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Question: behavioral stability-flexibility dilemma during goal-directed learning — how does the brain solve this problem?
Behavioral findings: human’s stable goal pursuit behavior — 1) uncertainty-robust performance, 2) higher flex. & stab. than RL agents
Neural findings: factorized embedding of goal and uncertainty in the LPFC o flexible adaptation to goal change & stable goal pursuit
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Factorized embedding of goal and uncertainty in the LPFC for goal-directed learning 2ot too somnamef -
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* The VIPFC, dIPFC, and OFC showed factorized profiles of goal & uncertalnty embeddings. ¢ Neural goal separability in the LPFC predicted individual
e The ACC, preSMA, and V1 exhibited compression, encoding goals alone. flexibility, stability, and optimality.

Neurally stable goal embedding in LPFC guides stably flexible learning 2o o e e et i

one UC condition and tested in the other condition
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e Goal embeddings remained robust across uncertainty: CCGP and SD were comparable. ¢ PS further confirmed alighed goal-encoding directions across uncertainty
e Neural robustness in the LPFC correlated with behavioral flex., stab., and opt. In the VIPFC, dIPFC, OFC, and preSMA, supporting minimal reorientation.
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