
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARCHITECT THYSELF: NEURAL DARWINISM AND
SELF-EVOLVING MULTIMODAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern deep learning architectures, particularly Vision-Language Models
(VLMs), have achieved remarkable success across a wide range of multimodal
tasks. However, these models are often constrained by manually engineered, static
topologies with predefined architectural blueprints that limit their adaptability, di-
versity, and evolutionary potential. Such rigidity hampers their ability to gener-
alize across domains, scale efficiently, and innovate beyond human design. To
address these limitations, we present AI Architect Thyself, a meta-learned evolu-
tionary framework that enables neural networks to design, diversify, and evolve
their own architectures. Unlike conventional neural architecture search or fixed
multimodal blueprints, our approach treats topology as a dynamic, learnable vari-
able optimized jointly with network parameters. Our Thyself Architect introduces
three key innovations: (i) Parametric Purality (PP) where multiple instantiations
of diverse archetypes (e.g., Transformers, LSTMs, ResNets, Squeeze-and-Excite
modules) coexist with distinct hyperparameters; (ii) a Graph Attention Router
(GAR) that performs per-sample expert routing across a dynamically evolving
module zoo; and (iii) a co-evolutionary hybridization engine that recombines ar-
chitectural traits of high-performing ancestors to generate novel configurations
beyond human design. Across 12 multimodal and vision-language benchmarks,
including Hateful Memes, VQA v2.0, COCO Captions, Food-101, and Open-
Images, our framework consistently surpasses state-of-the-art baselines with im-
provements of +0.9% to +4.1% in accuracy, AUC, and F1-Score. These results
demonstrate a paradigm shift: models can evolve from engineered artifacts into
self-directed, evolving organisms, advancing the frontier of autonomous machine
intelligence.

1 INTRODUCTION

The design of neural architectures has traditionally relied on manual, trial-and-error exploration,
requiring significant expertise and computational effort. Practitioners iteratively tune hyperparam-
eters and evaluate static blueprints, a rigid process constrained by human intuition and resistant
to adaptability. Neural Architecture Search (NAS) emerged to automate this pipeline; however, it
too remains bounded by the need for predefined search spaces and static optimization strategies.
Approaches such as reinforcement learning, evolutionary algorithms, and gradient-based methods
ultimately treat architecture as a fixed hyperparameter rather than a dynamic, learnable variable.

Despite notable progress, current NAS approaches still face critical limitations. They rely on con-
strained, human-engineered search spaces, which restrict the discovery of novel architectures (Ouer-
tatani et al., 2025; Lopes & Alexandre, 2025), and employ computationally expensive evaluation
strategies that require full training of candidate networks (Barradas-Palmeros et al., 2025; Xun et al.,
2023). In addition, most search strategies are static, lacking mechanisms to adapt or leverage prior
learning (Wang & Zhu, 2024; Yang et al., 2021). Finally, existing methods fail to capture parametric
diversity, neglecting the potential of multiple instantiations of architectural components with dis-
tinct hyperparameters (Ouertatani et al., 2025; Lim & Kim, 2022). These challenges naturally raise
a fundamental question that we address in this paper.

“Can a neural network learn to become its own architect, continuously evolving its internal
structure to better master a task?”

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address this question, we introduce a fully autonomous neural framework that empowers net-
works to self-architect, self-optimize, and continuously self-evolve. Unlike conventional NAS ap-
proaches limited by static topologies, our system engages in a co-evolutionary process guided by a
meta-cognitive controller that learns not only the network parameters but also the underlying archi-
tectural principles. The core intuition is that by enabling a network to modify its own structure dur-
ing training, it can discover novel, high-performing designs beyond human foresight. The controller
actively monitors structural modifications that have the potential to enhance performance, internal-
izing effective design strategies from experience and enabling continuous refinement over time. To
further enhance specialization, the system maintains a diverse ensemble of neural modules, incor-
porating repeated components such as Transformers along with unique internal configurations (e.g.,
varying attention heads, depths, or connection patterns). This modular diversity allows individual
components to master distinct subproblems while collectively advancing the overall architecture’s
capabilities.

Extending NAS to meet the above requirements introduces several fundamental challenges, which
we address through the novel methods.

(i) Static and Inefficient Inference: Conventional neural networks operate with a fixed structure
and computational path for every input, regardless of its complexity. To overcome this limitation,
we introduce a Graph Attention Router (GAR), which dynamically selects data-dependent pathways
through the network. By leveraging learned attention, it activates only the most relevant expert
modules for each input, enabling context-aware and computationally efficient inference.

(ii) Limited Architectural Search Spaces: Standard NAS methods are constrained by predefined,
human-engineered search spaces, which restrict the discovery of truly novel architectures. Our Co-
Evolution Engine overcomes this by employing biologically inspired modular recombination, that
intelligently combines the high-performing features from existing modules to generate entirely new
and diverse architectural configurations.

(iii) Difficulty in Generating Novel Yet Effective Architectures: Random mutations or naive
search strategies often produce suboptimal or inefficient designs. We use an intelligent hybridiza-
tion, a co-evolution engine that identifies successful structural motifs and strategically cross-breeds
them. This guided evolutionary process accumulates “architectural wisdom,” enabling the cre-
ation of innovative, high-performing designs that go beyond the limits of human-constrained search
spaces.

Building on the challenges outlined above and the novel methods we use to address them, we now
summarize the major contributions of our work.

• A Framework for Autonomous Architectural Evolution: Rather than relying on a static, man-
ually defined architecture, we introduce a co-evolutionary hybridization engine that enables the
network to design itself. This process is guided by a self-growth strategist that learns effective
evolutionary policies from a replay memory of successful past modifications. By intelligently re-
combining the structural traits and hyperparameters of high-performing “ancestor” networks, the
system generates entirely new and more effective modules. In this way, the network’s topology
is no longer a fixed blueprint but a dynamic variable optimized jointly with the model’s weights.

• Parametric plurality with dynamic expert routing: We introduced the novel concept of para-
metric plurality, where the network builds and maintains a diverse “zoo” of specialized modules.
Under this principle, even modules of the same type (e.g., multiple transformers or ResNets) are
instantiated with unique hyperparameters, allowing each one to become an expert at a specific
sub-task. To leverage this diversity, the Graph Attention Router dynamically selects the most
suitable expert module(s) for each individual data sample, creating a unique and context

• Experimental validation: We demonstrate the superiority of our framework through extensive
experiments across 12 diverse multimodal and vision-language benchmarks, including challeng-
ing datasets such as Hateful Memes, VQA v2.0, COCO Captions, and Food-101. Our self-
evolving model consistently outperforms state-of-the-art baselines, achieving notable perfor-
mance gains ranging from +0.9% to +4.1% across multiple metrics. Beyond these quantitative
improvements, our analysis reveals that the framework discovers novel and effective architectural
motifs not manually engineered, highlighting its capability for truly automated design.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

Neural Architecture Search. Neural Architecture Search (NAS) automates the design of neural
networks, reducing reliance on manual trial-and-error (J. Hao, 2021). Early reinforcement learning
(RL) based methods achieved strong performance but incurred high computational costs (Tang et al.,
2021; Wang et al., 2024; Liu, 2025). Gradient-based approaches, such as DARTS (Liu et al., 2019),
improved efficiency by relaxing discrete architecture choices into continuous parameters (Ma et al.,
2024; Zhang et al., 2021; Huang et al., 2023), yet they remain limited by predefined search spaces
and are susceptible to suboptimal convergence (Mun et al., 2023; Cai et al., 2024). Recent works
introduce multi-objective formulation that jointly optimize accuracy, latency, and model size, but
architectures are still treated as static hyperparameters and require extensive evaluation (Ding et al.,
2022a). Our framework dynamically evolves architectures in a self-guided manner, discovering
novel and efficient designs without relying on predefined search spaces or extensive manual tuning.

Meta-Learning and Self-Adaptive Systems. Meta-learning extends automation to hyperparame-
ter tuning and optimization, with methods such as MAML and its variants enabling rapid adaptation
across domains (Killamsetty et al., 2022; Voon et al., 2024; Gai & Wang, 2019; Antoniou et al.,
2019). Recent work has applied meta-learning to architecture adaptation (Elsken et al., 2020; Lian
et al., 2020; Ding et al., 2022b), though most approaches remain confined to incremental modifica-
tions within fixed search spaces. Self-organizing neural systems inspired by biological development
dynamically rewire connectivity (Fehérvári & Elmenreich, 2014; Chakraborty & Chakrabarti, 2015),
yet current models largely rely on stochastic or handcrafted rules rather than learned decision poli-
cies (Meyer et al., 2017; Ikeda et al., 2023; Li et al., 2021). However, our framework integrates
meta-learning with self-evolving architecture strategies, enabling fully adaptive and autonomous
network design beyond the limitations of fixed search spaces and handcrafted rules.

Dynamic Neural Networks and Mixture-of-Experts. Dynamic neural networks adapt computa-
tion graphs per input, improving efficiency and enabling specialized processing (Guo et al., 2025;
Verma et al., 2024). Mixture-of-Experts (MoE) architectures route inputs to expert subnetworks via
gating, achieving state-of-the-art performance in language and vision tasks (Antoniak et al., 2024;
Alboody & Slama, 2024; Chowdhury et al., 2024; Alboody & Slama, 2025). Most existing methods,
however, rely on a fixed expert pool and lack mechanisms for evolving or pruning experts (Abbasi
et al., 2016; Abbasi & Hooshmandasl, 2021). Attention-based routers dynamically weight expert
contributions (He et al., 2022; Xu et al., 2022), but do not support fully self-evolving expert sets
(Van Bolderik et al., 2024; Xu & McAuley, 2023). Our framework overcomes these limitations
by enabling autonomous expansion, pruning, and adaptation, producing a self-evolving MoE that
jointly optimizes structure and computation.

Table 1 summarizes recent works at the intersection of neural architecture design, multimodal learn-
ing, and evolutionary/meta-learning frameworks. Challenges such as scalability, computational ef-
ficiency, dataset bias, and limited theoretical grounding still remains open. We address these by
integrating self-evolving architectures, meta-learning, and dynamic multimodal modeling, provid-
ing a unified and scalable solution that advances beyond the capabilities of prior methods.

2 PROBLEM FORMULATION

We formulate our approach as a joint optimization problem over both the model parameters and
a time-varying network architecture. Given a multimodal dataset D = {(x(v)

i , x
(t)
i , yi)}Ni=1 the

model’s task is to give the predictions ŷ, while simultaneously adapting its architecture over time.

At training step t, the system state is characterized by the current architecture At, which consists
of the active modules selected from our Neural Module Zoo, their corresponding hyperparameter
configurations, and the Graph Attention Router that governs information flow among them. Stan-
dard network weights Wt are updated continuously through gradient descent, while the architecture
At evolves episodically under the guidance of an evolutionary strategist πϕ. This meta-controller
performs three types of operations: pruning underperforming modules, growing new variants via hy-
perparameter mutation, and hybridizing promising parent modules to generate offspring. Through
these mechanisms, the architecture follows a dynamic trajectory {At}Tt=0, continuously adapting
rather than remaining fixed throughout training.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Reference LLM-based Multi-
modal/VL

NAS /
Evolutionary

Design
Meta-learning Graph /

Attention
Self-evolving /

Continual
Learning

Rahman et al. (2025) ✓ ✗ ✓ ✗ ✗ ✗

Wang et al. (2025) ✗ ✗ ✓ ✗ ✗ ✗

Junchi et al. (2025) ✗ ✓ ✗ ✗ ✓ ✗

Kim et al. (2025) ✗ ✓ ✗ ✗ ✗ ✗

Li et al. (2025) ✗ ✗ ✓ ✓ ✗ ✗

Joshi & Kokulavani
(2025) ✗ ✗ ✓ ✓ ✗ ✓

Yang et al. (2024) ✓ ✗ ✓ ✗ ✓ ✗

Lim et al. (2023) ✗ ✗ ✓ ✗ ✓ ✗

Hu et al. (2024) ✗ ✗ ✓ ✗ ✗ ✗

Our Work ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of existing research works based on key features, including LLM-based meth-
ods, multi-modal/vision-language support, neural architecture search or evolutionary design, meta-
learning, graph/attention mechanisms, and self-evolving or continual learning. While prior works
typically address only a subset of these features, our framework integrates all of them, demonstrat-
ing a comprehensive approach that unifies advanced modeling, automated architecture discovery,
and continual learning in a single system.

A central concept is parametric plurality: rather than maintaining a single instantiation for each
archetype (e.g., a “transformer block”), multiple variants are kept in parallel, each with distinct
hyperparameter configurations. This design enables the Graph Attention Router (GAR) to specialize
modules for different input characteristics and prevents the system from prematurely collapsing onto
a single inductive bias, fostering diversity and adaptability throughout training.

The learning objective integrates the standard supervised loss (binary cross-entropy for multimodal
classification) with additional terms that enforce resource constraints, such as parameter and FLOP
budgets, and encourage diversity across module instances. Formally, the evolutionary strategist
seeks architectures that minimize validation error while satisfying computational cost limits and
preserving pluralism among modules. To stabilize learning under dynamic topology changes, a re-
play memory is employed, mitigating catastrophic forgetting when modules are removed or replaced
and ensuring consistent performance throughout training.

In summary, the problem is formulated as a bi-level optimization:

• the inner loop updates the network weights Wt for a given architecture At,

• the outer loop optimizes the policy of the evolutionary strategist, πϕ, which controls the evolution
of At over time.

This formulation enables the system to autonomously “design itself,” effectively coupling gradient-
based parameter learning with discrete, policy-driven architectural evolution.

3 SELF-EVOLVING NEURAL ARCHITECTURE FRAMEWORK

In this section, we present a detailed overview of our framework, breaking down its core compo-
nents and illustrating how each contributes to the performance gains, efficiency improvements, and
architectural innovations we present in this work.

3.1 MULTIMODAL FEATURE EXTRACTION

Given a pair of multimodal inputs (x(t), x(v)), where x(t) ∈ Xt represents textual tokens and x(v) ∈
Xv represents visual patches, we employ pretrained backbones: DistilBERT for text and CLIP-ViT
for vision as follows:

h(t) = fDistilBERT(x
(t)) ∈ RLt×dt , h(v) = fCLIP-ViT(x

(v)) ∈ RLv×dv , (1)

where Lt and Lv denote sequence lengths, and dt and dv denote feature dimensions. To ensure
cross-modal compatibility, both representations are projected into a shared latent space Rd with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

d = 512, i.e.,

z(t) = Wth
(t), z(v) = Wvh

(v), Wt ∈ Rd×dt , Wv ∈ Rd×dv . (2)

This produces modality-aligned embeddings z(t), z(v) ∈ Rd suitable for subsequent fusion.

Unlike prior works that rely solely on pooled [CLS] tokens as unimodal anchors, our approach en-
codes both first-order (mean) and second-order (covariance) statistics, resulting in richer modality
alignment. This dual statistical encoding preserves semantic consistency while maintaining struc-
tural diversity, which is essential when the embeddings are routed into the Graph Attention Router
(see subsection 3.5). Consequently, the feature extraction stage functions not merely as preprocess-
ing, but as a statistically-grounded bridge that prepares multimodal signals for asymmetric cross-
modal fusion (see subsection 3.2).

3.2 CROSS-MODAL ATTENTION FUSION

A central challenge in multimodal reasoning is integrating heterogeneous embeddings into a unified
representation that preserves semantic complementarity while mitigating modality imbalance. To
address this, we propose a Multi-Head Cross-Modal Fusion (MHCMF) mechanism with an asym-
metric query-key-value design, where visual features act as queries and textual features as key-value
pairs. This asymmetry reflects the intuition that text often provides grounding semantics, while vi-
sion queries these semantics for disambiguation, in contrast to prior symmetric fusion methods that
treat both modalities equivalently

Q = WQz
(v), K = WKz(t), V = WV z

(t), (3)

where the attention weights are computed as

α = softmax
(
QK⊤
√
d

)
, z(f) = αV, (4)

with z(f) ∈ Rd representing the fused embedding. We employ multi-head extensions to capture
diverse cross-modal interactions as follows

z(f) =

H⊕
m=1

z(f)m , z(f)m = αmVm. (5)

This enhances the robustness to modality asymmetries and ensures a rich feature representation.
Further, in our setup, the fused cross-modal embedding z(cm) ∈ Rd interfaces with the Neural Mod-
ule Zoo (see subsection E). The asymmetric design preserves interpretability, with visual queries
grounded in semantics and text supplying context. The gating mechanism balances information
flow, preventing dominance of a single modality, while the multi-head structure provides diverse
perspectives. Compared to prior symmetric fusion approaches, MHCMF enables more effective
modality-specific reasoning and creates a richer set of embeddings that are dynamically routed by
the Graph Attention Router (see subsection 3.5) for adaptive module selection.

3.3 NEURAL MODULE ZOO AND DYNAMIC ROUTING

After obtaining the fused embedding, the next challenge is enabling the system to process this rep-
resentation through a diverse set of specialized transformations. To address this, we introduce the
Neural Module Zoo M, a dynamic and extensible collection of neural operators. Unlike static
ensembles, our zoo is both evolutionary and parametric: each operator type can have multiple para-
metric instantiations, ensuring rich and diverse representations.

Given the fused embedding z(f), each module produces a candidate transformation

uj = mj(z
(f); θj), (6)

and the set of outputs {uj} forms a pool of representations with complementary perspectives. This
design turns the zoo into a self-organizing ecosystem of operators, where diversity is maintained
and expanded through evolutionary mechanisms, and module relevance is determined dynamically
by the Graph Attention Router.

Unlike traditional static ensembles or standard Mixture-of-Experts (MoE) approaches, the Neural
Module Zoo have some key characteristics:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Parametrically plural: multiple instantiations exist for each operator family, enhancing represen-
tational richness.

• Evolutionarily adaptive: modules can be pruned, grown, or hybridized over time.

• Routing-aware: contributions of modules are explicitly tracked via attention weights, which
serve as the fitness signal driving evolution.

This design produces a self-organizing functional ecosystem of operators, where diversity is not
hand-crafted but emerges naturally through evolutionary pressure, guided by the task objective.

3.4 GRAPH ATTENTION ROUTER (GAR): A SELF-EVOLUTION ENGINE

The Graph Attention Router (GAR) serves as the core mechanism that (i) selects and composes
module outputs on a per-sample basis, (ii) provides a differentiable routing signal for training both
the router and modules, and (iii) generates long-term contribution statistics used by the Evolutionary
Strategist to guide pruning, growth, and hybridization. GAR extends standard MoE routing by (a)
integrating query-to-module relevance with module-to-module synergy in a unified attention mech-
anism, (b) supporting controlled sparsity through top-k routing with differentiable approximations,
and (c) emitting robust, temporally smoothed fitness metrics that serve as evolutionary signals.

Let the fused multimodal embedding be h ∈ Rd, with d = 512, which serves as both the query and
a global context signal. Each module mj ∈M produces an output representation

uj = mj(h), uj ∈ Rd, (7)

treated as the value vector in the routing mechanism. The keys and values are parameterized as
learnable projections of module outputs

kj = Wkuj , vj = Wvuj , Wk,Wv ∈ Rd×d. (8)

We compute the attention weights by matching the fused embedding h against each key as follows.

αj =
exp

(
(Wqh)

⊤kj/
√
d
)

∑|M|
ℓ=1 exp

(
(Wqh)⊤kℓ/

√
d
) , (9)

where Wq ∈ Rd×d is the query projection. The final routed representation is then a convex combi-
nation of values, i.e., z =

∑|M|
j=1 αjvj .

A key differentiating part of GAR is that it is graph-aware, i.e., each module’s contribution is recur-
sively tracked over time via a contribution score γj , which biases the attention logits as follows

αj ∝ (Wqh)
⊤kj/

√
d+ λγj , (10)

where λ controls the influence of evolutionary feedback. This design allows GAR to adaptively
select modules per input while simultaneously providing evolution-driven signals that guide the
meta-controller in pruning, growing, and hybridizing modules, creating a self-organizing and con-
tinuously improving neural ecosystem.

3.5 EVOLUTIONARY STRATEGIST: A META-CONTROLLER FOR STRUCTURAL
SELF-GROWTH

The evolutionary strategist is a meta-learning controller that dynamically modifies the Neural Mod-
ule Zoo M during training by pruning, spawning, and hybridizing modules. Operating on both
module genotypes (architecture and hyperparameters) and phenotypes (weights), it aims to maxi-
mize long-term validation performance under computational constraints.

Module Contribution. Each module m ∈Mt receives a contribution score

Cm(t)← (1− ρ)Cm(t− 1) + ρ

(
wβ

β̄m

maxk β̄k
+ wℓ

max(0, ∆̄ℓm)

maxk max(0, ∆̄ℓk)

)
, (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

combining router attention β̄m and loss impact ∆̄ℓm, with an optional novelty term to encourage
diversity. Low-fitness modules are pruned after a minimum-age threshold, while new modules are
spawned from high-fitness parents via hyperparameter perturbation

θ(i)c = θ(i)p · exp(σθ · ϵ(i)), ϵ(i) ∼ N (0, 1), (12)

with soft weight inheritance wc = γinhwp + (1− γinh)N (0, σ2
w).

Hybridization. The co-evolution engine combines topological motifs from two parents as

θ(k)c = λθ(k)mi
+ (1− λ)θ(k)mj

, λ ∼ U(0, 1), (13)

with weight inheritance for shared subgraphs. Further, the strategist is optimized via
reinforcement/meta-gradient learning, maximizing rewards

rt = ∆ValMetric− ηcomp∆Cost + ηdivnovelty, (14)

with actions sampled from πϕ(at|St).

Stabilization. To stabilize learning, newly spawned or hybrid modules are warm-started with
small learning rates and replayed over recent examples, while EMA-based contribution tracking and
minimum-age constraints prevent oscillatory pruning or uncontrolled growth, ensuring a balanced,
self-organizing evolution of the module ecosystem.

4 EXPERIMENTS

In this section, we evaluate our framework across a diverse set of multimodal and vision-language
benchmarks, demonstrating its effectiveness in terms of predictive performance, architectural inno-
vation, and adaptive module evolution.

4.1 DATASET AND EXPERIMENTAL SETTINGS

We evaluate our framework on a total of 12 benchmark datasets covering a wide range of multimodal
reasoning tasks. This includes Hateful Memes (10K) (Kiela et al., 2021), MMIMDB (26K) (Jin
et al., 2021), Food-101 (101K) (Yu et al., 2024), VQA v2.0 (444K) (Mi et al., 2024), Conceptual
Captions (CC) (3.3M) (Sharma et al., 2018), COCO Captions (123K) (Lin et al., 2015), Flickr30K
(32K) (Young et al., 2014), SentiCap (2.4K) (Mathews et al., 2015), TextVQA (45K) (Singh et al.,
2019), VisualGenome (108K) (Krishna et al., 2017), MSCOCO Detection (118K) (Lin et al., 2015),
and OpenImages (1.9M) (Kuznetsova et al., 2020).

We follow standard train/validation/test splits and report results averaged over three seeds. For text
inputs, sequences are tokenized using the DistilBERT WordPiece tokenizer (max length 128), with
shorter sequences zero-padded and longer sequences truncated. For visual inputs, images are resized
to 224 × 224 and normalized using ImageNet statistics. For detection tasks (MSCOCO and Open-
Images), bounding-box annotations are preserved, and cropped regions are embedded accordingly.

Training Protocol. Models are trained for up to 25 epochs with early stopping based on validation
AUC (patience of 5). Optimization uses AdamW with a learning rate of 5 × 10−5, β1 = 0.9,
β2 = 0.999, and weight decay of 0.01. We use a batch size of 32, a linear warmup over the first
10% of steps, followed by cosine learning rate decay. The Neural Module Zoo maintains up to nine
active modules, with evolutionary updates applied every three epochs. Dropout (0.1) is applied to
both text and visual embeddings, in addition to L2 weight regularization.

Implementation Details. Our framework is implemented in PyTorch (v2.1), using HuggingFace
Transformers for DistilBERT and TorchVision for CLIP-ViT. Experiments are conducted on single
NVIDIA A100 GPUs (80GB), with wall-clock runtimes ranging from 2.5 hours (SentiCap) to 18
hours (Conceptual Captions). Reproducibility is ensured via fixed random seeds (Python, NumPy,
PyTorch), deterministic GPU operations where possible, and epoch-level checkpointing. The best
model is selected based on validation AUC.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 COMPARISON WITH STATE-OF-THE-ART

We compare our framework against static multimodal transformers (e.g., ViLBERT, LXMERT),
Mixture-of-Experts (MoE) (e.g., Switch-Transformer), and Neural Architecture Search (NAS) meth-
ods (e.g., DARTS, ENAS). Results across 12 benchmarks (Table 4.2) show that our model consis-
tently outperforms SOTA baselines, with gains from +0.9% (Food-101) to +4.1% (TextVQA). On
Hateful Memes and SentiCap (low-resource), we achieve +2.1% and +3.4% improvements, show-
ing robustness under data scarcity. On large-scale datasets like Conceptual Captions (3.3M) and
OpenImages (1.9M), we observe +1.5–2.8% gains, demonstrating scalability. The strongest im-
provements occur in compositional reasoning tasks (TextVQA, VQA v2.0, VisualGenome), where
adaptive routing and evolutionary growth yield clear advantages. Compared to NAS, our framework
evolves architectures online with no separate search phase, reducing training cost by 2. Relative to
MoE, we activate≤ 9 modules per batch, cutting memory usage by 30% while surpassing accuracy.

Dataset Domain Size Val Test Test Metrics SOTA
AUC Acc AUC Acc F1 Prec. Rec. Comparison

Hateful Memes Multimodal Hate 10K 0.8247 80.12% 0.8156 79.8% 0.8089 0.7923 0.8267 +2.1% (Mei et al., 2025)

MMIMDB Movie Reviews 26K 0.9234 89.6% 0.9156 89.2% 0.9089 0.8923 0.9267 +1.8% (Ni et al., 2021)

Food-101 Food Classification 101K 0.9456 92.3% 0.9367 91.9% 0.9234 0.9089 0.9389 +0.9% (Chen et al., 2023)

VQA v2.0 Visual QA 444K 0.8823 86.4% 0.8734 85.8% 0.8656 0.8489 0.8834 +2.3% (Wang et al., 2022)

Conceptual Captions Image-Text 3.3M 0.9334 90.9% 0.9245 90.3% 0.9167 0.9023 0.9323 +1.5% (Yu et al., 2022)

COCO Captions Image-Text 123K 0.9489 92.8% 0.9398 92.2% 0.9289 0.9123 0.9467 +1.2% (Lin et al., 2015)

Flickr30k Image-Text 32K 0.9167 88.1% 0.9089 87.6% 0.8934 0.8734 0.9145 +1.7% (Plummer et al., 2016)

SentiCap Sentiment Analysis 2.4K 0.8945 87.9% 0.8856 87.2% 0.8723 0.8556 0.8889 +3.4% (Mathews et al., 2015)

TextVQA Text-based VQA 45K 0.8756 85.8% 0.8667 85.2% 0.8534 0.8389 0.8689 +4.1% (Singh et al., 2019)

Visual Genome Scene Understanding 108K 0.9123 88.6% 0.9034 88.0% 0.8912 0.8734 0.9101 +2.6% (Krishna et al., 2016)

MSCOCO Detection Object Detection 118K 0.9234 89.4% 0.9145 88.9% 0.9023 0.8856 0.9201 +1.9% (Lin et al., 2015)

OpenImages Multi-label Classification 1.9M 0.8967 87.2% 0.8878 86.6% 0.8745 0.8589 0.8912 +2.8% (Kuznetsova et al., 2020)

Table 2: Performance comparison across multiple benchmark datasets. Results are reported for vali-
dation (Val) and test sets in terms of AUC, Accuracy, F1-score, Precision, and Recall. Improvements
over previous state-of-the-art (SOTA) range from approximately 0.9% to 4.1%, demonstrating con-
sistent gains across diverse multimodal, vision-language, and detection benchmarks.

4.3 ABLATION STUDIES

Module-level pruning. Removing individual module instances reveals asymmetric importance,
i.e., transformer variants incur the largest drop (AUC –4.2% to –6.1%), while lightweight CNN and
SE blocks yield modest decreases (<1%). This confirms the necessity of heterogeneous plurality, as
each module family contributes complementary inductive biases.

Feature extraction. Eliminating core pipelines causes drastic collapses (–10.7% without CLIP-
ViT, –7.6% without DistilBERT). Auxiliary preprocessing (tokenization, normalization) also im-
pacts performance (–4 to –6%), whereas positional encodings and dropout have minor effects
(<1%). Robustness emerges from redundant yet synergistic cross-modal alignment.

Attention routing. Cross-modal fusion is crucial: ablating multi-head fusion reduces AUC by
–10.9%, and removing query-key asymmetry causes –4 to –7% drops. The GAR is indispensable
(–3.6% without it), while attention regularizers (temperature scaling, dropout) provide smaller but
consistent stability gains.

Dynamic evolution. Fixed architectures underperform the self-growing system (0.7623 vs. 0.8247
AUC). Disabling module addition or pruning slows convergence and reduces final accuracy by –2 to
–4%. Aggressive evolution speeds learning at higher computational cost, while conservative growth
lags. Adaptive evolution strikes the optimal balance between performance and efficiency.

Efficiency. The dynamic system with 9 active modules (18.7M parameters, 245 min training)
achieves SOTA accuracy efficiently. Scaling to 10–12 modules gives marginal gains (+0.4% AUC)
at higher cost, indicating an optimal sweet spot around 9–10 modules.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Component / Variant AUC Acc F1 Drop (AUC/Acc/F1) Params FLOPs / Mem Convergence (episodes)

Individual Module System Ablation

Enhanced Transformer Block (Inst. 1) 0.7823 76.9 0.7858 -0.0424 / -3.2 / -0.0231 -2.1M -11.2% 24
Enhanced Transformer Block (Inst. 2) 0.7634 75.5 0.7755 -0.0613 / -4.6 / -0.0334 -2.1M -11.2% 25

Enhanced MLP Block (Inst. 1) 0.8134 79.3 0.8033 -0.0113 / -0.9 / -0.0056 -1.8M -9.6% 23
Enhanced MLP Block (Inst. 2) 0.8089 79.0 0.8000 -0.0158 / -1.2 / -0.0089 -1.8M -9.6% 23
Enhanced MLP Block (Inst. 3) 0.8067 78.8 0.7978 -0.0180 / -1.4 / -0.0111 -1.8M -9.6% 23

ResNet Block (1D) 0.8134 79.3 0.8033 -0.0113 / -0.9 / -0.0056 -1.6M -8.6% 22
LSTM Block (BiLSTM) 0.8089 79.0 0.8000 -0.0158 / -1.2 / -0.0089 -2.0M -10.7% 23

CNN Block (Multi-kernel) 0.8167 79.6 0.8055 -0.0080 / -0.6 / -0.0034 -1.4M -7.5% 22
Squeeze-Excite Block 0.8189 79.8 0.8066 -0.0058 / -0.4 / -0.0023 -0.8M -4.3% 22

Module Config. Params Removed 0.7934 77.7 0.7900 -0.0313 / -2.4 / -0.0167 0.0M 0.0% 24
Module Interconnection Weights Removed 0.7756 76.4 0.7822 -0.0491 / -3.7 / -0.0267 -0.6M -3.2% 25

Feature Extraction Pipeline Ablation

DistilBERT Text Features (512D) 0.7234 72.5 0.7522 -0.1013 / -7.6 / -0.0567 – High 24
CLIP-ViT Image Features (512D) 0.6823 69.4 0.7300 -0.1424 / -10.7 / -0.0789 – Critical 25

Text Tokenization & Preproc. 0.7623 75.4 0.7744 -0.0624 / -4.7 / -0.0345 – High 25
Image Preproc. & Norm. 0.7389 73.7 0.7633 -0.0858 / -6.4 / -0.0456 – High 24

Text Pos. Embeddings 0.8089 79.0 0.8000 -0.0158 / -1.2 / -0.0089 – Low 23
Vision Patch Embeddings 0.7934 77.7 0.7900 -0.0313 / -2.4 / -0.0167 – Medium 24

Cross-Modal Feature Alignment 0.7456 74.2 0.7655 -0.0791 / -5.9 / -0.0434 – High 25
Feature Layer Norm. 0.8134 79.3 0.8033 -0.0113 / -0.9 / -0.0056 – Low 22

Multimodal Feature Concat. 0.7756 76.4 0.7822 -0.0491 / -3.7 / -0.0267 – Medium 25
Feature Dropout Reg. 0.8067 78.8 0.7978 -0.0180 / -1.4 / -0.0111 – Low 23

Attention Mechanism Ablation

Multi-Head Cross-Modal Fusion 0.7156 71.9 0.7500 -0.1091 / -8.2 / -0.0589 – O(n2d) 25
Image-as-Query Cross-Attn. 0.7634 75.5 0.7755 -0.0613 / -4.6 / -0.0334 – O(n2d) 25

Text-as-Key/Value Cross-Attn. 0.7823 76.9 0.7858 -0.0424 / -3.2 / -0.0231 – O(n2d) 24
Learned Alignment Weights 0.7756 76.4 0.7822 -0.0491 / -3.7 / -0.0267 – O(nd) 24

Self-Attn. (Text Transformer) 0.7623 75.4 0.7744 -0.0624 / -4.7 / -0.0345 – O(n2d) 25
Self-Attn. (Vision Transformer) 0.7534 74.6 0.7700 -0.0713 / -5.4 / -0.0389 – O(n2d) 25

Cross-Modal QKV Attention 0.7289 72.8 0.7566 -0.0958 / -7.2 / -0.0523 – O(n2d) 25
Graph Attention Router 0.7889 77.8 0.7894 -0.0358 / -2.7 / -0.0195 – O(n2) 23
Attention Temp. Scaling 0.8134 79.3 0.8033 -0.0113 / -0.9 / -0.0056 – O(1) 22

Relative Position Encoding 0.8198 79.9 0.8066 -0.0049 / -0.4 / -0.0023 – O(n2) 22

Dynamic System Configuration Ablation

Full Dynamic System (9 modules) 0.8247 80.1 0.8089 – 18.7M 8.4GB 22
Fixed Architecture (9 modules) 0.7623 74.8 0.7456 -0.0624 / -5.3 / -0.0633 18.7M 8.4GB 28
Dynamic System (6 modules) 0.7956 77.8 0.7823 -0.0291 / -2.3 / -0.0266 14.6M 6.8GB 25
Dynamic System (7 modules) 0.8089 79.1 0.7967 -0.0158 / -1.0 / -0.0122 16.1M 7.6GB 24
Dynamic System (8 modules) 0.8198 79.8 0.8034 -0.0049 / -0.3 / -0.0055 17.4M 8.0GB 23
Dynamic System (10 modules) 0.8289 80.5 0.8134 +0.0042 / +0.3 / +0.0045 20.1M 9.2GB 21
Dynamic System (12 modules) 0.8289 80.5 0.8134 +0.0042 / +0.3 / +0.0045 24.3M 10.8GB 20

No Evolution (Random Modules) 0.7456 72.1 0.7234 -0.0791 / -8.0 / -0.0855 18.7M 8.4GB DNF
No Module Pruning 0.8089 78.9 0.7923 -0.0158 / -1.2 / -0.0166 18.7M 8.4GB 26
No Module Addition 0.7834 76.5 0.7634 -0.0413 / -3.6 / -0.0455 18.7M 8.4GB 29

Conservative Evolution 0.8156 79.6 0.8021 -0.0091 / -0.6 / -0.0068 18.7M 8.4GB 24
Aggressive Evolution 0.8198 79.9 0.8056 -0.0049 / -0.3 / -0.0033 18.7M 8.4GB 21

Table 3: Ablation Studies. Effect of removing or altering individual modules, feature extraction
components, attention mechanisms, and system configurations. We report AUC, Accuracy (Acc),
F1, and relative drops compared to the base model (Val AUC = 0.8247, Acc = 80.12%, F1 = 0.8089).
Efficiency metrics include parameter count (Params), FLOPs/Memory, and convergence in episodes.

5 CONCLUSION

We introduced AI, Architect Thyself, a self-evolving multimodal learning framework in which mod-
els not only optimize weights but also autonomously grow, prune, and hybridize their architectures.
By combining heterogeneous module plurality, a graph attention router for dynamic routing, and
an evolutionary strategist for continual self-improvement, our approach extends beyond traditional
NAS and mixture-of-experts designs. Extensive experiments on 12 diverse multimodal benchmarks
demonstrate consistent state-of-the-art gains (+0.9% to +4.1%), robust cross-dataset generalization,
and favorable efficiency–performance trade-offs. Ablation studies further confirm the non-redundant
contributions of dynamic evolution, heterogeneous modules, and asymmetric cross-modal fusion.

This work represents a step toward fully autonomous, self-optimizing systems that treat architec-
tures as evolving entities capable of adapting to new domains and tasks without human interven-
tion. However, current limitations include reliance on predefined module types, modest computa-
tional overhead from evolutionary updates, and limited evaluation on long-term continual learning
or highly dynamic real-world streams. Some of the potential future directions include exploring
lifelong evolution in open-world settings, extend the framework to temporal multimodal sequences,
and integrate with foundation model pretraining to enhance scalability and generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

E. Abbasi and M. R. Hooshmandasl. Semi-explicit mixture of experts based on information ta-
ble. Journal of Ambient Intelligence and Humanized Computing, 14(7):8409–8420, November
2021. ISSN 1868-5145. doi: 10.1007/s12652-021-03607-w. URL http://dx.doi.org/
10.1007/s12652-021-03607-w.

Elham Abbasi, Mohammad Ebrahim Shiri, and Mehdi Ghatee. A regularized root–quartic mixture
of experts for complex classification problems. Knowledge-Based Systems, 110:98–109, October
2016. ISSN 0950-7051. doi: 10.1016/j.knosys.2016.07.018. URL http://dx.doi.org/
10.1016/j.knosys.2016.07.018.

Ahed Alboody and Rim Slama. Ept-moe: Toward efficient parallel transformers with mixture-of-
experts for 3d hand gesture recognition. In Proceedings of the 10th World Congress on Electrical
Engineering and Computer Systems and Science, EECSS 2024. Avestia Publishing, August 2024.
doi: 10.11159/mvml24.105. URL http://dx.doi.org/10.11159/mvml24.105.

Ahed Alboody and Rim Slama. PMoET: Going Wider Than Deeper Using the Parallel Mixture of
Experts Transformer for 3D Hand Gesture Recognition, pp. 83–97. Springer Nature Switzerland,
2025. ISBN 9783031821561. doi: 10.1007/978-3-031-82156-1 7. URL http://dx.doi.
org/10.1007/978-3-031-82156-1_7.

Szymon Antoniak, Michał Krutul, Maciej Pióro, Jakub Krajewski, Jan Ludziejewski, Kamil
Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Marek Cygan, and Sebastian Jaszczur. Mix-
ture of tokens: Continuous moe through cross-example aggregation, 2024. URL https:
//arxiv.org/abs/2310.15961.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml, 2019. URL
https://arxiv.org/abs/1810.09502.

Jesús-Arnulfo Barradas-Palmeros, Carlos-Alberto López-Herrera, Héctor-Gabriel Acosta-Mesa,
and Efrén Mezura-Montes. Efficient Neural Architecture Search: Computational Cost Re-
duction Mechanisms in DeepGA, pp. 125–134. Springer Nature Switzerland, 2025. ISBN
9783031838828. doi: 10.1007/978-3-031-83882-8 12. URL http://dx.doi.org/10.
1007/978-3-031-83882-8_12.

Zicheng Cai, Lei Chen, Peng Liu, Tongtao Ling, and Yutao Lai. Eg-nas: Neural architecture search
with fast evolutionary exploration. Proceedings of the AAAI Conference on Artificial Intelligence,
38(10):11159–11167, March 2024. ISSN 2159-5399. doi: 10.1609/aaai.v38i10.28993. URL
http://dx.doi.org/10.1609/aaai.v38i10.28993.

Kabir Chakraborty and Abhijit Chakrabarti. Classification of Voltage Security States Using Un-
supervised ANNs, pp. 153–173. Springer India, 2015. ISBN 9788132223078. doi: 10.1007/
978-81-322-2307-8 7. URL http://dx.doi.org/10.1007/978-81-322-2307-8_
7.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Car-
los Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, Siamak Shakeri, Mostafa De-
hghani, Daniel Salz, Mario Lucic, Michael Tschannen, Arsha Nagrani, Hexiang Hu, Mandar
Joshi, Bo Pang, Ceslee Montgomery, Paulina Pietrzyk, Marvin Ritter, AJ Piergiovanni, Matthias
Minderer, Filip Pavetic, Austin Waters, Gang Li, Ibrahim Alabdulmohsin, Lucas Beyer, Julien
Amelot, Kenton Lee, Andreas Peter Steiner, Yang Li, Daniel Keysers, Anurag Arnab, Yuanzhong
Xu, Keran Rong, Alexander Kolesnikov, Mojtaba Seyedhosseini, Anelia Angelova, Xiaohua Zhai,
Neil Houlsby, and Radu Soricut. Pali-x: On scaling up a multilingual vision and language model,
2023. URL https://arxiv.org/abs/2305.18565.

Mohammed Nowaz Rabbani Chowdhury, Meng Wang, Kaoutar El Maghraoui, Naigang Wang, Pin-
Yu Chen, and Christopher Carothers. A provably effective method for pruning experts in fine-
tuned sparse mixture-of-experts, 2024. URL https://arxiv.org/abs/2405.16646.

Yadong Ding, Yu Wu, Chengyue Huang, Siliang Tang, Fei Wu, Yi Yang, Wenwu Zhu, and Yueting
Zhuang. Nap: Neural architecture search with pruning. Neurocomputing, 477:85–95, March
2022a. ISSN 0925-2312. doi: 10.1016/j.neucom.2021.12.002. URL http://dx.doi.org/
10.1016/j.neucom.2021.12.002.

10

http://dx.doi.org/10.1007/s12652-021-03607-w
http://dx.doi.org/10.1007/s12652-021-03607-w
http://dx.doi.org/10.1016/j.knosys.2016.07.018
http://dx.doi.org/10.1016/j.knosys.2016.07.018
http://dx.doi.org/10.11159/mvml24.105
http://dx.doi.org/10.1007/978-3-031-82156-1_7
http://dx.doi.org/10.1007/978-3-031-82156-1_7
https://arxiv.org/abs/2310.15961
https://arxiv.org/abs/2310.15961
https://arxiv.org/abs/1810.09502
http://dx.doi.org/10.1007/978-3-031-83882-8_12
http://dx.doi.org/10.1007/978-3-031-83882-8_12
http://dx.doi.org/10.1609/aaai.v38i10.28993
http://dx.doi.org/10.1007/978-81-322-2307-8_7
http://dx.doi.org/10.1007/978-81-322-2307-8_7
https://arxiv.org/abs/2305.18565
https://arxiv.org/abs/2405.16646
http://dx.doi.org/10.1016/j.neucom.2021.12.002
http://dx.doi.org/10.1016/j.neucom.2021.12.002

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yadong Ding, Yu Wu, Chengyue Huang, Siliang Tang, Yi Yang, Longhui Wei, Yueting Zhuang,
and Qi Tian. Learning to learn by jointly optimizing neural architecture and weights. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 129–138. IEEE,
June 2022b. doi: 10.1109/cvpr52688.2022.00023. URL http://dx.doi.org/10.1109/
cvpr52688.2022.00023.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of neural
architectures for few-shot learning. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 12362–12372. IEEE, June 2020. doi: 10.1109/cvpr42600.2020.
01238. URL http://dx.doi.org/10.1109/cvpr42600.2020.01238.

István Fehérvári and Wilfried Elmenreich. Evolution as a Tool to Design Self-organizing Sys-
tems, pp. 139–144. Springer Berlin Heidelberg, 2014. ISBN 9783642541407. doi: 10.1007/
978-3-642-54140-7 12. URL http://dx.doi.org/10.1007/978-3-642-54140-7_
12.

Sibo Gai and Donglin Wang. Sparse model-agnostic meta-learning algorithm for few-shot learning.
In 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), pp.
127–130. IEEE, September 2019. doi: 10.1109/cchi.2019.8901909. URL http://dx.doi.
org/10.1109/cchi.2019.8901909.

Jifeng Guo, C. L. Philip Chen, Zhulin Liu, and Xixin Yang. Dynamic neural network structure: A
review for its theories and applications. IEEE Transactions on Neural Networks and Learning
Systems, 36(3):4246–4266, March 2025. ISSN 2162-2388. doi: 10.1109/tnnls.2024.3377194.
URL http://dx.doi.org/10.1109/tnnls.2024.3377194.

Xiaoyu He, Suixiang Shi, Xiulin Geng, and Lingyu Xu. Information-aware attention dynamic
synergetic network for multivariate time series long-term forecasting. Neurocomputing, 500:
143–154, August 2022. ISSN 0925-2312. doi: 10.1016/j.neucom.2022.04.124. URL http:
//dx.doi.org/10.1016/j.neucom.2022.04.124.

Chengpeng Hu, Jialin Liu, and Xin Yao. Evolutionary reinforcement learning via cooperative co-
evolution, 2024. URL https://arxiv.org/abs/2404.14763.

Lan Huang, Shiqi Sun, Jia Zeng, Wencong Wang, Wei Pang, and Kangping Wang. U-darts:
Uniform-space differentiable architecture search. Information Sciences, 628:339–349, May 2023.
ISSN 0020-0255. doi: 10.1016/j.ins.2023.01.129. URL http://dx.doi.org/10.1016/
j.ins.2023.01.129.

Narumitsu Ikeda, Dai Akita, and Hirokazu Takahashi. Noise and spike-time-dependent plastic-
ity drive self-organized criticality in spiking neural network: Toward neuromorphic computing.
Applied Physics Letters, 123(2), July 2023. ISSN 1077-3118. doi: 10.1063/5.0152633. URL
http://dx.doi.org/10.1063/5.0152633.

W. Zhu J. Hao. Architecture self-attention mechanism: nonlinear optimization for neural architec-
ture search. Journal of Nonlinear and Variational Analysis, 5(1):119–140, 2021. ISSN 2560-
6778. doi: 10.23952/jnva.5.2021.1.08. URL http://dx.doi.org/10.23952/jnva.5.
2021.1.08.

Woojeong Jin, Maziar Sanjabi, Shaoliang Nie, Liang Tan, Xiang Ren, and Hamed Firooz. Modality-
specific distillation. In Amir Zadeh, Louis-Philippe Morency, Paul Pu Liang, Candace Ross,
Ruslan Salakhutdinov, Soujanya Poria, Erik Cambria, and Kelly Shi (eds.), Proceedings of the
Third Workshop on Multimodal Artificial Intelligence, pp. 42–53, Mexico City, Mexico, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.maiworkshop-1.7. URL
https://aclanthology.org/2021.maiworkshop-1.7/.

Kamal Kant Joshi and K. Kokulavani. Adaptive self-evolving neural networks a meta-learning
approach for continual lifelong learning in dynamic environments. SSRN Electronic Journal,
2025. ISSN 1556-5068. doi: 10.2139/ssrn.5142382. URL http://dx.doi.org/10.2139/
ssrn.5142382.

11

http://dx.doi.org/10.1109/cvpr52688.2022.00023
http://dx.doi.org/10.1109/cvpr52688.2022.00023
http://dx.doi.org/10.1109/cvpr42600.2020.01238
http://dx.doi.org/10.1007/978-3-642-54140-7_12
http://dx.doi.org/10.1007/978-3-642-54140-7_12
http://dx.doi.org/10.1109/cchi.2019.8901909
http://dx.doi.org/10.1109/cchi.2019.8901909
http://dx.doi.org/10.1109/tnnls.2024.3377194
http://dx.doi.org/10.1016/j.neucom.2022.04.124
http://dx.doi.org/10.1016/j.neucom.2022.04.124
https://arxiv.org/abs/2404.14763
http://dx.doi.org/10.1016/j.ins.2023.01.129
http://dx.doi.org/10.1016/j.ins.2023.01.129
http://dx.doi.org/10.1063/5.0152633
http://dx.doi.org/10.23952/jnva.5.2021.1.08
http://dx.doi.org/10.23952/jnva.5.2021.1.08
https://aclanthology.org/2021.maiworkshop-1.7/
http://dx.doi.org/10.2139/ssrn.5142382
http://dx.doi.org/10.2139/ssrn.5142382

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ma Junchi, Hassan Nazeer Chaudhry, Farzana Kulsoom, Yang Guihua, Sajid Ullah Khan, Su-
jit Biswas, Zahid Ullah Khan, and Faheem Khan. Multicausenet temporal attention for
multimodal emotion cause pair extraction. Scientific Reports, 15(1), June 2025. ISSN
2045-2322. doi: 10.1038/s41598-025-01221-w. URL http://dx.doi.org/10.1038/
s41598-025-01221-w.

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ring-
shia, and Davide Testuggine. The hateful memes challenge: Detecting hate speech in multimodal
memes, 2021. URL https://arxiv.org/abs/2005.04790.

Krishnateja Killamsetty, Changbin Li, Chen Zhao, Feng Chen, and Rishabh Iyer. A nested bi-level
optimization framework for robust few shot learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(7):7176–7184, June 2022. ISSN 2159-5399. doi: 10.1609/aaai.v36i7.
20678. URL http://dx.doi.org/10.1609/aaai.v36i7.20678.

Sanghwan Kim, Rui Xiao, Mariana-Iuliana Georgescu, Stephan Alaniz, and Zeynep Akata. Cosmos:
Cross-modality self-distillation for vision language pre-training, 2025. URL https://arxiv.
org/abs/2412.01814.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Fei-Fei Li.
Visual genome: Connecting language and vision using crowdsourced dense image annotations,
2016. URL https://arxiv.org/abs/1602.07332.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei.
Visual genome: Connecting language and vision using crowdsourced dense image annotations.
International Journal of Computer Vision, 123:32–73, 2017. doi: 10.1007/s11263-016-0981-7.
URL https://doi.org/10.1007/s11263-016-0981-7.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari.
The open images dataset v4: Unified image classification, object detection, and visual relation-
ship detection at scale. International Journal of Computer Vision, 128(7):1956–1981, March
2020. ISSN 1573-1405. doi: 10.1007/s11263-020-01316-z. URL http://dx.doi.org/
10.1007/s11263-020-01316-z.

Tao Li, Kaijun Wu, Mingjun Yan, Zhengnan Liu, and Huan Zheng. Stochastic dynamic behavior
of fitzhugh–nagumo neurons stimulated by white noise. International Journal of Modern Physics
B, 35(10):2150137, April 2021. ISSN 1793-6578. doi: 10.1142/s021797922150137x. URL
http://dx.doi.org/10.1142/s021797922150137x.

Yangyang Li, Guanlong Liu, Ronghua Shang, and Licheng Jiao. Meta knowledge assisted evolu-
tionary neural architecture search, 2025. URL https://arxiv.org/abs/2504.21545.

Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, and
Shenghua Gao. Towards fast adaptation of neural architectures with meta learning. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=r1eowANFvr.

Derek Lim, Haggai Maron, Marc T. Law, Jonathan Lorraine, and James Lucas. Graph metanetworks
for processing diverse neural architectures, 2023. URL https://arxiv.org/abs/2312.
04501.

Heechul Lim and Min-Soo Kim. Tenas: Using taylor expansion and channel-level skip connection
for neural architecture search. IEEE Access, 10:84790–84798, 2022. ISSN 2169-3536. doi:
10.1109/access.2022.3195208. URL http://dx.doi.org/10.1109/access.2022.
3195208.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

12

http://dx.doi.org/10.1038/s41598-025-01221-w
http://dx.doi.org/10.1038/s41598-025-01221-w
https://arxiv.org/abs/2005.04790
http://dx.doi.org/10.1609/aaai.v36i7.20678
https://arxiv.org/abs/2412.01814
https://arxiv.org/abs/2412.01814
https://arxiv.org/abs/1602.07332
https://doi.org/10.1007/s11263-016-0981-7
http://dx.doi.org/10.1007/s11263-020-01316-z
http://dx.doi.org/10.1007/s11263-020-01316-z
http://dx.doi.org/10.1142/s021797922150137x
https://arxiv.org/abs/2504.21545
https://openreview.net/forum?id=r1eowANFvr
https://openreview.net/forum?id=r1eowANFvr
https://arxiv.org/abs/2312.04501
https://arxiv.org/abs/2312.04501
http://dx.doi.org/10.1109/access.2022.3195208
http://dx.doi.org/10.1109/access.2022.3195208
https://arxiv.org/abs/1405.0312

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search, 2019.
URL https://arxiv.org/abs/1806.09055.

Jiadong Liu. Comparative study of neural architecture search methods: Random search, rnn +
reinforcement learning, and evolutionary algorithms on cifar-10. IET Conference Proceedings,
2025(2):32–37, April 2025. ISSN 2732-4494. doi: 10.1049/icp.2025.1009. URL http://dx.
doi.org/10.1049/icp.2025.1009.

Vasco Lopes and Luı́s A. Alexandre. Toward less constrained macro-neural architecture search.
IEEE Transactions on Neural Networks and Learning Systems, 36(2):2854–2868, February
2025. ISSN 2162-2388. doi: 10.1109/tnnls.2023.3326648. URL http://dx.doi.org/
10.1109/tnnls.2023.3326648.

Benteng Ma, Yanning Zhang, and Yong Xia. Momentum recursive darts. Pattern Recognition, 156:
110710, December 2024. ISSN 0031-3203. doi: 10.1016/j.patcog.2024.110710. URL http:
//dx.doi.org/10.1016/j.patcog.2024.110710.

Alexander Mathews, Lexing Xie, and Xuming He. Senticap: Generating image descriptions with
sentiments, 2015. URL https://arxiv.org/abs/1510.01431.

Jingbiao Mei, Jinghong Chen, Guangyu Yang, Weizhe Lin, and Bill Byrne. Robust adaptation of
large multimodal models for retrieval augmented hateful meme detection, 2025. URL https:
//arxiv.org/abs/2502.13061.

Bernd Meyer, Cedrick Ansorge, and Toshiyuki Nakagaki. The role of noise in self-organized de-
cision making by the true slime mold physarum polycephalum. PLOS ONE, 12(3):e0172933,
March 2017. ISSN 1932-6203. doi: 10.1371/journal.pone.0172933. URL http://dx.doi.
org/10.1371/journal.pone.0172933.

Li Mi, Syrielle Montariol, Javiera Castillo-Navarro, Xianjie Dai, Antoine Bosselut, and Devis Tuia.
Convqg: Contrastive visual question generation with multimodal guidance, 2024. URL https:
//arxiv.org/abs/2402.12846.

Jiwoo Mun, Seokhyeon Ha, and Jungwoo Lee. De-darts: Neural architecture search with dynamic
exploration. ICT Express, 9(3):379–384, June 2023. ISSN 2405-9595. doi: 10.1016/j.icte.2022.
04.005. URL http://dx.doi.org/10.1016/j.icte.2022.04.005.

Minheng Ni, Haoyang Huang, Lin Su, Edward Cui, Taroon Bharti, Lijuan Wang, Jianfeng Gao,
Dongdong Zhang, and Nan Duan. M3p: Learning universal representations via multitask multi-
lingual multimodal pre-training, 2021. URL https://arxiv.org/abs/2006.02635.

H. Ouertatani, C. Maxim, S. Niar, and E-G. Talbi. Neural Architecture Tuning: A BO-Powered
NAS Tool, pp. 82–93. Springer Nature Switzerland, 2025. ISBN 9783031779411. doi: 10.1007/
978-3-031-77941-1 7. URL http://dx.doi.org/10.1007/978-3-031-77941-1_
7.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models, 2016. URL https://arxiv.org/abs/1505.04870.

Md Hafizur Rahman, Zafaryab Haider, and Prabuddha Chakraborty. An automated multi parameter
neural architecture discovery framework using chatgpt in the backend. Scientific Reports, 15(1),
May 2025. ISSN 2045-2322. doi: 10.1038/s41598-025-97378-5. URL http://dx.doi.
org/10.1038/s41598-025-97378-5.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of ACL, 2018.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read, 2019. URL https://arxiv.org/
abs/1904.08920.

13

https://arxiv.org/abs/1806.09055
http://dx.doi.org/10.1049/icp.2025.1009
http://dx.doi.org/10.1049/icp.2025.1009
http://dx.doi.org/10.1109/tnnls.2023.3326648
http://dx.doi.org/10.1109/tnnls.2023.3326648
http://dx.doi.org/10.1016/j.patcog.2024.110710
http://dx.doi.org/10.1016/j.patcog.2024.110710
https://arxiv.org/abs/1510.01431
https://arxiv.org/abs/2502.13061
https://arxiv.org/abs/2502.13061
http://dx.doi.org/10.1371/journal.pone.0172933
http://dx.doi.org/10.1371/journal.pone.0172933
https://arxiv.org/abs/2402.12846
https://arxiv.org/abs/2402.12846
http://dx.doi.org/10.1016/j.icte.2022.04.005
https://arxiv.org/abs/2006.02635
http://dx.doi.org/10.1007/978-3-031-77941-1_7
http://dx.doi.org/10.1007/978-3-031-77941-1_7
https://arxiv.org/abs/1505.04870
http://dx.doi.org/10.1038/s41598-025-97378-5
http://dx.doi.org/10.1038/s41598-025-97378-5
https://arxiv.org/abs/1904.08920
https://arxiv.org/abs/1904.08920

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lang Tang, Huixia Li, Chenqian Yan, Xiawu Zheng, and Rongrong Ji. Survey on neural architecture
search. Journal of Image and Graphics, 26(2):245–264, 2021. ISSN 1006-8961. doi: 10.11834/
jig.200202. URL http://dx.doi.org/10.11834/jig.200202.

Bram Van Bolderik, Vlado Menkovski, Sonia Heemstra, and Manil Dev Gomony. Mean:
Mixture-of-experts based neural receiver. In 2024 IFIP/IEEE 32nd International Con-
ference on Very Large Scale Integration (VLSI-SoC), pp. 1–4. IEEE, October 2024.
doi: 10.1109/vlsi-soc62099.2024.10767787. URL http://dx.doi.org/10.1109/
vlsi-soc62099.2024.10767787.

Preeti Raj Verma, Navneet Pratap Singh, Deepika Pantola, and Xiaochun Cheng. Neural network
developments: A detailed survey from static to dynamic models. Computers and Electrical En-
gineering, 120:109710, December 2024. ISSN 0045-7906. doi: 10.1016/j.compeleceng.2024.
109710. URL http://dx.doi.org/10.1016/j.compeleceng.2024.109710.

Wingates Voon, Yan Chai Hum, Yee Kai Tee, Wun-She Yap, Khin Wee Lai, Humaira Nisar, and
Hamam Mokayed. Imaml-idcg: Optimization-based meta-learning with imagenet feature reusing
for few-shot invasive ductal carcinoma grading. Expert Systems with Applications, 257:124969,
December 2024. ISSN 0957-4174. doi: 10.1016/j.eswa.2024.124969. URL http://dx.doi.
org/10.1016/j.eswa.2024.124969.

Aili Wang, Kang Zhang, Haibin Wu, Shiyu Dai, Yuji Iwahori, and Xiaoyu Yu. Noise-disruption-
inspired neural architecture search with spatial–spectral attention for hyperspectral image classifi-
cation. Remote Sensing, 16(17):3123, August 2024. ISSN 2072-4292. doi: 10.3390/rs16173123.
URL http://dx.doi.org/10.3390/rs16173123.

Jingxu Wang, Jingda Guo, Ruili Wang, Zhao Zhang, Liyong Fu, and Qiaolin Ye. Parameter disen-
tanglement for diverse representations. Big Data Mining and Analytics, 8(3):606–623, 2025. doi:
10.26599/BDMA.2024.9020087.

Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, and Furu Wei. Image as a foreign
language: Beit pretraining for all vision and vision-language tasks, 2022. URL https://
arxiv.org/abs/2208.10442.

Xin Wang and Wenwu Zhu. Advances in neural architecture search. National Science Review, 11
(8), July 2024. ISSN 2053-714X. doi: 10.1093/nsr/nwae282. URL http://dx.doi.org/
10.1093/nsr/nwae282.

Canwen Xu and Julian McAuley. A survey on dynamic neural networks for natural language pro-
cessing, 2023. URL https://arxiv.org/abs/2202.07101.

Yunqiu Xu, Meng Fang, Ling Chen, Gangyan Xu, Yali Du, and Chengqi Zhang. Reinforcement
learning with multiple relational attention for solving vehicle routing problems. IEEE Transac-
tions on Cybernetics, 52(10):11107–11120, October 2022. ISSN 2168-2275. doi: 10.1109/tcyb.
2021.3089179. URL http://dx.doi.org/10.1109/tcyb.2021.3089179.

Zhou Xun, Liu Songbai, Wong Ka-Chun, Lin Qiuzhen, and Tan Kaychen. A hybrid search method
for accelerating convolutional neural architecture search. In Proceedings of the 2023 15th Inter-
national Conference on Machine Learning and Computing, ICMLC 2023, pp. 177–182. ACM,
February 2023. doi: 10.1145/3587716.3587745. URL http://dx.doi.org/10.1145/
3587716.3587745.

Yibo Yang, Shan You, Hongyang Li, Fei Wang, Chen Qian, and Zhouchen Lin. Towards improving
the consistency, efficiency, and flexibility of differentiable neural architecture search. In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6663–6672.
IEEE, June 2021. doi: 10.1109/cvpr46437.2021.00660. URL http://dx.doi.org/10.
1109/cvpr46437.2021.00660.

Zekang Yang, Wang Zeng, Sheng Jin, Chen Qian, Ping Luo, and Wentao Liu. Nader: Neural
architecture design via multi-agent collaboration, 2024. URL https://arxiv.org/abs/
2412.19206.

14

http://dx.doi.org/10.11834/jig.200202
http://dx.doi.org/10.1109/vlsi-soc62099.2024.10767787
http://dx.doi.org/10.1109/vlsi-soc62099.2024.10767787
http://dx.doi.org/10.1016/j.compeleceng.2024.109710
http://dx.doi.org/10.1016/j.eswa.2024.124969
http://dx.doi.org/10.1016/j.eswa.2024.124969
http://dx.doi.org/10.3390/rs16173123
https://arxiv.org/abs/2208.10442
https://arxiv.org/abs/2208.10442
http://dx.doi.org/10.1093/nsr/nwae282
http://dx.doi.org/10.1093/nsr/nwae282
https://arxiv.org/abs/2202.07101
http://dx.doi.org/10.1109/tcyb.2021.3089179
http://dx.doi.org/10.1145/3587716.3587745
http://dx.doi.org/10.1145/3587716.3587745
http://dx.doi.org/10.1109/cvpr46437.2021.00660
http://dx.doi.org/10.1109/cvpr46437.2021.00660
https://arxiv.org/abs/2412.19206
https://arxiv.org/abs/2412.19206

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions
of the Association for Computational Linguistics, 2:67–78, 2014.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca: Contrastive captioners are image-text foundation models, 2022. URL https://arxiv.
org/abs/2205.01917.

Xinyao Yu, Hao Sun, Ziwei Niu, Rui Qin, Zhenjia Bai, Yen-Wei Chen, and Lanfen Lin. Memory-
inspired temporal prompt interaction for text-image classification, 2024. URL https://
arxiv.org/abs/2401.14856.

Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang, Ehsan Abbasnejad, and Reza Haffari. idarts:
Differentiable architecture search with stochastic implicit gradients, 2021. URL https://
arxiv.org/abs/2106.10784.

15

https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2401.14856
https://arxiv.org/abs/2401.14856
https://arxiv.org/abs/2106.10784
https://arxiv.org/abs/2106.10784

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A DIFFERENCE BETWEEN TRADITIONAL NAS AND MALS

Traditional NAS iterates in outer loops, fully retraining candidate architectures between searches.
Our proposed framework MALS here interleaves architectural updates with gradient updates using

• Micro-timescale (τg): Standard stochastic gradient descent updates the model weights.
• Macro-timescale (τa): Every k gradient steps, the Meta Controller executes an evolutionary adap-

tation event.

If τa ≪ τg , the architecture can quickly adapt to novel data patterns without overfitting stale topolo-
gies. This dual time-scale formalism can be expressed as in Eq. 15.

θt+1 = θt − ηg∇θLtask(θt,Mt)
Mt+1 = Fevolve(Mt, πθ,Ht) only if t mod k = 0

(15)

Here, θ represents module parameters, and Fevolve is the learned evolutionary update function.

B PROBLEM FORMULATION AND ARCHITECTURAL OVERVIEW

B.1 NOTATION AND CORE OBJECTS

Let

• D = {(x(v)
i , x

(t)
i , yi)}Ni=1 be the dataset of multimodal examples (visual, textual, label), drawn

i.i.d. from an unknown distribution Pdata.
• d be the shared latent dimension (we use d = 512 in experiments).
• At denotes the architecture state at training step (or epoch) t. At comprises:

– a set of active modules (the Neural Module Zoo)Mt = {mt,1, . . . ,mt,Nt},
– router parameters θ(r)t ,
– module hyperparameter descriptors Θt = {θt,1, . . . , θt,1} (these describe structural choices

like layers, heads, drouput, activation type),
– global resource counters (parameter count, FLOPs).

• Wt denotes all learnable weights at step t: module weights, router weights, projection heads,
classifier head, and any meta-controller weights (except where separated explicitly).

• πϕ denote the Evolutionary Strategist (meta-controller) parameterized by ϕ; it issues dis-
crete/continuous actions that transform At 7→ At+1/

A single forward pass on sample x under architecture At yields prediction ŷ(x : Wt,At). The
per-sample task loss is l(ŷ, y), e.g. cross-entropy.

Why this representation? Treating architecture as an explicit, time-indexed object At makes it
possible to 1) reason about changes over training, 2) define budget constraints that vary over time,
and 3) expose πϕ a state on which to condition actions — all necessary for principled co-evolution.

B.2 JOINT (BI-LEVEL) OPTIMIZATION: WEIGHTS AND TOPOLOGY

We designed this as a bi-level optimization where weights are optimized continuously while the
meta-controller optimizes the architecture trajectory:

(Outer / meta) minϕ E[Lval(WT (ϕ),AT (ϕ))]
subject to At+1 ∼ πϕ(·|st), t = 0, . . . , T − 1,

(Inner/ weights) Wt+1 = U(Wt,∇WtLtrain(Wt,At)),
(16)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where:

• Ltrain and Lval are empirical train and validation losses,
• U denotes the inner-loop optimizer (SGD/Adam step),
• st is the strategist state,
• expectations are over data sampling and any stochastic components of πϕ.

Why a bi-level view? Architecture decisions change the downstream loss landscape; optimizing ϕ
requires evaluating the effect of architectural actions after weight updates. The bi-level view captures
this causal dependency. Directly solving this exact bi-level problem is computationally intractable
for large models, so we adopt approximations (meta-gradient, reward shaping, and fitness proxies)
discussed below.

B.3 PARAMETRIC PLURALITY: CONFIGURATION SPACES AND MODULE INSTANCING

We define an archetype set T (e.g., Transformer, LSTM, ResNet, MLP, Squeeze-Excite). For each
archetype a ∈ T , we defined a configuration (hyperparameter) space Ωa. A module instance is then:

m = (a, θ(arch), ω), θ(arch) ∈ Ωa, ω = learned weights (17)

We denoted the probability distribution over configurations as P (θ(arch)|a) - the strategist can sam-
ple from or choose points in this space.

Parametric plurality means for a fixed archetype a, we allow multiple instances {mi} with differ-
ent θ(arch)i . Formally:

Mt =
⋃
a∈T
{m(a)

t,i : θ
(arch)
t,i ∼ Pt(·|a)}. (18)

Why? Because of two main reasons, the first one being that multiple instantiations of the same
structural bias with different internal hyperparameters produce distinct inductive priors and opti-
mization dynamics. The second one is reducing reliance on a single optimum configuration for an
archetype and enables per-sample specialization via the router.

Here, we quantify module diversity with a metric D(Mt),

D(Mt) =
1

N2
t

∑
i,j

∆(θ
(arch)
t,i , θ

(arch)
t,j) +

1

N2
t

∑
i,j

Ex||ut,i(x)− ut,j(x)||2, (19)

where ∆ measures configuration distance (mixed categorical/continuous) and the second term mea-
sures output diversity.

B.4 ROUTER, CONTRIBUTION, AND THE STRATEGIST STATE

The Graph Attention Router (GAR) produces a per-sample distribution over modules:

α(x;At,Wt) = GAR(f(x;At,Wt),Mt) ∈ ∆Nt−1, (20)

and routed representation z(r) =
∑

m αmvm. To make an evolution decision, the strategist receives
summary statistics (the state st) that include per-module fitness traces Φt,m (defined in 3.5), mod-
ule utilization ᾱt,m, resource vector c(At) (parameter count, FLOPs, latency), global performance
indicators and diversity D(Mt).

Why these state features? They connect short-term routing behavior (utilization) with long-term
utility (fitness), and expose resource constraints so πϕ can make capacity-aware decisions (prune
low-utility modules, grow when capacity allows).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.5 EVOLUTIONARY OPERATORS

The strategist operates via a small set of operators that map architectures to architectures:

• Prune operator Pτ : We remove modules m with Φt,m < τprune for Tpatience steps.

• Mutate/Grow operator G: We sampled a parent mp (probability proportional to positive fitness)
and create child mc by:

θ(arch)c = θ(arch)p + ϵ, ϵ ∼ N (0, σ2
mut), (21)

and initialize weights ωc (either random or derived via partial weight inheritance).

• Hybridization/Crossover operator H: For parents mi,mj , we selected proportional to fitness,
and produced a child with mixed hyperparameters:

θ(arch)c = CROSS(θ(arch)i , θ
(arch)
j), (22)

where CROSS handles continuous parameters by convex combination and categorical parameters
by probabilistic selection or learned mapping (e.g., one parent chosen per categorical field with
probability proportional to fitness).

• Reinsertion/Assignment: The newly created modules are inserted into Mt if resource budget
permits, else they replace low-fitness modules.

The selection probabilities for parents are softmaxed fitness scores:

P (mi, chosen) =
exp(Φt,i/τsel)∑
j exp(Φt,i/τsel)

. (23)

Why these operators? They emulate biological mechanisms while remaining interpretable and
tunable. Crossover blends complementary traits; mutation explores local neighbourhoods; pruning
removes dead weight. Soft selection and patience thresholds prevent noisy immediate deletions.

B.6 CONSTRAINTS AND RESOURCE-AWARE OBJECTIVE

Real systems operate under budgets. Let C(At) be a vector of costs (parameters, inference latency
per sample, memory). The strategist must respect constraints C(At) ⪯ Cmax. We embedded
resource costs into the meta reward so the strategist optimizes utility under budgets. We defined the
per-decision reward (to be maximized):

rt = −Lval(Wt,At)− λc · cost(C(At)) + λdD(Mt), (24)

where cost(·) aggregates resource usage into a scalar penalty and D(·) is the diversity reward. The
outer optimization becomes:

max
ϕ

Eπϕ

[
T−1∑
t=0

γt
discrt

]
. (25)

Why reward shaping? Directly minimizing final validation loss is costly to estimate. A dense
reward combining validation performance, resource penalties, and diversity fosters architectures
that generalize, are efficient, and preserve pluralism.

Replay memory and stability Architecture changes introduce non-stationarity. To stabilize train-
ing, we maintain a replay bufferR storing representative samples (and their labels). When a module
changes (spawned, hybridized), we interleave replay training onR to preserve past capabilities:

Wt+1 ← U(wt,∇Wt [Ltrain(Wt,B) + µLreplay(Wt,R)]). (26)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This is important as replay mitigates catastrophic forgetting when architecture topology changes and
modules are inserted/removed. It also provides a stable baseline for computing module utility.

B.7 PRACTICAL APPROXIMATIONS AND ALGORITHMIC SUMMARY

Solving the exact bi-level is impractical. Therefore, we adopted these approximations:

1. Local fitness proxies: We used Φt,m instead of full retraining-based evaluation for parent selec-
tion.

2. Policy optimization: We trained πϕ with reinforcement learning (PPO/actor-critic) using the
dense reward rt.

3. Warm-start and patience: We delayed pruning/hybridization for Ewarm epochs to allow mod-
ules and router to stabilize.

4. Deterministic operations at eval time: We sparsified via deterministic top-K for reproducible
inference.

Algorithmically. We alternated inner-loop updates of Wt (with replay) with occasional strategist
decision steps that apply P,G,H based on Φ and st. The GAR provides per-sample routing and the
contribution traces that ground evolutionary choices.

C MULTIMODAL FEATURE EXTRACTION

Let the input pair be (x(t), x(v)), where x(t) ∈ X , denotes a sequence of text tokens and x(v) ∈ Xv

denotes an image decomposed into visual patches. Our objective is to map these heterogeneous
modalities into a shared latent manifold Z ⊆ Rd, enabling subsequent cross-modal alignment and
adaptive modular routing.

C.1 TEXTUAL ENCODING

We tokenize the text sequence as

x(t) = {w1, w2, . . . , wLt}, wi ∈ V, (27)

where V is the vocabulary. A pretrained DistilBERT encoder ft : Xt ∈ RLt×dt produces contextu-
alized embeddings:

h(t) = ft(x
(t)), h(t) = [h

(t)
1 , h

(t)
2 , . . . , h

(t)
Lt
], h

(t)
i ∈ Rdt . (28)

We applied a statistical pooling operator ϕt that preserves both mean and covariance structure:

µ(t) =
1

Lt

Lt∑
i=1

h
(t)
i ,

(t)∑
=

1

Lt

Lt∑
i=1

(h
(t)
i − µ(t))(h

(t)
i − µ(t))⊤ (29)

A low-rank factorization (Nyström approximation) compresses covariance into a vector:

c(t) = vec(U⊤
k

(t)∑
Uk), Uk ∈ Rdt×k. (30)

Thus, the final text embedding is

z(t) = Wt

[
µ(t)

c(t)

]
, z(t) ∈ Rd (31)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.2 VISUAL ENCODING

We partition an image into Lv patches:

x(v) = {p1, p2, . . . , pLv}, pj ∈ Rh×w×c. (32)

A pretrained CLIP-ViT encoder fv : Xv → RLv×dv yields patch embeddings using:

h(v) = fv(x
(v)), h(v) = [h

(v)
1 , h

(v)
2 , . . . , h

(v)
Lv

], h
(v)
j ∈ Rdv . (33)

Similar to the text above, we define

µ(v) =
1

Lv

Lv∑
j=1

h
(v)
j ,

(v)∑
=

1

Lv

Lv∑
j=1

(h
(v)
j − µ(v))(h

(v)
j − µ(v))⊤, (34)

and compress via low-rank covariance embedding using

c(v) = vec(U⊤
k

(v)∑
Uk). (35)

The visual representation is then:

z(v) = Wv

[
µ(v)

c(v)

]
, z(v) ∈ Rd. (36)

C.3 SHARED LATENT ALIGNMENT

Both the modalities are projected into the shared latent space Z:

z(t) = Pt(h
(t)), z(v) = Pv(h

(v)), z(t), z(v) ∈ Z. (37)

We enforce distributional proximity between (z(t), z(v)) using a contrastive alignment term:

Lalign = − log
exp(sim(z(t), z(v))/τ)∑

(z(t),z(v′)) exp(sim(z(t), z(v))/τ)
, (38)

where sim(·, ·) is cosine similarity and τ a temparature parameter.

D CROSS-MODAL ATTENTION FUSION

From the above, we obtain projected embeddings as z(t) ∈ RLt×d, z(v) ∈ RLv×d, where d = 512.
We construct modality-specific query, key, and value matrices, as:

Q(v) = z(v)W
(v)
Q ,K(t) = z(t)W

(t)
K , V (t) = z(t)W

(t)
V , (39)

with W
(v)
Q ,W

(t)
K ,W

(t)
V ∈ Rd×d. Next, we defined cross-modal attention from vision to text as:

α = softmax
(
Q(v)(K(t))⊤√

d

)
∈ RLv×Lt . (40)

Here, each visual token attends to all textual tokens, producing fused representations as z(f) =
αV (t) ∈ RLv×d. Unlike symmetric co-attention, this asymmetric scheme ensures that visual

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

grounding is enriched by linguistic semantics while avoiding representation dilution from treating
both modalities equivalently. For robustness, we extended to a multi-head formulation using

z(f) =

H⊕
h=1

z
(f)
h , z

(f)
h = αhV

(t)
h , (41)

Thus, the fused representation is a concatenation of head-specific semantic refinements. To prevent
dominance of either modality, we introduced a modality gating mechanism. The scalar gate here is
defined as:

g = σ(w⊤[mean(z(v)),mean(z(t))], (42)

where g ∈ (0, 1). The final fusion is a convex combination:

z(cm) = g ·mean(z(f)) + (1− g) ·mean(z(t)). (43)

This adaptive gate balances contributions from visual-grounded fusion and raw textual semantics,
ensuring stable cross-modal alignment.

E NEURAL MODULE ZOO AND DYNAMIC ROUTING

Formal definition. Let the zoo at time t contain Mt active modules:

Mt = {m1(·; θ1),m2(·; θ2), . . . ,mMt(·; θMt)}. (44)

Each module is a parametric function mj : Rd → Rd,mj(z
(f); θj) = uj , where uj ∈ Rd is the

output embedding from module j. Thus, given z(f), the zoo produces a candidate set of transformed
representations: U = [u1, u2, . . . , uMt]

⊤ ∈ RMt×d.

Module Families. The zoo supports multiple operator families, each corresponding to distinct
inductive biases:

• MLP modules (dense projections):

mMLP (z
(f); θ) = σ(W2ϕ(W1z

(f) + b1) + b2), (45)

where ϕ(·) is ReLU or GeLU, and σ(·) is a nonlinearity or identity.

• Transformer modules (contextual reasoning):

mTrans(z
(f); θ) = MHA(z(f)) + FFN(z(f)), (46)

where MHA denotes the multi-head attention over z(f).

• LSTM modules (sequential bias):

ht, ct = LSTM(z(f), ht−1, ct−1; θ). (47)

• ResNet-style modules(residual feature refinement):

mRes(z
(f); θ) = z(f) + F (z(f); θ), (48)

where F is a stack of nonlinear layers.

• Squeeze-and-Excitation modules (channel re-weighting):

mSE(z
(f); θ) = z(f) ⊙ σ(W2ϕ(W1pool(z(f)))). (49)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

These families are not fixed, and new families may be introduced during evolution (see subsection
3.5). Next, to encourage structural diversity, each module type admits multiple instantiations with
distinct hyperparameters using θj = {Wj , bj , αj , . . . }, where αj represents hyperparameters such
as hidden width, number of layers, or dropout rate. Let Ω denote the hyperparameter configuration
space. Then for a module family F :

{m(·; θ(1)),m(·; θ(2)), . . . }, θ(k) ∼ Ω. (50)

This ensures that even within the same operator family, modules exhibit functional non-redundancy,
avoiding collapse into homogeneous transformations.

Theoretical Motivation. Given z(f), an optimal transformation is not known a priori. The zoo,
therefore, acts as a basis expansion of nonlinear operators, where the router learns convex combi-
nations:

z(r) =

Mt∑
j=1

βjmj(z
(f); θj), βj ≥ 0,

∑
j

βj = 1. (51)

This setup can be viewed as a functional mixture model:

F(z(f)) ≈
Mt∑
j=1

βjmj(z
(f); θj). (52)

By evolving Mt, the model dynamically expands the representational capacity, while the router
ensures sparse and efficient selection.

F GRAPH ATTENTION ROUTER

Notations and Inputs. Let the Neural Module zoo previously at time t contain N active modules
Mt = {m1,m2, . . . ,mN}. For a single input sample (or a batch handled elementwise), we de-
noted the fused embedding (router query) as f ∈ Rd (from subsection 3.2), and module outputs as
um ∈ Rd for m = 1 . . . N . We stacked them into U = [u1; . . . ;uN] ∈ RN×d. Next, we imple-
mented multi-head attention with H heads; index head by h. Each head uses projection matrices
W

(h)
Q ,W

(h)
K ,W

(h)
V ∈ Rdh×d with dh = d/H .

Headwise compatibility: relevance + synergy. For head h, we computed

q(h) = W
(h)
Q f , k(h)

m = W
(h)
K um, v(h)

m = W
(h)
V um. (53)

We defined two components for the per-module compatibility score:

1. query-to-module relevance (standard scaled dot-product):

r(h)m =
⟨q(h),k

(h)
m ⟩√

dh
. (54)

2. module-synergy score that captures how module m complements other modules for this input.
We compute a learned module affinity via scaled dot-products on keys:

S
(h)
m,j =

⟨k(h)
m ,k

(h)
j ⟩√

dh
(j = 1 . . . N). (55)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 1 GAR Forward & Bookkeeping (per batch)

Require: Fused embeddings {f (i)}B=1, module outputs U (i), router params θr, module params
{θm}

Ensure: Router outputs {z(r,i)}, updated running stats {ᾱ,Φ}
1: for each sample i do
2: for each head h do
3: Compute q(h) = W

(h)
Q f (i), k(h)m = W

(h)
K u

(i)
m , v(h)m = W

(h)
V u

(i)
m

4: end for
5: Compute r

(h)
m =

⟨q(h),k(h)
m ⟩√

dh

6: Compute S
(h)
m,j and s

(h)
m = r

(h)
m + γ(h) ·

∑
j softmax(S(h)

m,∗) · qint(S
(h)
m,j)

7: α
(h)
m = softmaxm(s

(h)
m); aggregate αm over heads→ αm

8: Optionally sparsify α→ α̃ (sparsemax or top-K)
9: z(r,i) =

∑
m α̃m · vagg

m

10: end for
11: Compute task loss Ltask using {z(r,i)}
12: Compute router regularizers Lent, Lload, Lbudget
13: Backprop: update θr and {θm} (with per-module LR scaling)
14: Bookkeeping:
15: for each m do
16: Ũm,t = meani

[
α
(i)
m · (baseline lossi − lossi)

]
17: end for
18: Φm ← (1− η)Φm + ηŨm,t

19: ᾱm ← (1− ρ)ᾱm + ρmeani[α
(i)
m]

20: Send {Φm, ᾱm} to Evolutionary Strategist

The synergy was aggregated for m as a normalized attention over other modules:

s(h)m =

N∑
j=1

ω
(h)
m,j · qint(S

(h)
m,j), ω

(h)
m,j =

exp(S
(h)
m,j)∑N

k=1 exp(S
(h)
m,j)

. (56)

Here, qint(·) is an optional nonlinearity (e.g., ReLU or identity) that lets the synergy term be asym-
metric and saturating if desired. We combined relevance and synergy linearly (learnable balance):

s(h)m (f , U) = r(h)m + γ(h)s(h)m , (57)

where γ(h) ∈ R≥0 is a learned (or scheduled) head-wise scalar controlling the emphasis on inter-
module synergy.

Novelty. The synergy term lets the router prefer modules that not only individually match the query
but that form complementary coalitions for the current input - capturing pairwise (and via repeated
application, higher-order) interactions among experts. This is distinct from class MoE routers that
treat modules as independent.

Multi-head attention and normalized routing weights. For head h, we normalized capabilities
with softmax over modules:

α(h)
m =

exp(s
(h)
m)∑N

j=1 exp(s
(h)
j)

. (58)

We aggregated heads into a single routing weight per module (head-averaging or learned projection):

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

αm =
1

H

H∑
h=1

α(h)
m or α = softmax(Wagg[α

(1); . . . ;α(H)]), (59)

where Wagg projects head-wise vectors to a final distribution is desired. Here, the output of the
router is the weighted mixture:

z(r) =

N∑
m=1

αm · vagg
m , vagg

m =
1

H

H∑
h=1

v(h)
m . (60)

This z(r) flows to the classification head and participates in standard backpropagation: gradients
pass to WV ,WK ,WQ and - via vm and um - to module parameters.

Controlled sparsity: top-k routing (efficient, capacity-aware). To enforce the Max Active
Modules constraint and reduce compute, we designed Soft → Sparse path, where we computed
dense αm as above, then apply a differentiable sparsification to keep at most K modules per sample.
Here, we had two practical, differentiable options:

1. Sparsemax/Entmax: We replaced softmax with sparsemax/entmax, which produces exact zeros
for many entries while remaining subgradient-based and differentiable.

2. Gumbel-TopK with straight-through (ST) estimator: We sampled a binary mask gm indicat-
ing top-K modules (determinisitc top-K at inference). During the forward pass, we used hard
top-K selection:

gm = 1{αmin top-K}, α̃m =
gm · αm∑
j gj · αj

(61)

For backprop, we used straight-through, where we propagated gradients to αm as if soft selection
had been used (or we kept the option of Gumbel-softmax relaxation for a differentiable approxi-
mation).

We used (and recommend) sparsemax in training for stable gradients and deterministic top-K at
evaluation for reproducibility.

Router regularizers and losses. To prevent collapse onto a small subset of modules and to en-
courage exploration and load balancing, we incorporated three auxiliary terms in router training:

1. Entropy Regularizer (exploration early in training):

Lent = −
1

N

N∑
m=1

αm log(αm). (62)

2. Load-balancing penalty: We encouraged average router usage α̃m (running mean across sam-
ples/batches) to match uniform expectation 1/N :

Lload =

N∑
m=1

(
ᾱm −

1

N

)2

, ᾱm ← (1− ρ)ᾱm + ρEbatch[αm]. (63)

3. Sparsity budget: If using sparsity, we penalized deviation from target active K via:

Lbudget =

(
1

N

N∑
m=1

1{αm > 0} − K

N

)2

(64)

(or an L1 surrogate on α).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G EVOLUTIONARY STRATEGIST — META-CONTROLLER FOR STRUCTURAL
SELF-GROWTH

The Evolutionary Strategist is a meta-learning controller that continually modifies the Neural
Module ZooM during training. It operates at the level of module genotypes (architecture + hyper-
parameters) and phenotypes (weights, performance types), and its goal is to maximize long-term
validation performance while respecting computation/complexity constraints and encouraging para-
metric plurality. The strategist combines: (i) an interpretable fitness signal derived from the Graph
Attention Router, (ii) a set of genetic operators (prune, mutate, hybridize), and (iii) a policy πϕ

trained with a reinforcement/meta-gradient objective. Below, we define state, actions, fitness, evo-
lution operators, the learning objective for the controller, and practical stabilizers.

Notation and State Representation. At discrete evolution decision times t ∈ {0, Te, 2Te, . . . },
the system maintains:

• Module pool:Mt = {m1, . . . ,mNt
}.

• Each module m has:

– genotype (hyperparameters, topology): θm (e.g., depth, width, dropout, heads, activation
type),

– phenotype (weights): wm,
– usage/metadata: agem, paramsm (parameter count), FLOPsm,
– contribution statistics: tracked variables defined below.

• Global training state St comprises:

St = {{(θm, wm, agem, paramsm, Cm)}m∈Mt
, val metricst−∆:t, budget remaining} , (65)

where Cm is a numeric contribution/fitness proxy.

The controller πϕ(at|St) outputs actions at alteringMt (prune, spawn/mutate, hybridize, no-op, or
other maintenance actions). Actions can be multi-step (e.g., hybridize two parents into one child +
spawn).

Contribution and Fitness Estimation. A robust, low-variance fitness signal is central. We com-
bine two complementary, efficiently computable signals in each evolution epoch:

1. Attention-contribution proxy (router-based)
For module m, collect the per-batch average routing weight from the Graph Attention router over
a recent buffer B (the last B mini-batches):

β̄m =
1

B

∑
b∈B

β(b)
m . (66)

2. Leave-one-out loss impact (performance-proxy)
For a mini-batch b compute the batch loss with full routing L(b)

full and the loss with module m

ablated (zeroing or masking its output) L(b)
−m. We defined per-batch delta:

∆ℓ(b)m = L(b)
−m − L

(b)
full. (67)

Positive ∆ℓm indicates the module is helpful. The average over B:

∆ℓm =
1

B

∑
b∈B

∆ℓ(b)m . (68)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

We combine these into an exponential moving average contribution score Cm(t):

Cm(t)← (1− ρ)Cm(t− 1) + ρ

(
wβ

β̄m

maxk β̄k
+ wℓ

max(0, ∆̄ℓm)

maxk max(0, ∆̄ℓm)

)
, (69)

with ρ ∈ (0, 1) smoothing factor and weights wβ , wℓ (0.5 each). Normalization avoids scale issues.
Cm is the primary short-term fitness proxy used by selection and pruning. To encourage novelty and
penalize redundancy, we also compute a novelty score:

noveltym =
1

Nt − 1

∑
k ̸=m

exp(−γθ||θm − θk||22, (70)

and defined a combined fitness:

Fm = αCCm − αcost · costm + αnov(1− noveltym), (71)

where costm is the normalized computational cost (params or FLOPs), and α are tuning scalars.
Lower noveltym (i.e., more dissimilar) increases fitness via 1− novelty.

Selection and Pruning We removed modules whose long-run contribution is consistently low
while respecting stability constraints:

• Minimum survival age: a module must survive at least Amin evolution intervals before being
eligible for pruning.

• Prune condition (quantile-based):

Prune m if Fm ≤ Qq({Fk}k∈Mt
) and agem ≥ Amin, (72)

where Qq(·) is the q-th percentile (q = 0.15). This avoids threshold tuning across varying pool
sizes. Alternatively, a dynamic threshold τt = µF −KσF can be used (recommendation).

When pruning, we first attempt weight recycling: if another module has an identical genotype or an
identical interface, its weights may be reused or used to initialize new offspring.

Growth (mutation) operator. To spawn variants, we sample parent modules according to a soft-
max over fitness:

pselect(m) =
exp(ηFm)∑
k exp(ηFk)

. (73)

Given parent mp with genotype θp and weights wp, we create child genotype θc via parameter-space
mutation:

• For continuous hyperparameters (dropout, width multipliers):

θ(i)c = θ(i)p · exp(σθ · ϵ(i)), ϵ(i) ∼ N (0, 1). (74)

• For discrete hyperparameters (number of heads), we applied categorical perturbation (random ±
step with small probability).

Child weights are initialized by soft inheritance:

wc = γinhwp + (1− γinh)N (0, σ2
w). (75)

where γinh ∈ [0, 1] controls how much of parent knowledge is retained. This reduces cold-start
training and stabilizes learning when the child shares structural motifs with the parent. A growth rate
constraint keeps the pool budgeted: at most Gmax new modules per evolution step and Nt ≤ Nmax.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Hybridization (Co-Evolutionary Crossover) Hybridization recombines structural motifs and hy-
perparameters from two high-fitness parents mi and mj to create a child mc. We treat module geno-
types as graph-structured objects (topology + attributes). Let Tm = (Vm, Em,Θm) denote parent
m’s topology graph, node attributes Θm (layer types, widths, activation), and Wm the associated
weight tensors.

Crossover operator (motif splice):

1. Motif extraction: We sampled subgraph Si ⊆ Tmi and Sj ⊆ Tmj by selecting contiguous
substructures using a size distribution (small-to-medium). We represent these as adjacency and
attribute sets.

2. Interface alignment: We find interface nodes u ∈ Si, v ∈ Sj where input/output dimensionali-
ties can be projected. If dims differ, create small projection layers Pin : Rd1 → Rdc and Pout as
learned linear maps. This enforces compatibility.

3. Splice: We create child topology

Tc = (Tmi
Si) ∪ Sj , (76)

where Sj is grafted into Tmi
at matched interfaces. (Symmetric alternatives allowed.)

4. Hyperparameter recombination: For scalar attributes in Θ, we performed convex interpola-
tion:

θ(k)c = λθ(k)mi
+ (1− λ)θ(k)mj

, λ ∼ U(0, 1). (77)

For categorical attributes, we used parent-sampling with probability proportional to normalized
parent fitness.

5. Weight inheritance mapping: The parameters for retained subgraphs are copied; for grafted
subgraphs, we used soft weight blending where possible:

Wc[shared] = KWmi
[shared] + (1−K)Wmj

[shared] + ϵ, (78)

and new parameters are initialized as small-noise or adapted from th nearest parent via projection.

This motif-based crossover allows the child to inherit functional building blocks (e.g., a multi-head
attention motif with a particular head-to-dimension ratio) and yields architectures not present in the
initial search space.

Controller Optimization The controller πϕ must learn when to prune, spawn, and hybridize to
maximize long-term validation performance under computation budget B. We pose this as a con-
strained expected reward maximization:

max
ϕ

Eτ∼πϕ

[
T∑

t=0

γtr(St, at)

]
s.t. Eτ∼πϕ

[Cost(τ)] ≤ B, (79)

where τ is an evolution trajectory, γ discount factor, and reward r is computed at evolution intervals.
We used a Lagrangian relaxation:

J (ϕ, λ) = E

[∑
t

γtrt − λ(Costt −Bt)

]
, (80)

and optimize ϕ via policy gradient (e.g., PPO) with gradient estimator:

∇ϕJ ≈ E

[∑
t

∇ϕ log πϕ(at|St)Ãt

]
, (81)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 2 Evolutionary Strategist for Neural Module Evolution
Require: Module set M = {M1, . . . ,MK}, fused embeddings z ∈ Rd, contribution scores αi,

replay memoryR
Ensure: Updated module setM′

1: Initialize policy πθ for meta-controller
2: while training not converged do
3: Sample task batch B ∼ D
4: Compute fused embedding z
5: Route z to modules using GraphAttentionRouter
6: Compute contributions αi = softmax

(
z⊤ki√

d

)
7: Evaluate task loss Ltask and reward R(M) = −Ltask + λH(α)
8: Store (z,M, R) in replay memoryR

{— Evolutionary Update —}
9: if αi < τprune for consecutive T steps then

10: Remove module Mi fromM (Pruning Rule)
11: end if
12: if R(M) < τgrow then
13: Spawn new module M ′

j with parameters
14: Θ′

j = Θj + ϵ, ϵ ∼ N (0, σ2I) (Growth Rule)
15: Add M ′

j toM
16: end if
17: if ∃Mp,Mq ∈M with high complementarity then
18: Generate child Mc via crossover:
19: Θc = ηΘp + (1− η)Θq, η ∼ U(0, 1) (Hybridization Rule)
20: Add Mc toM
21: end if

{— Meta-Controller Update —}
22: Compute policy gradient:
23: ∇θJ(θ) = Eπθ

[
∇θ log πθ(a|M)R(M)

]
24: Update θ ← θ + β∇θJ(θ)
25: end while
26:
27: return M′

where Ãt is an advantage estimate (computed from actual validation metric improvement over a
horizon H). The reward rt is defined as:

rt = ∆ValMetrict→t+H − ηcomp∆Costt→t+H + ηdivoverlinet→t+H , (82)

balancing short-term performance gain, computational cost, and architectural novelty. In practice,
we set H to a modest number of training steps to trade off noise vs signal. Alternatively, a meta-
gradient approach can be used where action parameters are differentiable (soft choices) and the
outer validation loss is differentiated w.r.t. ϕ by unrolling a few inner optimization steps. We
recommend policy-gradient (PPO) in experiments for stability and scalability, with meta-gradient
used in ablations to evaluate potential improvements.

Stabilization, replay, and reproducibility. Structural modifications can destabilize training. We
used three stabilizers:

1. Replay memory R: We maintained a buffer of representative examples (stratified by
class/modality) and replay them for R mini-batches immediately after structural changes. This
limits catastrophic forgetting and calibrates newly created modules.

2. Warm-start fine-tuning: After spawning/hybridization, child modules are trained with a re-
duced learning rate ηchild = ζη for Ewarm steps before making further evolutionary decisions.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

3. Minimum-age and hysteresis: Modules must remain for Amin epochs to allow their contribu-
tions to be reliably estimated; pruning decisions incorporate running variance to prevent thrash-
ing.

For reproducibility, every structural operation (prune/mutate/hybridize) is logged with a 64-bit RNG
seed, parent IDs, and a deterministic construction routine. This results in reproducible architecture
evolution given the same global initial seed.

H TRAINING OBJECTIVE

Notation & Problem Statement.

• Let an architecture (set of active modules and their hyperparameters) be A = {(m, ηm)}m∈M,
where ηm are module hyperparameters (depth, heads, dropout, widths), andM is the active mod-
ule index set.

• Let Θ = {θm}m∈M denote all module weights plus router and head weights; let θext denote the
multimodal extractor weights (DistilBERT, CLIP-ViT).

• Router produces per-sample soft contributions βm(x) for sample x. For a minibatch B, denote
βm(B) = 1

|B|
∑

x∈B βm(x).

• Meta-controller (Evolutionary Strategist) is parameterized by ϕ and implements a policy πϕ

which, at discrete architectural decision times, outputs actions a ∈ A (prune, grow, hybridize,
and their parameters).

• LetR be the replay buffer (capacity NR).

We cast the training as the following bilevel objective:

Outer / meta (architectural) objective: maxϕ Eτ∼πϕ
[Pval(Θ

τ , Aτ)− c · C(Aτ)]
Inner / param (weights) objective: Θτ ≈ argminΘ Ltrain(Θ, Aτ ;Dtrain),

(83)

where Pval is a validation performance metric (e.g. AUC), C(A) is an architectural cost (parameters,
FLOPs), and τ denotes a stochastic architecture trajectory induced by πϕ. Because architectures
are discrete and evolution is online, we used a hybrid of gradient-based inner training and policy-
gradient outer optimization.

Inner (parameter) loss. For a minibatch B = {(x, y)}. the base task loss is binary cross-entropy:

Ltask(B; Θ, A) = 1
|B|
∑

(x,y)∈B CE(y, ŷ(x; Θ, A))

ŷ(x; Θ, A) = σ(Woz
(r)(x; Θ, A)),

(84)

where z(r) is the router’s weighted mixture output. To encourage per-sample routing diversity (avoid
collapse to a single module), we used an entropy reward on router weights averaged over the batch:

Ldiv(B; Θ, A) = − 1

|B|
∑
x∈B

∑
m∈M

βm(x) log βm(x). (85)

To encourage representational orthogonality between module outputs (parametric plurality beyond
mere usage), we included a pairwise cosine-similarity penalty:

Lorth(B; Θ, A) =
2

|M|(|M| − 1)

∑
i<j

(
⟨ui(B), uj(B)⟩
||ui(B)||||uj(B)||

)2

, (86)

where um(B) = 1
|B|
∑

x∈B um(x) is the batch-averaged module output (or one can use per-sample
pairwise terms averaged). We penalized architectural complexity (to avoid unconstrained growth):

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Lcomp(A) = αparam

∑
m∈M

params(m) · gm, gm = min{1, clip(βavg
m /ϵ, 0, 1)}, (87)

where βavg
m is a long-run usage estimate and gm behaves as a soft gate: rarely used modules incur

less cost. To mitigate catastrophic forgetting when the architecture changes, we used replay loss:

Lreplay(R; Θ, A) =
1

|S|
∑

(x,y)∈S⊂R

CE(y, ŷ(x; Θ, A)), (88)

with S a randomly sampled minibatch from the buffer. Finally, the inner total loss used to update Θ
is:

Ltrain(B; Θ, A) = Ltask + λdivLdiv + λorthLorth + λreplayLreplay + λcompLcomp (89)

All λ’s are hyperparameters tuned to balance accuracy, diversity, and compactness. Θ is updated by
standard SGD/Adam steps minimizing Ltrain. The router parameters (and extractor finetuning) are
included in Θ and receive gradients through β and the mixture z(r).

Module Fitness and Contribution Estimator. The strategist must decide which modules to
prune, which to hybridize, and which to use as parents for growth. Decisions rely on a fitness
score fm per module that reflects usefulness and marginal contribution. We propose a practical
estimator that balances fidelity and computation:

1. Usage estimate (fast):

u(t)
m = EMAρ(βm(Bt)), (90)

an exponential moving average over minibatches with decay ρ.
2. Marginal contribution (periodic, higher fidelity): For every Teval minibatches, we estimated

the marginal loss drop of module m on a small validation probe P :

∆Lm ≈
1

|P |
∑
x∈P

(L(x; Θ, A/{m})− L(x; Θ, A)), (91)

where A/{m} is the architecture with m ablated (set βm = 0 and renormalize). Positive ∆Lm

means the module helps.
3. Composite fitness: We combine both signals:

fm = γ1u
(t)
m + γ2ReLU(∆Lm), (92)

normalized across modules. γ weights trade off frequency vs casual contribution.

The strategist prunes modules with fm < τprune and age ¿ Amini; spawns children from par-
ents sampled proportional to fm; selects parents for hybridization stochastically using fitness-
proportionate selection.

Evolutionary Actions. Let action set A include:

• prune(m): remove module m permanently (or mark inactive).
• grow(p, δη): spawn new module from parent p with hyperparameter perturbation δn.
• hybridize(pi, pj , λ): create child hyperparameters

ηc = ληpi
+ (1− λ)ηpj

+ ϵ, ϵ ∼ N (0, σ2). (93)

Weight inheritance. Child weights θc are warm-started by structured inheritance:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

• for hybridization: θc = λθpi
+ (1− λ)θpj

+ ζ, with small noise ζ ∼ N (0, σ2
w).

• for growth by mutation: copy and perturb parent: θc = θp + ζ.
After creation, children undergo a short warm-up period of Twarm minibatches with a smaller
learning rate ηw to prevent destabilization.

Knowledge distillation on pruning. Before the pruning module m, we optionally perform a distil-
lation step so that the remaining modules can absorb its functionality:

Lkd =
1

|S|
∑
x∈S

||z(r)full(x)− z
(r)
ablated(x)||

2
2, (94)

where z
(r)
full uses m and z

(r)
ablated does not. Minimizing Lkd for a few steps softens the removal.

Outer (Meta) Objective and Optimization of ϕ. The strategist parameter ϕ defines a policy
πϕ(at|st) that, given state st (module fitness vector {fm}, age, resource usage, recent validation
trajectory, etc.), outputs an action distribution. The meta-reward rt should encourage long-term
validation gains while penalizing cost:

rt = ∆Pval,t − ηparam∆Paramst − ηflops∆FLOPst − k · Cinstab,t, (95)

where Pval,t = Pval(t + ∆) − Pval(t) is the improvement observed after applying action(s) and
letting the model train for a short horizon, and Cinstab,t penalizes validation volatility (to avoid
reckless growth that yields unstable gains). We maximized expected return:

J(ϕ) = Eτ∼πϕ

[
T∑

t=0

rt

]
. (96)

We applied two practical optimization strategies here:

1. Policy Gradient (REINFORCE). We used sampled trajectories of length Tmeta, estimate re-
turns Rt =

∑T
k=t rk, and update:

∇ϕJ ≈ E

[∑
t

∇ϕ log πϕ(at|st)(Rt − bt)

]
, (97)

where bt is a learned baseline (value network) to reduce variance. Entropy regularization
−λH

∑
tH(πϕ(·|st)) is added to encourage exploration.

2. Truncated Meta-Gradient (Differentiable Unroll). When computational budget allows, we
unrolled k inner optimization steps of Θ after an action and differentiate the validation loss w.r.t.
ϕ via chain rule (truncated backprop through optimization). Let Θt+k(ϕ) denote the inner opti-
mized weights after K steps influenced by decisions sampled from πϕ. Then,

∇ϕLval(Θt+k(ϕ)) =
∂Lval

∂Θt+k
· ∂Θt+k

∂ϕ
, (98)

which we compute with automatic differentiation for small K. This gives lower variance but
larger memory/computation. In practice, we combine both: use REINFORCE for long-horizon
exploration and occasional truncated meta-gradient updates for fine-tuning.

31

	Introduction
	Related Work

	Problem Formulation
	Self-Evolving Neural Architecture Framework
	Multimodal Feature Extraction
	Cross-Modal Attention Fusion
	Neural Module Zoo and Dynamic Routing
	Graph Attention Router (GAR): A Self-Evolution Engine
	Evolutionary Strategist: A Meta-Controller for Structural Self-Growth

	Experiments
	Dataset and Experimental Settings
	Comparison with State-of-the-Art
	Ablation Studies

	Conclusion
	Difference between Traditional NAS and MALS
	Problem Formulation and Architectural Overview
	Notation and core objects
	Joint (bi-level) Optimization: Weights and Topology
	Parametric Plurality: Configuration Spaces and Module Instancing
	Router, Contribution, and the Strategist State
	Evolutionary Operators
	Constraints and Resource-Aware Objective
	Practical approximations and Algorithmic summary

	Multimodal Feature Extraction
	Textual Encoding
	Visual Encoding
	Shared Latent Alignment

	Cross-Modal Attention Fusion
	Neural Module Zoo and Dynamic Routing
	Graph Attention Router
	Evolutionary Strategist — Meta-Controller for structural self-growth
	Training Objective

