi � xp)) sign(yi � yq) (10)

=2 + 2
X

p<i<q

(sign(yp � yi) + sign(yi � yq)) (11)

Since
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E

2

4
X

p<i<q

sign(yp � yi) + sign(yi � yq)

������
yp � yq > 0

3

5 � 0, (12)

we then have,
E [⌦(X,Y )] � E [⌦(X 0, Y )] . (13)

(2) Preservation under scalar multiplication We use the assumptions mentioned before that yi is
positive-valued, and x1 > x2 > · · · > xd > 0. Without loss of generality, we multiply x1 by a scalar
↵ 2 [0, 1], such that x2 > ↵x1 > x3, i.e., X 0 = (↵x1, x2, . . . , xd).

To compare ⌧(X,Y ) and ⌧(X 0, Y ), it is noticed that, under our assumptions, only the sign of y1 � y2
is needed as other terms in ⌦ are equal for ⌦(X,Y ) and ⌦(X 0, Y ),

⌦(X,Y )�⌦(X 0, Y ) = sign(x1�x2)sign(y1�y2)�sign(↵x1�x2)sign(y1�y2) = 2sign(y1�y2).
(14)

Under the condition that the cosine similarity cos(X,Y ) > cos(X 0, Y ), we have

x1y1 + x2y2 + · · ·+ xdyd � ↵x1y1 + x2y2 + · · ·+ xdydp
↵2x2

1 + x2
2 + · · ·+ x2

d

. (15)

Note that kXk = kY k = 1. For simplicity, we denote that A =
p
↵2x2

1 + x2
2 + · · ·+ x2

d, and it is
obvious that ↵  A  1, where A is close to 1 when d is large,

x1y1 + x2y2 +

✓
1� 1

A

◆ 
dX

i=3

xiyi

!
� ↵x1y1 + x2y2

A
, (16)

which can be relaxed as

x1y1 + x2y2 � ↵x1y1 + x2y2
A

, (17)

i.e.,
y1 � Ky2 (18)

where K = (1�A)x2

(A�↵)x1
> 0. Thus, we want to show that

E [ sign(y1 � y2)| y1 � Ky2] = P(sign(y1 � y2) � 0|y1 � Ky2)� P(sign(y1 � y2) < 0|y1 � Ky2)
(19)

= 2P(sign(y1 � y2) � 0|y1 � Ky2)� 1 � 0 (20)

We consider two cases when K � 1 and 0 < K < 1. In the case that K � 1, it is obvious that

P(sign(y1 � y2) � 0|y1 � Ky2) = 1. (21)

If 0 < K < 1,

P(sign(y1 � y2) � 0|y1 � Ky2) =
P(sign(y1 � y2) � 0 \ y1 � Ky2)

P(y1 � Ky2)
(22)

=
P(sign(y1 � y2) � 0)

P(y1 � Ky2)
� 1

2
(23)

Thus, after combining the above two cases, we have

P(sign(y1 � y2) � 0|y1 � Ky2) �
1

2
(24)

which concludes our proof.

14



Discussions In practice, the attribution values are taken absolute values to emphasize the importance
of features, regardless of whether the impact are positive or negative. Thus, without loss of generality,
yi is assumed to follow a positive-valued distribution in Theorem 1. We also consider the existence
of the sequence S as an assumption that assist the formulation of the theorem. Although searching
for such sequence of every pair of attributions X and X 0 can be a combinatorial problem and is
constrained by computation power, the numerical simulations of finding such sequences in lower
dimensions still show a high success rate (� 0.8 when d  10), and the number of possible sequences
increases drastically when the dimension is higher.

A.2 Proof of Proposition 1

Proposition 1. Given a single-layer neural network with ReLU activation, and with the above

parameterization, if, for all i, Wi and ui are all independent and identically distributed random

variables following Gaussian distributions, i.e., Wi
i.i.d.⇠ N (0,�2

wId) and ui
i.i.d.⇠ N (0,�2

u), and

two input images that each has small variance, x and x̃, then

cos(IG(x), IG(x̃)) ⇡ P(W>
x > 0 \W>

x̃ > 0)p
P(W>x > 0)P(W>x̃ > 0)

. (6)

Proof. Recall that x 2 Rd is an input image, and the network function f is parameterized by
(W ,u, c) 2 Rd⇥m ⇥Rm ⇥R, where Wi is the column vector of W , wij is the ij-th entry of matrix
W and ui is the i-th entry of vector u, i.e., f(x) = u

>ReLU(W>
x) + c.

Following the above notations, we first write the function as

f(x) = u
>ReLU(W>

x) + c =
mX

i=1

ui(W
>
i x) W>

i x>0 + c, (25)

where {·} denotes the indicator function, and its gradient

rxkf(x) = (rf(x))k =
mX

i=1

uiwki W>
i x>0

We assume the bias terms are zeros without loss of generality, i.e., c = 0, and approximate the cosine
similarity of IG using the small variance assumption that 1

n

P
i x

2
i � ( 1n

P
i xi)2 ⇡ 0 as

cos(IG(x), IG(x̃))

⇡

mX

i=1

mX

j=1

hWi,Wjiuiuj

Z 1

0
W>

i (rx)>0 dr

Z 1

0
W>

j (rx̃)>0 dr

vuut
mX

i=1

mX

j=1

hWi,Wjiuiuj

Z 1

0
W>

i (rx)>0 dr

vuut
mX

i=1

mX

j=1

hWi,Wjiuiuj

Z 1

0
W>

i (rx̃)>0 dr

(26)

Since hWi,Wji is close to 0 in high dimensional space when i 6= j, we approximate the above
expression as

mX

i=1

kWik22u2
i

Z 1

0
W>

i (rx)>0 dr

Z 1

0
W>

i (rx̃)>0 dr

vuut
mX

i=1

kWik22u2
i

Z 1

0
W>

i (rx)>0 dr

vuut
mX

i=1

kWik22u2
i

Z 1

0
W>

i (rx̃)>0 dr

(27)

Notice that the indicator function is integrated from 0 to 1, which does not affect the sign of W>
i (rx)

and W
>
i (rx̃), i.e., the activation states. This implies that the activation states is the same for all
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samples from baseline to the corresponding image. Thus, we can write the cosine similarity as
mX

i=1

kWik22u2
i W>

i x>0 W>
i x̃>0

vuut
mX

i=1

kWik22u2
i W>

i x>0

vuut
mX

i=1

kWik22u2
i W>

i x̃>0

(28)

Since Wi and ui are independent random variables following Gaussian distributions, i.e., Wi ⇠
N (0,�2

wId) and ui ⇠ N (0,�2
u), when m is sufficiently large, we have

1

m

mX

i=1

kWik22u2
i W>

i x>0 W>
i x̃>0 = EW,u

⇥
kWk22u2

W>x>0 W>x̃>0

⇤
(29)

The cosine similarity is then transformed into expectations

cos(IG(x), IG(x̃)) ⇡
EW,u

⇥
kWk22u2

W>x>0 W>x̃>0

⇤
q
EW,u [kWk22u2

W>x>0]
q

EW,u [kWk22u2
W>x̃>0]

(30)

Based on the assumption on Gaussian distribution, we have E
⇥
kWk22

⇤
= tr(�2

wId) = d�2
w and

E
⇥
u2
⇤
= �2

u, and

cos(IG(x), IG(x̃)) ⇡
�2
uEW

⇥
kWk22 W>x>0 W>x̃>0

⇤

�u

q
EW [kWk22 W>x>0]�u

q
EW [kWk22 W>x̃>0]

(31)

=
EW

⇥
kWk22 W>x>0 W>x̃>0

⇤
q
EW [kWk22 W>x>0]

q
EW [kWk22 W>x̃>0]

(32)

=
d�2

wP(W>
x > 0 \W>

x̃ > 0)

d�2
w

p
P(W>x > 0)P(W>x̃ > 0)

(33)

=
P(W>

x > 0 \W>
x̃ > 0)p

P(W>x > 0)P(W>x̃ > 0)
(34)

B Unstable Pearson’s correlation

In this section, we discuss the unstable Pearson’s correlation for small variance inputs, i.e.,
1
n

Pn
i=1 x

2
i �

�
1
n

Pn
i=1 xi

�2 ⇡ 0. Consider the Pearson’s correlation between x and x+ ⌘, where ⌘
is vector and bounded by k⌘k  ✏ for small ✏. Then the Pearson’s correlation between x and x+ ⌘

can be written as

⇢(x,x+ ⌘) =
1
n

Pn
i=1 xi(xi + ⌘i)�

�
1
n

Pn
i=1 xi

� �
1
n

Pn
i=1 xi + ⌘i

�
q

1
n

Pn
i=1 x

2
i �

�
1
n

Pn
i=1 xi

�2q 1
n

Pn
i=1(xi + ⌘i)2 �

�
1
n

Pn
i=1(xi + ⌘i)

�2 (35)

Consider the numerator of ⇢(x,x+ ⌘) as

N⇢(x,x+⌘) =
1

n

nX

i=1

x2
i +

1

n

nX

i=1

xi⌘i �
 
1

n

nX

i=1

xi

!2

�
 
1

n

nX

i=1

xi

! 
1

n

nX

i=1

⌘i

!
(36)

⇡ 1

n

nX

i=1

xi⌘i �
 
1

n

nX

i=1

xi

! 
1

n

nX

i=1

⌘i

!
(37)

Similarly, we can obtain

N⇢(x,x�⌘) ⇡ � 1

n

nX

i=1

xi⌘i +

 
1

n

nX

i=1

xi

! 
1

n

nX

i=1

⌘i

!
(38)
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Algorithm 1 Adversarial Training with IGR

Input: classifier f , data
�
x
(i), y(i)

 n

i=1
, number of PGD attack n, PGD step-size ↵, maximum

allowable perturbation ", scaling parameter of IGR �
for epoch 2 {1, 2, . . .} do

Compute IG(x)
Randomly initiate x̃ = x+ U [�", "]
for i = 1 to n do

x̃ = x̃+ ↵ ⇤ sign(rLat(x̃, y))
x̃ = ProjB"(x̃)

end for

Compute IG(x̃)
Compute loss Ligr = Lat(x̃, y) + �(1� cos(IG(x), IG(x̃)))
Update model parameters ✓ using Ligr

end for

Return f

Thus, N⇢(x,x+⌘) ⇡ �N⇢(x,x�⌘). Since 1
n

Pn
i=1 x

2
i �

�
1
n

Pn
i=1 xi

�2 ⇡ 0, the denominator of
⇢(x,x+⌘) and ⇢(x,x�⌘) are both small. Thus, ⇢(x,x+⌘) and ⇢(x,x�⌘) would be drastically
different. However, since k⌘k is very small, both x+ ⌘ and x� ⌘ are in fact close to x. Therefore,
the Pearson’ correlation can be unstable.

C Additional experimental details and results

C.1 Pseudo-code of IGR training

Algorithm 1 shows the pseudo-code for AT+IGR, where x̃ is generated from PGD in adversarial
training. Similarly, for TRADES+IGR and MART+IGR, x̃ is obtained by replacing Lat using Ltrades

and Lmart.

C.2 Implementation details of baseline attribution robustness methods

The objective functions of the baseline attribution robustness methods are defined as follows.

IG-NORM [4]

ED


L(x, y;✓) + � max

x̃2B"(x)
kIG(x, x̃)k1

�
(39)

IG-SUM-NORM [4]

ED


max

x̃2B"(x)
{L(x̃, y;✓) + �kIG(x, x̃)k1}

�
(40)

AdvAAT [13]

ED


max

x̃2B"(x)
{L(x̃, y;✓) + �PCL(IG(x), IG(x̃))}

�
, (41)

where PCL(·) = 1 � [PCC(·) + 1]/2 is derived from Pearson’s Correlation Coefficient (PCC(·)).
Different from AT[21], AdvAAT adds a regularizer monitoring the attributions to the maximization
problem. It generates perturbed samples that maximize both cross entropy and regularizer.

ART [28]

ED [L(x̃, y;✓) + � log (1 + exp(�(d(g⇤(x),x)� d(gy(x), x)))] , (42)
where

d(gi(x),x) = 1� gi(x)>x

kgi(x)k2kxk2
, i⇤ = argmax

i 6=y
f(x)i (43)

and
x̃ = argmax

x̃2B"(x)
log (1 + exp(�(d(g⇤(x),x)� d(gy(x), x))) (44)
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Figure 5: Additional visualization on Fashion-MNIST.

SSR [33]

ED =
h
L(x, y;✓) + �smax

i
⇠i
i
. (45)

maxi ⇠i is the largest eigenvalue of Hessian matrix H̃x = W (diag(p)� p
>
p)W>, where W is the

Jacobian matrix of the logits vector and p is the probits of the model.

C.3 Additional visualization of attribution robustness

In this section, additional visualizations are provided in Fig. 5 and Fig. 6 to demonstrate that IGR
improves attribution robustness. The original and adversarial images from different datasets are
shown in the first two columns. The remaining three columns are IG of the original images on
baseline model, IG of the adversarial images on baseline model and IG of the adversarial images on
baseline+IGR model, respectively. The baseline model in the visualizations is MART.

The first two columns are the original and adversarial images from Fashion-MNIST. The third column
is the IG of the original image. The last two columns are IG of adversarial examples on a baseline
model and the baseline model trained with IGR. Both baseline and baseline+IGR models make the
correct classifications, while only baseline+IGR protects the model interpretations.

C.4 Visualization of Kendall’s rank correlation and Pearson’s correlation

Pearson’s correlation against Kendall’s rank correlation has been plotted in Fig. 7 under the same
setting as Fig. 2a. For the same set of simulations, the corresponding Pearson’s correlations are more
randomly distributed.
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Figure 6: Additional visualization on CIFAR-10.

Figure 7: Visualization of Kendall’s rank correlation and Pearson’s correlation using simulated data.
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