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ABSTRACT

We propose the Large View Synthesis Model (LVSM), a novel transformer-based
approach for scalable and generalizable novel view synthesis from sparse-view
inputs. We introduce two architectures: (1) an encoder-decoder LVSM, which
encodes input image tokens into a fixed number of 1D latent tokens, function-
ing as a fully learned scene representation, and decodes novel-view images from
them; and (2) a decoder-only LVSM, which directly maps input images to novel-
view outputs, completely eliminating intermediate scene representations. Both
models bypass the 3D inductive biases used in previous methods—from 3D rep-
resentations (e.g., NeRF, 3DGS) to network designs (e.g., epipolar projections,
plane sweeps)—addressing novel view synthesis with a fully data-driven approach.
While the encoder-decoder model offers faster inference due to its independent
latent representation, the decoder-only LVSM achieves superior quality, scalabil-
ity, and zero-shot generalization, outperforming previous state-of-the-art meth-
ods by 1.5 to 3.5 dB PSNR. Comprehensive evaluations across multiple datasets
demonstrate that both LVSM variants achieve state-of-the-art novel view synthesis
quality. Notably, our models surpass all previous methods even with reduced
computational resources (1-2 GPUs). Please see our website for more results:
https://haian-jin.github.io/projects/LVSM/.

1 INTRODUCTION

Novel view synthesis is a long-standing challenge in vision and graphics. For decades, the community
has generally relied on various 3D inductive biases, incorporating 3D priors and handcrafted structures
to simplify the task and improve synthesis quality. Recently, NeRF, 3D Gaussian Splatting (3DGS),
and their variants (Mildenhall et al., 2020; Barron et al., 2021; Müller et al., 2022; Chen et al.,
2022; Xu et al., 2022; Kerbl et al., 2023; Yu et al., 2024b) have significantly advanced the field by
introducing new inductive biases through carefully designed 3D representations (e.g., continuous
volumetric fields and Gaussian primitives) and rendering equations (e.g., ray marching and splatting
with alpha blending), reframing view synthesis as the optimization of the representations using
rendering losses on a per-scene basis. Other methods have also built generalizable networks to
estimate these representations or directly generate novel-view images in a feed-forward manner,
often incorporating additional 3D inductive biases, such as projective epipolar lines or plane-sweep
volumes, in their architecture designs (Wang et al., 2021a; Yu et al., 2021; Chen et al., 2021; Suhail
et al., 2022b; Charatan et al., 2024; Chen et al., 2024).

While effective, these 3D inductive biases inherently limit model flexibility, constraining their
adaptability to more diverse and complex scenarios that do not align with predefined priors or
handcrafted structures. Recent large reconstruction models (LRMs) (Hong et al., 2024; Li et al., 2023;
Wei et al., 2024; Zhang et al., 2024) have made notable progress in removing architecture-level biases
by leveraging large transformers without relying on epipolar projections or plane-sweep volumes,
achieving state-of-the-art novel view synthesis quality. However, despite these advances, LRMs still
rely on representation-level biases—such as NeRFs, meshes, or 3DGS, along with their respective
rendering equations—that limit their potential generalization and scalability.

In this work, we aim to minimize 3D inductive biases and push the boundaries of novel view synthesis
with a fully data-driven approach. We propose the Large View Synthesis Model (LVSM), a novel
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Figure 1: LVSM supports feed-forward novel view synthesis from sparse posed image inputs (even from a
single view) on both objects and scenes. LVSM achieves significant quality improvements compared with the
previous SOTA method, i.e., GS-LRM (Zhang et al., 2024). (Please zoom in for more details.)

transformer-based framework that synthesizes novel-view images from posed sparse-view inputs
without predefined rendering equations or 3D structures, enabling accurate, training-efficient, and
scalable novel view synthesis with photo-realistic quality (see Fig. 1 for visual examples).

To this end, we first introduce an encoder-decoder LVSM, removing handcrafted 3D representations
and their rendering equations. We use an encoder transformer to map the input (patchified) multi-view
image tokens into a fixed number of 1D latent tokens, independent of the number of input views.
These latent tokens are then processed by a decoder transformer, which uses target-view Plücker
rays as positional embeddings to generate the target view’s image tokens, ultimately regressing the
output pixel colors from a final linear layer. The encoder-decoder LVSM jointly learns a reconstructor
(encoder), a scene representation (latent tokens), and a renderer (decoder) directly from data. By
removing the need for predefined inductive biases in rendering and representation, LVSM offers
improved generalization and achieves higher quality compared to NeRF- and GS-based approaches.

However, the encoder-decoder LVSM still retains a key bias: the need for an intermediate, albeit fully
learned, scene representation. To further push the boundaries, we propose a decoder-only LVSM,
which adopts a single-stream transformer to directly convert the input multi-view tokens into target
view tokens, bypassing any intermediate representations. The decoder-only LVSM integrates the
novel view synthesis process into a holistic data-driven framework, achieving scene reconstruction
and rendering simultaneously in a fully implicit manner with minimal 3D inductive bias.

We present a comprehensive evaluation of variants of both LVSM architectures. Notably, our models,
trained on 2-4 input views, demonstrate strong zero-shot generalization to an unseen number of views,
ranging from a single input to more than 10. Thanks to minimal inductive biases, our decoder-only
model consistently outperforms the encoder-decoder variant in terms of quality, scalability, and
zero-shot capability with varying numbers of input views. On the other hand, the encoder-decoder
model achieves much faster inference speed due to its use of a fixed-length latent scene representation.
Both models, benefiting from reduced 3D inductive biases, outperform previous methods, achieving
state-of-the-art novel view synthesis quality across multiple object-level and scene-level benchmark
datasets. Specifically, our decoder-only LVSM surpasses previous state-of-the-art methods, such
as GS-LRM, by a substantial margin of 1.5 to 3.5 dB PSNR. Our final models were trained on
64 A100 GPUs for 3-7 days, depending on the data type and model architecture, but we found that
even with just 1–2 A100 GPUs for training, our model (with a decreased model and batch size) still
outperforms all previous methods trained with equal or even more compute resources.

2 RELATED WORK

View Synthesis. Novel view synthesis (NVS) has been studied for decades. Image-based rendering
(IBR) methods perform view synthesis by weighted blending of input reference images using proxy
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geometry (Debevec et al., 1996; Heigl et al., 1999; Sinha et al., 2009). Light field methods build a
slice of the 4D plenoptic function from dense view inputs (Gortler et al., 1996; Levoy & Hanrahan,
1996; Davis et al., 2012). Recent learning-based IBR methods incorporate convolutional networks
to predict blending weights (Hedman et al., 2018; Zhou et al., 2016; 2018) or use predicted depth
maps (Choi et al., 2019). However, the renderable region is usually constrained to be near the input
viewpoints. Other work leverages multiview-stereo reconstructions to enable rendering under larger
viewpoint changes (Jancosek & Pajdla, 2011; Chaurasia et al., 2013; Penner & Zhang, 2017). In
contrast, we use more scalable network designs to learn generalizable priors from larger, real-world
data. Moreover, we perform rendering at the image patch level, achieving better model efficiency,
and rendering quality.

Optimizing 3D Representations. NeRF (Mildenhall et al., 2020) introduced a neural volumetric
3D representation with differentiable volume rendering, enabling neural scene reconstruction by
minimizing rendering losses and setting a new standard in novel view synthesis. Later work improved
NeRF with better rendering quality (Barron et al., 2021; Verbin et al., 2022; Barron et al., 2023), faster
optimization or rendering speed (Reiser et al., 2021; Hedman et al., 2021; Reiser et al., 2023), and
looser requirements on the input views (Niemeyer et al., 2022; Martin-Brualla et al., 2021; Wang et al.,
2021b). Other work has explored hybrid representations that combine implicit NeRF content with
explicit 3D information, e.g., in the form of voxels, as in DVGO (Sun et al., 2022). Spatial complexity
can be further decreased by using sparse voxels (Liu et al., 2020; Fridovich-Keil et al., 2022), volume
decomposition (Chan et al., 2022; Chen et al., 2022; 2023), and hashing techniques (Müller et al.,
2022). Another line of works investigates explicit point-based representations (Xu et al., 2022; Zhang
et al., 2022; Feng et al., 2022). Gaussian Splatting (Kerbl et al., 2023) extends these 3D points to 3D
Gaussians, improving both rendering quality and speed. In contrast, we perform novel view synthesis
using large transformer models (optionally with a learned latent scene representation) without the
need for any inductive bias of using prior 3D representations or any per-scene optimization process.

Generalizable View Synthesis Methods. Generalizable methods enable fast NVS inference by using
neural networks, trained across scenes, to predict the novel views or an underlying 3D representation
in a feed-forward manner. For example, PixelNeRF (Yu et al., 2021), MVSNeRF (Chen et al., 2021)
and IBRNet (Wang et al., 2021a) predict volumetric 3D representations from input views, utilizing 3D-
specific priors like epipolar lines or plane sweep cost volumes. Later methods improve performance
under (unposed) sparse views (Liu et al., 2022; Johari et al., 2022; Jiang et al., 2024; Szymanowicz
et al., 2024b; Jiang et al., 2023), while other work extends to 3DGS representations Charatan
et al. (2024); Szymanowicz et al. (2024a); Chen et al. (2024); Tang et al. (2024). On the other
hand, approaches that attempt to directly learn a geometry-free rendering function (Suhail et al.,
2022a; Sajjadi et al., 2022; Sitzmann et al., 2021; Rombach et al., 2021) lack model capacity
and scalability, preventing them from capturing high-frequency details. Specifically, the prior
Scene Representation Transformers (SRT) method (Sajjadi et al., 2022) also aims to avoid explicit,
handcrafted 3D representations and instead learns a latent representation via a transformer, similar
to our encoder-decoder model. However, some of SRT’s model and rendering designs lead to less
effective performance, such as the CNN-based token extractor and the use of cross-attention in the
decoder. In contrast, our models are fully transformer-based with bidirectional self-attention (see
detailed discussion in Sec. 4.4). Additionally, we introduce a more scalable decoder-only architecture
that effectively learns the novel view synthesis function with minimal 3D inductive bias, without an
intermediate latent representation.

Recently, 3D large reconstruction models (LRMs) have emerged (Hong et al., 2024; Li et al., 2023;
Wang et al., 2023a; Xu et al., 2023; Wei et al., 2024; Zhang et al., 2024; Xie et al., 2024), utilizing
scalable transformer architectures (Vaswani et al., 2017) trained on large datasets to learn generic 3D
priors. While these methods avoid using epipolar projection or cost volumes in their architectures,
they still rely on existing 3D representations like tri-plane NeRFs, meshes, or 3DGS, along with their
corresponding rendering equations, limiting their potential. In contrast, our approach eliminates these
3D inductive biases, aiming to learn a rendering function (and optionally a scene representation)
directly from data. This leads to more scalable models and significantly improved rendering quality.

In addition to the deterministic methods mentioned above, there are also some generative mod-
els(Watson et al., 2022; Liu et al., 2023a; Gao* et al., 2024; Zheng & Vedaldi, 2024; Kong et al.,
2024; Voleti et al., 2025) supporting novel view synthesis using image/video diffusion models. Note
that LVSM, as deterministic models, are essentially different from those generative models. We
discuss this in details in the Appendix. A.6.
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Figure 2: LVSM model architecture. LVSM first patchifies the posed input images into tokens. The target
view to be synthesized is represented by its Plücker ray embeddings and is also tokenized. The input view
and target tokens are sent to a full transformer-based model to predict the tokens that are used to regress the
target view pixels. We study two LVSM transformer architectures, as a Decoder-only architecture (left) and a
Encoder-Decoder architecture (right).

3 METHOD

We first provide an overview of our method in Sec. 3.1, then describe two different transformer-based
model variants in Sec. 3.2. We have also provided detailed architectural diagrams in Appendix.A.4.

3.1 OVERVIEW

Given N sparse input images with known camera poses and intrinsics, denoted as {(Ii,Ei,Ki)|i =
1, . . . , N}, LVSM synthesizes target image It with novel target camera extrinsics Et and intrinsics
Kt. Each input image has shape RH×W×3, where H and W are the image height and width (and
there are 3 color channels).

Framework. As shown in Fig. 2, our LVSM method uses an end-to-end transformer model to
directly render the target image. LVSM starts by tokenizing the input images. We first compute a
pixel-wise Plücker ray embedding (Plucker, 1865) for each input view using the camera poses and
intrinsics. We denote these Plücker ray embeddings as {Pi ∈ RH×W×6|i = 1, . . . , N}. We patchify
the RGB images and Plücker ray embeddings into non-overlapping patches, following the image
tokenization layer of ViT (Dosovitskiy et al., 2020). We denote the image and Plücker ray patches of
input image Ii as {Iij ∈ Rp×p×3|j = 1, . . . ,HW/p2} and {Pij ∈ Rp×p×6|j = 1, . . . ,HW/p2},
respectively, where p is the patch size. For each patch, we concatenate its image patch and Plücker
ray embedding patch, reshape them into a 1D vector, and use a linear layer to map it into an input
patch token xij :

xij = Linearinput([Iij ,Pij ]) ∈ Rd, (1)
where d is the latent size, and [·, ·] means concatenation.

Similarly, LVSM represents the target pose to be synthesized as its Plücker ray embeddings Pt ∈
RH×W×6, computed from the given target extrinsics Et and intrinsics Kt. We use the same patchify
method and another linear layer to map it to the Plücker ray tokens of the target view, denoted as:

qj = Lineartarget(Pt
j) ∈ Rd, (2)

where Pt
j is the Plücker ray embedding of the jth patch in the target view.

We flatten the input tokens into a 1D token sequence, denoted as x1, . . . , xlx , where lx=NHW/p2

is the sequence length of the input image tokens. We also flatten the target query tokens as q1, . . . , qlq
from the ray embeddings, with lq = HW/p2 as the sequence length.

LVSM then synthesizes novel view by conditioning on the input view tokens using a full transformer
model M :

y1, . . . , ylq = M(q1, . . . , qlq |x1, . . . , xlx ). (3)
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Specifically, the output token yj is an updated version of qj , containing the information to predict the
pixel values of the jth patch of the target view. More details of model M are described in Sec. 3.2.

We recover the spatial structure of output tokens using the inverse operation of the flatten operation.
To regress RGB values of the target patch, we employ a linear layer followed by a Sigmoid function:

Îtj = Sigmoid(Linearout(yj)) ∈ R3p2

. (4)

We reshape the predicted RGB values back to the 2D patch in Rp×p×3, and then we get the synthesized
novel view Ît by performing the same operation on all target patches independently.

Loss Function. Following prior works (Zhang et al., 2024; Hong et al., 2024), we train LVSM with
photometric novel view rendering losses:

L = MSE(Ît, It) + λ · Perceptual(Ît, It), (5)
where λ is the weight for balancing the perceptual loss (Johnson et al., 2016).

3.2 TRANSFORMER-BASED MODEL ARCHITECTURE

In this subsection, we present the two LVSM architectures—encoder-decoder and decoder-only—
both designed to minimize 3D inductive biases. Following their name, ‘encoder-decoder’ first
converts input images to an intermediate latent representation before decoding the final image
pixels, whereas ‘decoder-only’ directly outputs the synthesized target view without an intermediate
representation, further minimizing inductive biases in its design. Unlike most standard language
model transformers (Vaswani et al., 2017; Jaegle et al., 2021; Radford et al., 2019), which typically
use full attention for encoders and causal/cross attention for decoders, we adopt dense full attention
across all our encoder and decoder architectures. The naming of our models is based on the output
characteristics, instead of being strictly tied to the transformer architecture they utilize. Please
refer to Appendix A.1 for a further detailed discussion of the naming.

Encoder-Decoder Architecture. The encoder-decoder LVSM comes with a learned latent scene
representation for view synthesis, avoiding the use of NeRF, 3DGS, and other representations. The
encoder first maps the input tokens to an intermediate 1D array of latent tokens (serving as a latent
scene representation). Then the decoder predicts the outputs, conditioning on the latent tokens and
target pose.

Similar to the triplane tokens in LRMs (Hong et al., 2024; Wei et al., 2024), we use l learnable
latent tokens {ek ∈ Rd|k = 1, ..., l} to aggragate information from input tokens {xi}. The encoder,
denoted as TransformerEnc , uses multiple transformer layers with self-attention. We concatenate
{xi} and {ek} as the input of TransformerEnc , which performs information aggregation between
them to update {ek}. The output tokens that correspond to the latent tokens, denoted as {zk}, are
used as the intermediate latent scene representation. The other tokens (updated from {xi}, denoted
as {x′

i}) are unused and discarded.

The decoder uses multiple transformer layers with self-attention. In detail, the inputs are the
concatenation of the latent tokens {zk} and the target view query tokens {qj}. By applying self-
attention transformer layers over the input tokens, we get output tokens with the same sequence
length as the input. The output tokens that corresponds to the target tokens q1, . . . , qlq are treated as
final outputs y1, . . . , ylq , and the other tokens (updated from {zi}, denoted as {z′i}) are unused. This
architecture can be formulated as:

x′
1, . . . , x

′
lx , z1, . . . , zl = TransformerEnc(x1, . . . , xlx , e1, . . . , el) (6)

z′1, . . . , z
′
l, y1, . . . , ylq = TransformerDec(z1, . . . , zl, q1, . . . , qlq ). (7)

Decoder-Only Architecture. Our alternate, decoder-only model further eliminates the need for
an intermediate scene representation. Its architecture is similar to the decoder in encoder-decoder
architecture but differs in inputs and model size. We concatenate the two sequences of input tokens
{xi} and target tokens {qj}. The final output {yj} is the decoder’s corresponding output for the
target tokens {qj}. The other tokens (updated from {xi}, denoted as {x′

i}) are unused and discarded.
This architecture can be formulated as:

x′
1, . . . , x

′
lx , y1, . . . , ylq = TransformerDec-only(x1, . . . , xlx , q1, . . . , qlq ) (8)

Here the TransformerDec-only has multiple full self-attention transformer layers.
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Table 1: Quantitative comparisons on object-level (left) and scene-level (right) view synthesis. For the
object-level comparison, we matched the baseline settings with GS-LRM (Zhang et al., 2024) in both input and
rendering under both resolution of 256 (Res-256) and 512 (Res-512). For the scene-level comparison, we use
the same validation dataset used by pixelSplat (Charatan et al., 2024), which has 256 resolution.

ABO (Collins et al., 2022a) GSO (Downs et al., 2022)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Triplane-LRM (Li et al., 2023) (Res-512) 27.50 0.896 0.093 26.54 0.893 0.064
GS-LRM (Zhang et al., 2024) (Res-512) 29.09 0.925 0.085 30.52 0.952 0.050

Ours Encoder-Decoder (Res-512) 29.81 0.913 0.065 29.32 0.933 0.052
Ours Decoder-Only (Res-512) 32.10 0.938 0.045 32.36 0.962 0.028

LGM (Tang et al., 2024) (Res-256) 20.79 0.813 0.158 21.44 0.832 0.122
GS-LRM (Zhang et al., 2024) (Res-256) 28.98 0.926 0.074 29.59 0.944 0.051

Ours Encoder-Decoder (Res-256) 30.35 0.923 0.052 29.19 0.932 0.046
Ours Decoder-Only (Res-256) 32.47 0.944 0.037 31.71 0.957 0.027

RealEstate10k (Zhou et al., 2018)
PSNR ↑ SSIM ↑ LPIPS ↓

pixelNeRF (Yu et al., 2021) 20.43 0.589 0.550
GPNR (Suhail et al., 2022a) 24.11 0.793 0.255

Du et. al (Du et al., 2023) 24.78 0.820 0.213
pixelSplat (Charatan et al., 2024) 26.09 0.863 0.136

MVSplat (Chen et al., 2024) 26.39 0.869 0.128
GS-LRM (Zhang et al., 2024) 28.10 0.892 0.114

Ours Encoder-Decoder 28.58 0.893 0.114
Ours Decoder-Only 29.67 0.906 0.098

4 EXPERIMENTS

We introduce the details of used datasets and the baseline methods. Then we present results of LVSM
for both object-level and scene-level novel view synthesis.

4.1 DATASETS

We train (and evaluate) LVSM on object-level and scene-level datasets separately.
Object-level Datasets. We use the Objaverse dataset (Deitke et al., 2023) to train LVSM. We follow
the rendering settings in GS-LRM (Zhang et al., 2024) and render 32 random views for 730K objects.
We test on two object-level datasets, i.e., Google Scanned Objects (Downs et al., 2022) (GSO) and
Amazon Berkeley Objects (Collins et al., 2022b) (ABO). In detail, GSO and ABO contain 1099 and
1000 objects, respectively. Following Instant3D (Li et al., 2023) and GS-LRM (Zhang et al., 2024),
we have 4 sparse views as testing inputs and another 10 views as target images.
Scene-level Datasets. We use the RealEstate10K dataset (Zhou et al., 2018), which contains 80K
video clips curated from 10K Youtube videos of both indoor and outdoor scenes. We follow the
train/test data split used in pixelSplat (Charatan et al., 2024).

4.2 TRAINING DETAILS

Improving Training Stability. We observe that the training of LVSM crashes with plain transformer
layers (Vaswani et al., 2017) due to exploding gradients. We empirically find that using QK-
Norm (Henry et al., 2020) in the transformer layers stabilizes training. This observation is consistent
with Bruce et al. (2024) and Esser et al. (2024). We also skip optimization steps with gradient norm >
5.0 besides the standard 1.0 gradient clipping.

Efficient Training Techniques. We use FlashAttention-v2 (Dao, 2023) in the xFormers (Lefaudeux
et al., 2022), gradient checkpointing (Chen et al., 2016), and mixed-precision training with Bfloat16
data type to accelerate training.
Other Details. For more details about the model and training, please refer to Appendix A.2, and a
detailed model architecture diagram (Fig. 8).

4.3 EVALUATION AGAINST BASELINES

In this section, we describe our experimental setup and datasets (Sec. 4.1), introduce our model
training details (Sec. 4.2), report evaluation results (Sec. 4.3) and perform an ablation study (Sec. 4.4).
Object-Level Results. We compare with Instant3D’s Triplane-LRM (Li et al., 2023) and GS-
LRM (Zhang et al., 2024) at a resolution of 512. As shown on the left side of Table 1, our LVSM
achieves the best performance against all prior works. In particular, at 512 resolution, our decoder-
only LVSM achieves a 3 dB and 2.8 dB PSNR gain against the best prior method GS-LRM on ABO
and GSO, respectively; our encoder-decoder LVSM achieves performance comparable to GS-LRM.

We also compare with LGM (Tang et al., 2024) at the resolution of 256, as the official LGM model is
trained with an input resolution of 256. We also report the performance of models trained on resolution
of 256. Compared with the best prior work GS-LRM, our decoder-only LVSM demonstrates a 3.5 dB
and 2.2 dB PSNR gain on ABO and GSO, respectively; our encoder-decoder LVSM shows a slightly
better performance than GS-LRM.
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Ground truthInput images GS-LRM Ours Encoder-Decoder Ours Decoder-OnlyTriplane-LRM

Figure 3: Object-level visual comparison at 512 resolution. Given 4 sparse input posed images (leftmost
column), we compare our high-res object-level novel-view rendering results with two baselines: Instant3D’s
Triplane-LRM (Li et al., 2023) and GS-LRM (Res-512) (Zhang et al., 2024) . Both our Encoder-Decoder
and Decoder-Only models exhibit fewer floaters (first example) and fewer blurry artifacts (second example),
compared to the baselines. Our Decoder-Only model effectively handles complex geometry, including small
holes (third example) and thin structures (fourth example). Additionally, it preserves the details of high-frequency
texture (last example).

These significant performance gains validate the effectiveness of our design target of removing 3D
inductive bias. More interestingly, the larger performance gain on ABO shows that our method can
handle challenging materials, which are difficult for current handcrafted 3D representations. The
qualitative results in Fig. 3 and Fig. 7 also validate the high degree of realism of LVSM, especially
for examples with specular materials, detailed textures, and thin, complex geometry.
Scene-Level Results. We compare with prior works pixelNeRF (Yu et al., 2021), GPNR (Suhail
et al., 2022a), Du et al. (2023), pixelSplat (Charatan et al., 2024), MVSplat (Chen et al., 2024) and
GS-LRM (Zhang et al., 2024). As shown on the right side of Table 1, our decoder-only LVSM shows
a 1.6 dB PSNR gain compared with the best prior work GS-LRM. Our encoder-decoder LVSM also
demonstrates comparable results to GS-LRM. These improvements can be observed qualitatively
in Fig. 4, where LVSM has fewer floaters and better performance on thin structures and specular
materials, consistent with the object-level results. These outcomes again validate the efficacy of our
design of using minimal 3D inductive bias.
LVSM Trained with Only 1 GPU. Limited computing is a key bottleneck for academic research.
To show the potential of LVSM using academic-level resources, we train LVSM on the scene-
level dataset (Zhou et al., 2018) following the setting of pixelSplat (Charatan et al., 2024) and
MVSplat (Chen et al., 2024), with only a single A100 80G GPU for 7 days. In this experiment, we
use a smaller decoder-only model (denoted LVSM-small) with 6 transformer layers and a smaller
batch size of 64 (in contrast to the default one with 24 layers and batch size 512). Our decoder-
only LVSM-small shows a performance of 27.66 dB PSNR, 0.870 SSIM, and 0.129 LPIPS. This
performance surpasses the prior best 1-GPU-trained model MVSplat, with a 1.3 dB PSNR gain. We
also train the decoder-only LVSM (12 transformer layers, batch size 64) with 2 GPUs for 7 days,
exhibiting a performance of 28.56 dB PSNR, 0.889 SSIM, and 0.112 LPIPS. This performance is
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Ground truthInput images pixelSplat MVSplat GS-LRM Ours Encoder-Decoder Ours Decoder-Only

Figure 4: Scene-level visual comparison. We evaluate encoder-decoder and decoder-only LVSM on scene-
level view synthesis, comparing them against the prior leading baseline methods, namely pixelSplat (Charatan
et al., 2024), MVSplat (Chen et al., 2024), and GS-LRM (Zhang et al., 2024). Our methods exhibit less texture
and geometric artifacts, generate more realistic specular reflections, and are closer to the ground truth images.

even better than GS-LRM with 24 transformer layers trained on 64 GPUs. These results show the
promising potential of LVSM for academic research.

4.4 ABLATION STUDIES

Model Size. In Tab. 2, we ablate the model size designs of both LVSM variants on both object and
scene level. To save resources, the experiments are run with 8 GPUs and a total batch size of 64.

For the encoder-decoder LVSM, we maintain the total number of transformer layers while allocating
a different number of layers to the encoder and decoder. We observe that using more decoder layers
helps the performance while using more encoder layers harms the performance. We hypothesize
that this is because the encoder uses the latent representation as the compression of input image
information, and a deeper encoder makes this compression process harder to learn, resulting in
greater compression errors. This observation suggests that using the inductive bias of the encoder and
intermediate latent representation may not be optimal for the final quality, which also aligns with our
observation that the decoder-only variant outperforms the encoder-decoder variant.

For the decoder-only LVSM, we experiment with using different numbers of transformer layers
and model sizes in the decoder. The experiment verifies that decoder-only LVSM demonstrates
an increasing performance when using more transformer layers. This phenomenon validates the
scalability of the decoder-only LVSM.

Model Architecture. As shown in Tab. 3, we evaluate the effectiveness of our model designs. We
also visualize the equivalent attention mask for each design in Fig. 9 for better illustration. To save
resources, the encoder-decoder experiments here are run with 32 GPUs, a total batch size of 256,
and a decreased number of training target views of 8. The decoder-only experiment is run with our
original setup.
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Table 2: Ablations studies on model sizes. The following experi-
ments are all run with 8 GPUs.

GSO RealEstate10k
# Params PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ours Encoder-Decoder (6 + 18) 173M 26.48 0.901 0.065 28.32 0.888 0.117
Ours Encoder-Decoder (12 + 12) 173M 25.69 0.889 0.076 27.39 0.869 0.137
Ours Encoder-Decoder (18 + 6) 173M 24.74 0.873 0.091 26.80 0.855 0.152

Ours Decoder-Only (24 layers) 171M 27.04 0.910 0.055 28.89 0.894 0.108
Ours Decoder-Only (18 layers) 128M 26.81 0.907 0.057 28.77 0.892 0.109
Ours Decoder-Only (12 layers) 86M 26.11 0.896 0.065 28.61 0.890 0.111
Ours Decoder-Only (6 layers) 43M 24.15 0.865 0.092 27.62 0.869 0.129

Table 3: Ablations studies on model
architecture.

GSO (Downs et al., 2022)
PSNR ↑ SSIM ↑ LPIPS ↓

Ours Encoder-Decoder 28.07 0.920 0.053
Ours w/ CNN tokenizer 27.59 0.914 0.052

Ours w/o latents’ updating 26.61 0.903 0.061
Ours w/ per-patch prediction 26.27 0.897 0.072

Ours w/ pure cross-att decoder 24.60 0.876 0.085

RealEstate10k (Zhou et al., 2018)
PSNR ↑ SSIM ↑ LPIPS ↓

Ours Decoder-Only 29.67 0.906 0.098
Ours w/ per-patch prediction 28.98 0.897 0.103

Our encoder-decoder LVSM leverages an encoder to transform input images into a set of 1D tokens
that serve as an intermediate latent representation of the 3D scene. A decoder can then render
novel view images from this latent representation. While encoder-decoder LVSM shares high-level
conceptual similarities with SRT (Sajjadi et al., 2022)—both are based on transformers and use 1D
latent tokens as an intermediate latent representation without an explicit 3D representation—our
encoder-decoder LVSM introduces a very distinct architecture that significantly enhances performance.
In the following paragraphs, we evaluate many of our design decisions and also consider some
alternate components based on SRT, showing that our design yields significant improvements.

Tokenization Strategy for Encoder Input: For generating input tokens for the encoder, we draw
inspiration from ViT (Dosovitskiy et al., 2020) and recent LRMs (Wei et al., 2024; Zhang et al.,
2024). Specifically, we tokenize the input images and their pose information by simply splitting the
concatenated input views and Plücker ray embeddings into non-overlapping patches. In contrast,
SRT relies on shallow convolutional neural networks (CNNs) to extract patch features, which are
then flattened into tokens. As an ablation study, we tried SRT’s CNN-based tokenizing method
and observed that it makes training more unstable with a larger grad norm, which leads to worse
performance. As demonstrated in Tab. 3, replacing our simple tokenizer with SRT’s CNN-based
tokenizer degrades performance (ours w/ CNN tokenizer).

Fixed-Length Latent Encoding for Efficient Rendering: Our encoder employs self-attention to
progressively compress the information from posed input images into a fixed-length set of 1D latent
tokens. This design ensures a consistent rendering speed, regardless of the number of input images,
as shown in Fig. 6. This differs from approaches like SRT where latent token size increases linearly
with input views, reducing rendering efficiency as the number of views grows.

Bidirectional Self-Attention Decoder: The decoder of our encoder-decoder model utilizes pure
(bidirectional) self-attention, allowing latent tokens and output target image tokens to attend to each
other. This enables i) latent tokens to be updated by fusing information from themselves and from
other tokens, which also means the parameters of the decoder are a part of the scene representation; ii)
output patch pixels can also attend to other patches for joint updates, ensuring the global awareness of
the rendered target image. We ablate our full-attention design choice by experimenting with different
attention mechanisms, illustrated in Fig. 9. As shown in Tab. 3, disabling either the latents’ updating
(ours w/o latents’ updating) or the joint updating of direct output pixel patches (ours w/ per-patch
prediction) significantly degrades performance. SRT cannot support either mechanism because it
employs a decoder with pure cross-attention. We experiment with an LVSM variant by adopting
SRT’s decoder designs. As shown in Tab. 3 (ours w/ pure cross-att decoder), this modification leads
to worse performance.

For the decoder-only LVSM, it further pushes towards eliminating inductive bias and bypasses an
intermediate representation altogether. It adopts a single-stream transformer to directly convert
the input multi-view tokens into target view tokens, treating the view synthesis like a sequence-to-
sequence translation task, which is fundamentally different from any previous work. We ablate the
importance of the joint prediction of target image patches in the decoder-only LVSM. We design
a variant where the colors of each target pose patch are predicted independently, without applying
self-attention across other target pose patches. We achieve this by letting each transformer’s layer’s
key and value matrices only consist of the updated input image tokens, while both the updated input
image tokens and target pose tokens form the query matrices. As shown on the bottom part of Tab. 3,
this variant shows worse performance, with a 0.7 dB PSNR degradation. This result demonstrates
the importance of using both input and target tokens as the context tokens for information exchange
using the simplest full self-attention transformer, which is inline with our philosophy of reducing
inductive bias.
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Figure 5: Zero-shot generalization to different
number of input images on the GSO dataset (Downs
et al., 2022). We note that all models are trained with
just 4 input views.

Figure 6: Rendering FPS with different number
of input images. We test the FPS on the object level
under 256× 256 resolution. We refer to rendering as
the decoding process, which synthesizes novel views
from latent tokens or input images.

4.5 DISCUSSION

Zero-shot Generalization to More Input Views. We compare our LVSM with GS-LRM by taking
different numbers of input views to the training. We report the results on the object level. Note that
these models are trained only with 4 input views and test on other input view numbers in a zero-shot
manner. As shown in Fig. 5, our decoder-only LVSM shows increasingly better performance when
using more input views, verifying the scalability of our model design at test time. Our encoder-
decoder LVSM shows a similar performance pattern with GS-LRM, i.e., exhibiting a performance
drop when using more than 8 input views. We conjecture the reason is the inductive bias of the
encoder-decoder design, i.e. using intermediate representation as a compression of input information,
limits the performance. In addition, our single-input result (input view number = 1) is competitive and
even beats some of our baseline which takes 4 images as input. These performance patterns validate
our design target of using minimal 3D inductive bias for learning a fully data-driven rendering model
and cohere with our discussion in Sec. 3.2.

Encoder-Decoder versus Decoder-Only. As we mentioned in Sec. 3, the decoder-onlyand encoder-
decoder architectures exhibit different trade-offs in speed, quality, and potential.

The encoder-decoder model transforms 2D image inputs into a fixed-length set of 1D latent tokens,
which serve as a compressed representation of the 3D scene. This approach simplifies the decoder,
reducing its model size. Furthermore, during the rendering/decoding process, the decoder always
receives a fixed number of tokens, regardless of the number of input images, ensuring a consistent
rendering speed. As a result, this model offers improved rendering efficiency, as shown in Fig. 6.
Additionally, the use of 1D latent tokens as the latent representation for the 3D scene opens up the
possibility of integrating this model with generative approaches for 3D content generation on its 1D
latent space. Nonetheless, the compression process can result in information loss, as the fixed latent
tokens length is usually smaller than the original image tokens length, which imposes an upper bound
on performance. This characteristic of the encoder-decoder LVSM mirrors prior encoder-decoder
LRMs, whereas our LVSM does not have an explicit 3D structure.

In contrast, the decoder-only model learns a direct mapping from the input image to the target novel
view, showcasing better scalability. For example, as the number of input images increases, the model
can leverage all available information, resulting in improved novel view synthesis quality. However,
this property also leads to a linear increase in input image tokens, causing the computational cost to
grow quadratically and limiting the rendering speed.

Single Input Image. As shown in our project page, Fig. 1 and Fig. 5, we observe that our LVSM
also works with a single input view for many cases, even though the model is trained with multi-view
images during training. This observation shows the capability of LVSM to understand the 3D world,
e.g. understanding depth, rather than performing purely pixel-level view interpolation.

5 CONCLUSION
In this work, we presented the Large View Synthesis Model (LVSM), a transformer-based approach
designed to minimize 3D inductive biases for scalable and generalizable novel view synthesis.
Our two architectures—encoder-decoder and decoder-only—bypass physical-rendering-based 3D
representations like NeRF and 3D Gaussian Splatting, allowing the model to learn priors directly
from data, leading to more flexible and scalable novel view synthesis. The decoder-only LVSM, with
its minimal inductive biases, excels in scalability, zero-shot generalization, and rendering quality,
while the encoder-decoder LVSM achieves faster inference due to its fully learned latent scene
representation. Both models demonstrate superior performance across diverse benchmarks and mark
an important step towards general and scalable novel view synthesis in complex, real-world scenarios.
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A APPENDIX

We include additional results, ablations, and model details.

A.1 NAMING CLARIFICATION

Importantly, we clarify that the naming of ‘encoder’ and ‘decoder’ are based on their output
characteristics—i.e., the encoder outputs the latent while the decoder outputs the target—rather
than being strictly tied to the transformer architecture they utilize. For instance, in the encoder-
decoder model, the decoder consists of multiple transformer layers with self-attention (referred to
as Transformer Encoder layers in the original transformer paper). However, we designate it as a
decoder because its primary function is to output results. These terminologies align with conventions
used in LLMs (Vaswani et al., 2017; Radford et al., 2019; Devlin et al., 2019). Notably, we apply
self-attention to all tokens in every transformer block of both models without introducing special
attention masks or other architectural biases, in line with our philosophy of minimizing inductive
bias.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

We train LVSM with 64 A100 GPUs with a batch size of 8 per GPU. We use a cosine learning rate
schedule with a peak learning rate of 4e-4 and a warmup of 2500 iterations. We train LVSM for 80k
iterations on the object and 100k on scene data. LVSM uses a image patch size of p = 8 and token
dimension d = 768. The details of the transformer layers follow GS-LRM(Zhang et al., 2024) with
an additional QK-Norm. Unless noted, all models have 24 transformer layers, the same as GS-LRM.
The encoder-decoder LVSM has 12 encoder layers and 12 decoder layers, with 3072 latent tokens.
Note that our model size is smaller than GS-LRM, as GS-LRM uses a token dimension of 1024.

For object-level experiments, we use 4 input views and 8 target views for each training example by
default. We first train with a resolution of 256, which takes 4 days for the encoder-decoder model
and 7 days for the decoder-only model. Then, we finetune the model with a resolution of 512 for 10k
iterations with a smaller learning rate of 4e-5 and a smaller total batch size of 128, which takes 2.5
days. For scene-level experiments We use 2 input views and 6 target views for each training example.
We first train with a resolution of 256, which takes about 3 days for both encoder-decoder and
decoder-only models. Then, we finetune the model with a resolution of 512 for 20k iterations with a
smaller learning rate of 1e-4 and a total batch size of 128 for 3 days. For both object and scene-level
experiments, the view selection details and camera pose normalization methods follow GS-LRM. We
use a perceptual loss weight λ as 0.5 and 1.0 on scene-level and object-level experiments, respectively.

We do not use bias terms in our model, for both Linear and LayerNorm layers. We initialize the model
weights with a normal distribution of zero-mean and standard deviation of 0.02/(2∗ (idx+1))∗∗0.5,
where idx means transform layer index.

We train our model with AdamW optimizer (Kingma, 2014). The β1 and β2 are set to 0.9 and 0.95
respectively, following GS-LRM. We use a weight decay of 0.05 on all parameters except the weights
of LayerNorm layers.

A.3 ADDITIONAL VISUAL RESULTS

We show the visualization of LVSM at the object level with 256 resolution in Fig. 7. Consistent with
the findings of the experiment with 512 resolution (Fig. 3), LVSM performs better than the baselines
on texture details, specular material, and concave geometry.

A.4 DETAILED MODEL ARCHITECTURE

We have provided a detailed model architecture figure, as shown in Fig. 8.

A.5 ATTENTION MASK ILLUSTRATION FOR DIFFERENT DESIGN CHOICES

In Fig. 9, we visualize the corresponding attention masks for the various design choices discussed in
Sec. 4.4.
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Ground truthInput images GS-LRM Ours Encoder-Decoder Ours Decoder-OnlyLGM

Figure 7: Object-level visual comparison at 256 resolution. Comparing with the two baselines:
LGM(Tang et al., 2024) and GS-LRM (Res-256) (Zhang et al., 2024), both our Encoder-Decoder and
Decoder-Only models have fewer floater artifacts (last example), and can generate more accurate
view-dependent effects (third example). Our Decoder-Only model can better preserve the texture
details (first two examples).
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Figure 8: Model Details. We introduce two architectures: (1) an encoder-decoder LVSM, which
encodes input image tokens into a fixed number of 1D latent tokens, functioning as a fully-learned
latent scene representation, and decodes novel-view images from them; and (2) a decoder-only LVSM,
which directly maps input images to novel view outputs, completely eliminating intermediate scene
representations. Both models consist of pure self-attention blocks.
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Figure 9: Attention Mask Visualization. Both our encoder-decoder and decoder-only models employ
bidirectional self-attention modules. This figure visualizes the corresponding attention masks for the
various design choices discussed in Sec. 4.4. (We use green color for the columns of latent/input
tokens and blue for the columns of output pixel patch tokens.) In our encoder-decoder architecture,
the decoder utilizes pure self-attention, enabling latent tokens and different output target image tokens
to jointly attend to each other. Consequently, latent tokens can be updated across transformer layers,
while different output patch pixels can also attend to each other for joint updates. As shown in Table 3,
disabling either the joint updating of output patch pixels (ours w/ per-patch prediction) or the latents’
updating (ours w/o latents’ updating) significantly degrades performance. Prior work, SRT (Sajjadi
et al., 2022), eliminates both mechanisms by employing a decoder with pure cross-attention (ours w/
pure cross-att decoder), leading to even worse performance. Similarly, in our decoder-only model,
disabling the joint updating of output patch pixels (ours w/ per-patch prediction) also results in a
notable performance drop.

A.6 DISCUSSION OF DIFFERENCES WITH PRIOR GENERATIVE NVS MODELS

Motivated by the success of the previous NVS geometry-free approaches (Sitzmann et al., 2021;
Sajjadi et al., 2022), and the effectiveness of diffusion models in image-to-image tasks (Saharia
et al., 2022a; Ramesh et al., 2022; Saharia et al., 2022b), 3DiM (Watson et al., 2022) explores
training image-to-image diffusion models for object-level multi-view rendering to perform novel
view synthesis without an explicit 3D representation. However, 3DiMs is trained from scratch using
limited 3D data (Sitzmann et al., 2019), limiting it to category-specific settings and without zero-shot
generalization.

The following work Zero-1-to-3 (Liu et al., 2023a) adopts a similar pipeline without a 3D repre-
sentation but fine-tunes its model from a pretrained 2D diffusion model using a larger 3D object
dataset (Deitke et al., 2023), achieving better generalization and higher quality. However, Zero-1-to-
3’s view synthesis results suffer from inherent multi-view inconsistency because it is a probabilistic
model and it generates one target image at a time independently.

To improve this inconsistency problem, several works (Liu et al., 2023b; Yang et al., 2023; Ye et al.,
2023; Tung et al., 2024) integrate additional forms of 3D inductive bias, such as a 3D representation,
epipolar attention, etc., into the diffusion denoising process, leading to increased computational cost.
Other approaches (Li et al., 2023; Shi et al., 2023a;b; Long et al., 2023) predict a single image grid
representing (specific) multi-view images with fixed camera pose, sacrificing the ability to control
the camera. More recent works, including Free3D (Zheng & Vedaldi, 2024), EscherNet (Kong et al.,
2024), CAT3D (Gao* et al., 2024), SV3D (Voleti et al., 2025), and some other video model based
work (Wang et al., 2023b; He et al., 2024; Yu et al., 2024a), jointly predict multiple target views
with accurate camera control while ensuring view consistency by integrating cross-view attention.
However, these methods guarantee consistency only for the finite set of jointly predicted views.

In contrast, our generalizable deterministic models do not possess the same inherent inconsistency
issues of probabilistic models. As demonstrated in the video results on our project webpage, after
being trained on large-scale multi-view data, our models can independently generate each target image
with precise camera control while maintaining view consistency—without relying on the cross-view
attention mechanisms employed by previous generative models. This capability enables our models
to generate an unlimited number of consistent views for the observed regions of reconstructed scenes,
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unlike prior generative models. Nonetheless, our deterministic models have their own inherent
limitations, i.e., they can’t hallucinate unseen regions, which are discussed in Appendix A.7.

A.7 LIMITATIONS

Our models are deterministic, and like all prior deterministic approaches (Chen et al., 2021; Wang
et al., 2021a; Sajjadi et al., 2022; Wang et al., 2023a; Zhang et al., 2024), they struggle to produce
high-quality results in unseen regions. Previous 3D-based deterministic models typically generate
blurry artifacts for those regions due to uncertainty, whereas our model often generates noisy and
flickering artifacts with fixed patterns. To illustrate this, we provide video examples of related failure
cases on our webpage. Incorporating generative techniques or combining generative methods with
our model could help solve this issue, which we leave as a promising future direction.

Additionally, our model’s performance degrades when provided with images with aspect ratios and
resolutions different from those seen during training. For instance, when trained on 512×512 images
and tested on 512× 960 input images, we observe high-quality novel view synthesis at the center of
the output but blurred regions at the horizontal boundaries that extend beyond the training aspect ratio.
We hypothesize that this limitation arises because our model is trained on center-cropped images.
Specifically, the Plücker ray density is smaller at the boundaries of the image’s longer side, and since
our model is not trained on such data, it struggles to generalize. Expanding the training dataset to
include more diverse image resolutions and aspect ratios could help address this issue.
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