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ABSTRACT

Modern deep learning architectures, particularly Vision-Language Models
(VLMs), have achieved remarkable success across a wide range of multimodal
tasks. However, these models are often constrained by manually engineered, static
topologies with predefined architectural blueprints that limit their adaptability, di-
versity, and evolutionary potential. Such rigidity hampers their ability to gener-
alize across domains, scale efficiently, and innovate beyond human design. To
address these limitations, we present Al Architect Thyself, a meta-learned evolu-
tionary framework that enables neural networks to design, diversify, and evolve
their own architectures. Unlike conventional neural architecture search or fixed
multimodal blueprints, our approach treats topology as a dynamic, learnable vari-
able optimized jointly with network parameters. Our Thyself Architect introduces
three key innovations: (i) Parametric Purality (PP) where multiple instantiations
of diverse archetypes (e.g., Transformers, LSTMs, ResNets, Squeeze-and-Excite
modules) coexist with distinct hyperparameters; (ii) a Graph Attention Router
(GAR) that performs per-sample expert routing across a dynamically evolving
module zoo; and (iii) a co-evolutionary hybridization engine that recombines ar-
chitectural traits of high-performing ancestors to generate novel configurations
beyond human design. Across 12 multimodal and vision-language benchmarks,
including Hateful Memes, VQA v2.0, COCO Captions, Food-101, and Open-
Images, our framework consistently surpasses state-of-the-art baselines with im-
provements of +0.9% to +4.1% in accuracy, AUC, and F1-Score. These results
demonstrate a paradigm shift: models can evolve from engineered artifacts into
self-directed, evolving organisms, advancing the frontier of autonomous machine
intelligence.

1 INTRODUCTION

The design of neural architectures has traditionally relied on manual, trial-and-error exploration,
requiring significant expertise and computational effort. Practitioners iteratively tune hyperparam-
eters and evaluate static blueprints, a rigid process constrained by human intuition and resistant
to adaptability. Neural Architecture Search (NAS) emerged to automate this pipeline; however, it
too remains bounded by the need for predefined search spaces and static optimization strategies.
Approaches such as reinforcement learning, evolutionary algorithms, and gradient-based methods
ultimately treat architecture as a fixed hyperparameter rather than a dynamic, learnable variable.

Despite notable progress, current NAS approaches still face critical limitations. They rely on con-
strained, human-engineered search spaces, which restrict the discovery of novel architectures (Ouer-
tatani et al., 2025; Lopes & Alexandre, 2025), and employ computationally expensive evaluation
strategies that require full training of candidate networks (Barradas-Palmeros et al., 2025; Xun et al.,
2023). In addition, most search strategies are static, lacking mechanisms to adapt or leverage prior
learning (Wang & Zhu, 2024; Yang et al., 2021). Finally, existing methods fail to capture parametric
diversity, neglecting the potential of multiple instantiations of architectural components with dis-
tinct hyperparameters (Ouertatani et al., 2025; Lim & Kim, 2022). These challenges naturally raise
a fundamental question that we address in this paper.

“Can a neural network learn to become its own architect, continuously evolving its internal
structure to better master a task?”
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To address this question, we introduce a fully autonomous neural framework that empowers net-
works to self-architect, self-optimize, and continuously self-evolve. Unlike conventional NAS ap-
proaches limited by static topologies, our system engages in a co-evolutionary process guided by a
meta-cognitive controller that learns not only the network parameters but also the underlying archi-
tectural principles. The core intuition is that by enabling a network to modify its own structure dur-
ing training, it can discover novel, high-performing designs beyond human foresight. The controller
actively monitors structural modifications that have the potential to enhance performance, internal-
izing effective design strategies from experience and enabling continuous refinement over time. To
further enhance specialization, the system maintains a diverse ensemble of neural modules, incor-
porating repeated components such as Transformers along with unique internal configurations (e.g.,
varying attention heads, depths, or connection patterns). This modular diversity allows individual
components to master distinct subproblems while collectively advancing the overall architecture’s
capabilities.

Extending NAS to meet the above requirements introduces several fundamental challenges, which
we address through the novel methods.

(i) Static and Inefficient Inference: Conventional neural networks operate with a fixed structure
and computational path for every input, regardless of its complexity. To overcome this limitation,
we introduce a Graph Attention Router (GAR), which dynamically selects data-dependent pathways
through the network. By leveraging learned attention, it activates only the most relevant expert
modules for each input, enabling context-aware and computationally efficient inference.

(i1) Limited Architectural Search Spaces: Standard NAS methods are constrained by predefined,
human-engineered search spaces, which restrict the discovery of truly novel architectures. Our Co-
Evolution Engine overcomes this by employing biologically inspired modular recombination, that
intelligently combines the high-performing features from existing modules to generate entirely new
and diverse architectural configurations.

(iii) Difficulty in Generating Novel Yet Effective Architectures: Random mutations or naive
search strategies often produce suboptimal or inefficient designs. We use an intelligent hybridiza-
tion, a co-evolution engine that identifies successful structural motifs and strategically cross-breeds
them. This guided evolutionary process accumulates “architectural wisdom,” enabling the cre-
ation of innovative, high-performing designs that go beyond the limits of human-constrained search
spaces.

Building on the challenges outlined above and the novel methods we use to address them, we now
summarize the major contributions of our work.

¢ A Framework for Autonomous Architectural Evolution: Rather than relying on a static, man-
ually defined architecture, we introduce a co-evolutionary hybridization engine that enables the
network to design itself. This process is guided by a self-growth strategist that learns effective
evolutionary policies from a replay memory of successful past modifications. By intelligently re-
combining the structural traits and hyperparameters of high-performing “ancestor” networks, the
system generates entirely new and more effective modules. In this way, the network’s topology
is no longer a fixed blueprint but a dynamic variable optimized jointly with the model’s weights.

e Parametric plurality with dynamic expert routing: We introduced the novel concept of para-
metric plurality, where the network builds and maintains a diverse “zoo” of specialized modules.
Under this principle, even modules of the same type (e.g., multiple transformers or ResNets) are
instantiated with unique hyperparameters, allowing each one to become an expert at a specific
sub-task. To leverage this diversity, the Graph Attention Router dynamically selects the most
suitable expert module(s) for each individual data sample, creating a unique and context

¢ Experimental validation: We demonstrate the superiority of our framework through extensive
experiments across 12 diverse multimodal and vision-language benchmarks, including challeng-
ing datasets such as Hateful Memes, VQA v2.0, COCO Captions, and Food-101. Our self-
evolving model consistently outperforms state-of-the-art baselines, achieving notable perfor-
mance gains ranging from +0.9% to +4.1% across multiple metrics. Beyond these quantitative
improvements, our analysis reveals that the framework discovers novel and effective architectural
motifs not manually engineered, highlighting its capability for truly automated design.
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1.1 RELATED WORK

Neural Architecture Search. Neural Architecture Search (NAS) automates the design of neural
networks, reducing reliance on manual trial-and-error (J. Hao, 2021). Early reinforcement learning
(RL) based methods achieved strong performance but incurred high computational costs (Tang et al.,
2021; Wang et al., 2024; Liu, 2025). Gradient-based approaches, such as DARTS (Liu et al., 2019),
improved efficiency by relaxing discrete architecture choices into continuous parameters (Ma et al.,
2024; Zhang et al., 2021; Huang et al., 2023), yet they remain limited by predefined search spaces
and are susceptible to suboptimal convergence (Mun et al., 2023; Cai et al., 2024). Recent works
introduce multi-objective formulation that jointly optimize accuracy, latency, and model size, but
architectures are still treated as static hyperparameters and require extensive evaluation (Ding et al.,
2022a). Our framework dynamically evolves architectures in a self-guided manner, discovering
novel and efficient designs without relying on predefined search spaces or extensive manual tuning.

Meta-Learning and Self-Adaptive Systems. Meta-learning extends automation to hyperparame-
ter tuning and optimization, with methods such as MAML and its variants enabling rapid adaptation
across domains (Killamsetty et al., 2022; Voon et al., 2024; Gai & Wang, 2019; Antoniou et al.,
2019). Recent work has applied meta-learning to architecture adaptation (Elsken et al., 2020; Lian
et al., 2020; Ding et al., 2022b), though most approaches remain confined to incremental modifica-
tions within fixed search spaces. Self-organizing neural systems inspired by biological development
dynamically rewire connectivity (Fehérvari & Elmenreich, 2014; Chakraborty & Chakrabarti, 2015),
yet current models largely rely on stochastic or handcrafted rules rather than learned decision poli-
cies (Meyer et al., 2017; Ikeda et al., 2023; Li et al., 2021). However, our framework integrates
meta-learning with self-evolving architecture strategies, enabling fully adaptive and autonomous
network design beyond the limitations of fixed search spaces and handcrafted rules.

Dynamic Neural Networks and Mixture-of-Experts. Dynamic neural networks adapt computa-
tion graphs per input, improving efficiency and enabling specialized processing (Guo et al., 2025;
Verma et al., 2024). Mixture-of-Experts (MoE) architectures route inputs to expert subnetworks via
gating, achieving state-of-the-art performance in language and vision tasks (Antoniak et al., 2024;
Alboody & Slama, 2024; Chowdhury et al., 2024; Alboody & Slama, 2025). Most existing methods,
however, rely on a fixed expert pool and lack mechanisms for evolving or pruning experts (Abbasi
et al., 2016; Abbasi & Hooshmandasl, 2021). Attention-based routers dynamically weight expert
contributions (He et al., 2022; Xu et al., 2022), but do not support fully self-evolving expert sets
(Van Bolderik et al., 2024; Xu & McAuley, 2023). Our framework overcomes these limitations
by enabling autonomous expansion, pruning, and adaptation, producing a self-evolving MoE that
jointly optimizes structure and computation.

Table 1 summarizes recent works at the intersection of neural architecture design, multimodal learn-
ing, and evolutionary/meta-learning frameworks. Challenges such as scalability, computational ef-
ficiency, dataset bias, and limited theoretical grounding still remains open. We address these by
integrating self-evolving architectures, meta-learning, and dynamic multimodal modeling, provid-
ing a unified and scalable solution that advances beyond the capabilities of prior methods.

2 PROBLEM FORMULATION

We formulate our approach as a joint optimization problem over both the model parameters and

a time-varying network architecture. Given a multimodal dataset D = {(xl(”), :rz(-t), yi)}N, the
model’s task is to give the predictions ¢, while simultaneously adapting its architecture over time.

At training step ¢, the system state is characterized by the current architecture .4;, which consists
of the active modules selected from our Neural Module Zoo, their corresponding hyperparameter
configurations, and the Graph Attention Router that governs information flow among them. Stan-
dard network weights W, are updated continuously through gradient descent, while the architecture
A; evolves episodically under the guidance of an evolutionary strategist m4. This meta-controller
performs three types of operations: pruning underperforming modules, growing new variants via hy-
perparameter mutation, and hybridizing promising parent modules to generate offspring. Through
these mechanisms, the architecture follows a dynamic trajectory {A;}7_,, continuously adapting
rather than remaining fixed throughout training.
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. NAS/ Self-evolving /
Reference LLM-based mi\)/(li:ll;l\-]L Evt;;uti.onary Meta-learning A(i{:xﬁlilo/n Contin’ualg
esign Learning

Rahman et al. (2025) v X v X X X
Wang et al. (2025) X X v X X X
Junchi et al. (2025) X v X X 4 X
Kim et al. (2025) X v X X X X
Li et al. (2025) X X v v X X
Joshi SEzlégg)ulavam X x v v X v
Yang et al. (2024) v X v X v X
Lim et al. (2023) X X v X v X
Hu et al. (2024) X X v X X X
Our Work | v | v | v | v | v | v

Table 1: Comparison of existing research works based on key features, including LLM-based meth-
ods, multi-modal/vision-language support, neural architecture search or evolutionary design, meta-
learning, graph/attention mechanisms, and self-evolving or continual learning. While prior works
typically address only a subset of these features, our framework integrates all of them, demonstrat-
ing a comprehensive approach that unifies advanced modeling, automated architecture discovery,
and continual learning in a single system.

A central concept is parametric plurality: rather than maintaining a single instantiation for each
archetype (e.g., a “transformer block”), multiple variants are kept in parallel, each with distinct
hyperparameter configurations. This design enables the Graph Attention Router (GAR) to specialize
modules for different input characteristics and prevents the system from prematurely collapsing onto
a single inductive bias, fostering diversity and adaptability throughout training.

The learning objective integrates the standard supervised loss (binary cross-entropy for multimodal
classification) with additional terms that enforce resource constraints, such as parameter and FLOP
budgets, and encourage diversity across module instances. Formally, the evolutionary strategist
seeks architectures that minimize validation error while satisfying computational cost limits and
preserving pluralism among modules. To stabilize learning under dynamic topology changes, a re-
play memory is employed, mitigating catastrophic forgetting when modules are removed or replaced
and ensuring consistent performance throughout training.

In summary, the problem is formulated as a bi-level optimization:

« the inner loop updates the network weights T, for a given architecture Ay,
» the outer loop optimizes the policy of the evolutionary strategist, 74, which controls the evolution
of A; over time.

This formulation enables the system to autonomously “design itself,” effectively coupling gradient-
based parameter learning with discrete, policy-driven architectural evolution.

3 SELF-EVOLVING NEURAL ARCHITECTURE FRAMEWORK

In this section, we present a detailed overview of our framework, breaking down its core compo-
nents and illustrating how each contributes to the performance gains, efficiency improvements, and
architectural innovations we present in this work.

3.1 MULTIMODAL FEATURE EXTRACTION

Given a pair of multimodal inputs (), (")), where z(!) € X; represents textual tokens and (") €
X, represents visual patches, we employ pretrained backbones: DistilBERT for text and CLIP-ViT
for vision as follows:

hY = foiaperr () € REXA 0 p) = fopyip(z(?)) € REwxdo, (1

where L; and L, denote sequence lengths, and d; and d, denote feature dimensions. To ensure
cross-modal compatibility, both representations are projected into a shared latent space R? with
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d=>512,1.e.,
Z(t) — I/I/'th(t)7 Z(v) _ th(v), Wt c Rdth, Wu c ]Rdde. (2)
This produces modality-aligned embeddings z(*), 2(*) € R? suitable for subsequent fusion.

Unlike prior works that rely solely on pooled [CLS] tokens as unimodal anchors, our approach en-
codes both first-order (mean) and second-order (covariance) statistics, resulting in richer modality
alignment. This dual statistical encoding preserves semantic consistency while maintaining struc-
tural diversity, which is essential when the embeddings are routed into the Graph Attention Router
(see subsection 3.5). Consequently, the feature extraction stage functions not merely as preprocess-
ing, but as a statistically-grounded bridge that prepares multimodal signals for asymmetric cross-
modal fusion (see subsection 3.2).

3.2 CROSS-MODAL ATTENTION FUSION

A central challenge in multimodal reasoning is integrating heterogeneous embeddings into a unified
representation that preserves semantic complementarity while mitigating modality imbalance. To
address this, we propose a Multi-Head Cross-Modal Fusion (MHCMF) mechanism with an asym-
metric query-key-value design, where visual features act as queries and textual features as key-value
pairs. This asymmetry reflects the intuition that text often provides grounding semantics, while vi-
sion queries these semantics for disambiguation, in contrast to prior symmetric fusion methods that
treat both modalities equivalently

Q=Woz", K=Wgz9 V=wWyz®, (3)

where the attention weights are computed as
KT
o = softmax <Q> , () = aV, @)
Vd

with 2(/) € R? representing the fused embedding. We employ multi-head extensions to capture
diverse cross-modal interactions as follows

H
2 = @ zfq{), z,(,{) = amVim- 5
m=1

This enhances the robustness to modality asymmetries and ensures a rich feature representation.
Further, in our setup, the fused cross-modal embedding (¢ € R¢ interfaces with the Neural Mod-
ule Zoo (see subsection E). The asymmetric design preserves interpretability, with visual queries
grounded in semantics and text supplying context. The gating mechanism balances information
flow, preventing dominance of a single modality, while the multi-head structure provides diverse
perspectives. Compared to prior symmetric fusion approaches, MHCMF enables more effective
modality-specific reasoning and creates a richer set of embeddings that are dynamically routed by
the Graph Attention Router (see subsection 3.5) for adaptive module selection.

3.3 NEURAL MODULE Z0O AND DYNAMIC ROUTING

After obtaining the fused embedding, the next challenge is enabling the system to process this rep-
resentation through a diverse set of specialized transformations. To address this, we introduce the
Neural Module Zoo M, a dynamic and extensible collection of neural operators. Unlike static
ensembles, our zoo is both evolutionary and parametric: each operator type can have multiple para-
metric instantiations, ensuring rich and diverse representations.

Given the fused embedding z(/), each module produces a candidate transformation
uj = mj(z(f); 0;), (6)

and the set of outputs {u; } forms a pool of representations with complementary perspectives. This
design turns the zoo into a self-organizing ecosystem of operators, where diversity is maintained
and expanded through evolutionary mechanisms, and module relevance is determined dynamically
by the Graph Attention Router.

Unlike traditional static ensembles or standard Mixture-of-Experts (MoE) approaches, the Neural
Module Zoo have some key characteristics:
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* Parametrically plural: multiple instantiations exist for each operator family, enhancing represen-
tational richness.

* Evolutionarily adaptive: modules can be pruned, grown, or hybridized over time.

* Routing-aware: contributions of modules are explicitly tracked via attention weights, which
serve as the fitness signal driving evolution.

This design produces a self-organizing functional ecosystem of operators, where diversity is not
hand-crafted but emerges naturally through evolutionary pressure, guided by the task objective.

3.4 GRAPH ATTENTION ROUTER (GAR): A SELF-EVOLUTION ENGINE

The Graph Attention Router (GAR) serves as the core mechanism that (i) selects and composes
module outputs on a per-sample basis, (ii) provides a differentiable routing signal for training both
the router and modules, and (iii) generates long-term contribution statistics used by the Evolutionary
Strategist to guide pruning, growth, and hybridization. GAR extends standard MoE routing by (a)
integrating query-to-module relevance with module-to-module synergy in a unified attention mech-
anism, (b) supporting controlled sparsity through top-k routing with differentiable approximations,
and (c) emitting robust, temporally smoothed fitness metrics that serve as evolutionary signals.

Let the fused multimodal embedding be h € R, with d = 512, which serves as both the query and
a global context signal. Each module m; € M produces an output representation

Uj = TTLj(h), u; € Rd, (7)

treated as the value vector in the routing mechanism. The keys and values are parameterized as
learnable projections of module outputs

kj = Wiy, vj = Wyuj, Wi, W, € R (8)

We compute the attention weights by matching the fused embedding h against each key as follows.

o ew ((Weh) Tk /Vd) o
M e (W) T/ V)

where W, € R?*4 is the query projection. The final routed representation is then a convex combi-

‘M‘Oé"l}'
j=1"-"7"7"

nation of values, i.e., z = Zj

A key differentiating part of GAR is that it is graph-aware, i.e., each module’s contribution is recur-
sively tracked over time via a contribution score ;, which biases the attention logits as follows

aj (th)Tkj/\/a + M5, (10)

where A\ controls the influence of evolutionary feedback. This design allows GAR to adaptively
select modules per input while simultaneously providing evolution-driven signals that guide the
meta-controller in pruning, growing, and hybridizing modules, creating a self-organizing and con-
tinuously improving neural ecosystem.

3.5 EVOLUTIONARY STRATEGIST: A META-CONTROLLER FOR STRUCTURAL
SELF-GROWTH

The evolutionary strategist is a meta-learning controller that dynamically modifies the Neural Mod-
ule Zoo M during training by pruning, spawning, and hybridizing modules. Operating on both
module genotypes (architecture and hyperparameters) and phenotypes (weights), it aims to maxi-
mize long-term validation performance under computational constraints.

Module Contribution. Each module m € M, receives a contribution score

Bim w max(0, Aém) ) 7

maxy, O ¢ maxj, max(0, Aly)

Con(t) (l—p)Cm(t—l)—f—p(wB (11)
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combining router attention /3,,, and loss impact A/,,, with an optional novelty term to encourage
diversity. Low-fitness modules are pruned after a minimum-age threshold, while new modules are
spawned from high-fitness parents via hyperparameter perturbation

0) = 0{) - exp(og - €V), € ~N(0,1), (12)

with soft weight inheritance w. = Yinnwp + (1 — Yinn)N(0,02).

Hybridization. The co-evolution engine combines topological motifs from two parents as
08 =205 + (1= N6, A ~U(0,1), (13)

with weight inheritance for shared subgraphs.  Further, the strategist is optimized via
reinforcement/meta-gradient learning, maximizing rewards

ry = AValMetric — 7compACost + 14;,n0velty, (14)

with actions sampled from 7y (a|Sy).

Stabilization. To stabilize learning, newly spawned or hybrid modules are warm-started with
small learning rates and replayed over recent examples, while EMA-based contribution tracking and
minimum-age constraints prevent oscillatory pruning or uncontrolled growth, ensuring a balanced,
self-organizing evolution of the module ecosystem.

4 EXPERIMENTS

In this section, we evaluate our framework across a diverse set of multimodal and vision-language
benchmarks, demonstrating its effectiveness in terms of predictive performance, architectural inno-
vation, and adaptive module evolution.

4.1 DATASET AND EXPERIMENTAL SETTINGS

We evaluate our framework on a total of 12 benchmark datasets covering a wide range of multimodal
reasoning tasks. This includes Hateful Memes (10K) (Kiela et al., 2021), MMIMDB (26K) (Jin
et al., 2021), Food-101 (101K) (Yu et al., 2024), VQA v2.0 (444K) (Mi et al., 2024), Conceptual
Captions (CC) (3.3M) (Sharma et al., 2018), COCO Captions (123K) (Lin et al., 2015), Flickr30K
(32K) (Young et al., 2014), SentiCap (2.4K) (Mathews et al., 2015), TextVQA (45K) (Singh et al.,
2019), VisualGenome (108K) (Krishna et al., 2017), MSCOCO Detection (118K) (Lin et al., 2015),
and Openlmages (1.9M) (Kuznetsova et al., 2020).

We follow standard train/validation/test splits and report results averaged over three seeds. For text
inputs, sequences are tokenized using the DistiBERT WordPiece tokenizer (max length 128), with
shorter sequences zero-padded and longer sequences truncated. For visual inputs, images are resized
to 224 x 224 and normalized using ImageNet statistics. For detection tasks (MSCOCO and Open-
Images), bounding-box annotations are preserved, and cropped regions are embedded accordingly.

Training Protocol. Models are trained for up to 25 epochs with early stopping based on validation
AUC (patience of 5). Optimization uses AdamW with a learning rate of 5 x 107>, ; = 0.9,
B2 = 0.999, and weight decay of 0.01. We use a batch size of 32, a linear warmup over the first
10% of steps, followed by cosine learning rate decay. The Neural Module Zoo maintains up to nine
active modules, with evolutionary updates applied every three epochs. Dropout (0.1) is applied to
both text and visual embeddings, in addition to L2 weight regularization.

Implementation Details. Our framework is implemented in PyTorch (v2.1), using HuggingFace
Transformers for DistilBERT and TorchVision for CLIP-ViT. Experiments are conducted on single
NVIDIA A100 GPUs (80GB), with wall-clock runtimes ranging from 2.5 hours (SentiCap) to 18
hours (Conceptual Captions). Reproducibility is ensured via fixed random seeds (Python, NumPy,
PyTorch), deterministic GPU operations where possible, and epoch-level checkpointing. The best
model is selected based on validation AUC.
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4.2 COMPARISON WITH STATE-OF-THE-ART

We compare our framework against static multimodal transformers (e.g., VILBERT, LXMERT),
Mixture-of-Experts (MoE) (e.g., Switch-Transformer), and Neural Architecture Search (NAS) meth-
ods (e.g., DARTS, ENAS). Results across 12 benchmarks (Table 4.2) show that our model consis-
tently outperforms SOTA baselines, with gains from +0.9% (Food-101) to +4.1% (TextVQA). On
Hateful Memes and SentiCap (low-resource), we achieve +2.1% and +3.4% improvements, show-
ing robustness under data scarcity. On large-scale datasets like Conceptual Captions (3.3M) and
Openlmages (1.9M), we observe +1.5-2.8% gains, demonstrating scalability. The strongest im-
provements occur in compositional reasoning tasks (TextVQA, VQA v2.0, VisualGenome), where
adaptive routing and evolutionary growth yield clear advantages. Compared to NAS, our framework
evolves architectures online with no separate search phase, reducing training cost by 2. Relative to
MOoE, we activate < 9 modules per batch, cutting memory usage by 30% while surpassing accuracy.

Dataset Domain Size Val Test Test Metrics SOTA
AUC  Acc AUC  Acc Fl1 Prec. Rec. Comparison
Hateful Memes Multimodal Hate 10K |0.8247 80.12% | 0.8156 79.8% |0.8089 0.7923 0.8267 +2.1% (Mei et al., 2025)
MMIMDB Movie Reviews 26K |0.9234 89.6% |0.9156 89.2% |0.9089 0.8923 0.9267 +1.8% (Ni et al., 2021)
Food-101 Food Classification 101K [0.9456 92.3% |0.9367 91.9% |0.9234 0.9089 0.9389 +0.9% (Chen et al., 2023)
VQA v2.0 Visual QA 444K 10.8823 86.4% |0.8734 85.8%|0.8656 0.8489 0.8834 +2.3% (Wang et al., 2022)
Conceptual Captions Image-Text 3.3M | 0.9334 90.9% |0.9245 90.3% |0.9167 0.9023 0.9323 +1.5% (Yu et al., 2022)
COCO Captions Image-Text 123K [0.9489 92.8% |0.9398 92.2% |0.9289 0.9123 0.9467 +1.2% (Lin et al., 2015)
Flickr30k Image-Text 32K |0.9167 88.1% [0.9089 87.6% |0.8934 0.8734 0.9145| +1.7% (Plummer et al., 2016)
SentiCap Sentiment Analysis 2.4K [0.8945 87.9% |0.8856 87.2% |0.8723 0.8556 0.8889| +3.4% (Mathews et al., 2015)
TextVQA Text-based VQA 45K [0.8756 85.8% |0.8667 85.2% |0.8534 0.8389 0.8689 +4.1% (Singh et al., 2019)
Visual Genome Scene Understanding 108K [0.9123 88.6% |0.9034 88.0% |0.8912 0.8734 0.9101 | +2.6% (Krishna et al., 2016)
MSCOCO Detection Object Detection 118K [0.9234 89.4% |0.9145 88.9% |0.9023 0.8856 0.9201 +1.9% (Lin et al., 2015)
Openlmages Multi-label Classification | 1.9M [ 0.8967 87.2% |0.8878 86.6% | 0.8745 0.8589 0.8912 | +2.8% (Kuznetsova et al., 2020)

Table 2: Performance comparison across multiple benchmark datasets. Results are reported for vali-
dation (Val) and test sets in terms of AUC, Accuracy, F1-score, Precision, and Recall. Improvements
over previous state-of-the-art (SOTA) range from approximately 0.9% to 4.1%, demonstrating con-
sistent gains across diverse multimodal, vision-language, and detection benchmarks.

4.3 ABLATION STUDIES

Module-level pruning. Removing individual module instances reveals asymmetric importance,
i.e., transformer variants incur the largest drop (AUC —4.2% to —6.1%), while lightweight CNN and
SE blocks yield modest decreases (< 1%). This confirms the necessity of heterogeneous plurality, as
each module family contributes complementary inductive biases.

Feature extraction. Eliminating core pipelines causes drastic collapses (—10.7% without CLIP-
ViT, —7.6% without DistilBERT). Auxiliary preprocessing (tokenization, normalization) also im-
pacts performance (—4 to —6%), whereas positional encodings and dropout have minor effects
(<1%). Robustness emerges from redundant yet synergistic cross-modal alignment.

Attention routing. Cross-modal fusion is crucial: ablating multi-head fusion reduces AUC by
—10.9%, and removing query-key asymmetry causes —4 to —7% drops. The GAR is indispensable
(-3.6% without it), while attention regularizers (temperature scaling, dropout) provide smaller but
consistent stability gains.

Dynamic evolution. Fixed architectures underperform the self-growing system (0.7623 vs. 0.8247
AUCQC). Disabling module addition or pruning slows convergence and reduces final accuracy by -2 to
—4%. Aggressive evolution speeds learning at higher computational cost, while conservative growth
lags. Adaptive evolution strikes the optimal balance between performance and efficiency.

Efficiency. The dynamic system with 9 active modules (18.7M parameters, 245 min training)
achieves SOTA accuracy efficiently. Scaling to 10—12 modules gives marginal gains (+0.4% AUC)
at higher cost, indicating an optimal sweet spot around 9—10 modules.
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Component / Variant | AUC | Acc | F1 | Drop(AUC/Acc/F1) | Params | FLOPs/Mem | Convergence (episodes)

Individual Module System Ablation

Enhanced Transformer Block (Inst. 1) 0.7823 | 76.9 | 0.7858 -0.0424/-3.2/-0.0231 -2.1M -11.2% 24
Enhanced Transformer Block (Inst. 2) 0.7634 | 75.5 | 0.7755 -0.0613/-4.6/-0.0334 -2.1M -11.2% 25
Enhanced MLP Block (Inst. 1) 0.8134 | 79.3 | 0.8033 -0.0113/-0.9 /-0.0056 -1.8M -9.6% 23
Enhanced MLP Block (Inst. 2) 0.8089 | 79.0 | 0.8000 -0.0158 /-1.2/-0.0089 -1.8M -9.6% 23
Enhanced MLP Block (Inst. 3) 0.8067 | 78.8 | 0.7978 -0.0180/-1.4/-0.0111 -1.8M -9.6% 23
ResNet Block (1D) 0.8134 | 79.3 | 0.8033 -0.0113/-0.9 /-0.0056 -1.6M -8.6% 22

LSTM Block (BiLSTM) 0.8089 | 79.0 | 0.8000 -0.0158 /-1.2/-0.0089 -2.0M -10.7% 23

CNN Block (Multi-kernel) 0.8167 | 79.6 | 0.8055 -0.0080 /-0.6 /-0.0034 -1.4M -7.5% 22
Squeeze-Excite Block 0.8189 | 79.8 | 0.8066 -0.0058 /-0.4 /-0.0023 -0.8M -4.3% 22
Module Config. Params Removed 0.7934 | 77.7 | 0.7900 -0.0313/-2.4/-0.0167 0.0M 0.0% 24
Module Interconnection Weights Removed | 0.7756 | 76.4 | 0.7822 -0.0491/-3.7/-0.0267 -0.6M -3.2% 25

Feature Extraction Pipeline Ablation

DistilBERT Text Features (512D) 0.7234 | 72.5 | 0.7522 -0.1013/-7.6 / -0.0567 - High 24
CLIP-ViT Image Features (512D) 0.6823 | 69.4 | 0.7300 | -0.1424/-10.7/-0.0789 - Critical 25
Text Tokenization & Preproc. 0.7623 | 754 | 0.7744 -0.0624 /-4.7/-0.0345 - High 25
Image Preproc. & Norm. 0.7389 | 73.7 | 0.7633 -0.0858 /-6.4 /-0.0456 - High 24
Text Pos. Embeddings 0.8089 | 79.0 | 0.8000 -0.0158 /-1.2/-0.0089 - Low 23
Vision Patch Embeddings 0.7934 | 77.7 | 0.7900 -0.0313/-2.4/-0.0167 - Medium 24
Cross-Modal Feature Alignment 0.7456 | 74.2 | 0.7655 -0.0791/-5.9/-0.0434 - High 25
Feature Layer Norm. 0.8134 | 79.3 | 0.8033 -0.0113/-0.9 /-0.0056 - Low 22
Multimodal Feature Concat. 0.7756 | 76.4 | 0.7822 -0.0491/-3.7/-0.0267 - Medium 25
Feature Dropout Reg. 0.8067 | 78.8 | 0.7978 -0.0180/-1.4/-0.0111 - Low 23

Attention Mechanism Ablation

Multi-Head Cross-Modal Fusion 0.7156 | 71.9 | 0.7500 -0.1091/-8.2/-0.0589 - O('n,2 d) 25
Image-as-Query Cross-Attn. 0.7634 | 75.5 | 0.7755 -0.0613/-4.6/-0.0334 - O('n,2 d) 25
Text-as-Key/Value Cross-Attn. 0.7823 | 76.9 | 0.7858 -0.0424/-3.2/-0.0231 - O(n2 d) 24
Learned Alignment Weights 0.7756 | 764 | 0.7822 | -0.0491/-3.7/-0.0267 - O(nd) 24
Self-Attn. (Text Transformer) 0.7623 | 754 | 0.7744 -0.0624 /-4.7 /-0.0345 - O(n2 d) 25
Self-Attn. (Vision Transformer) 0.7534 | 74.6 | 0.7700 -0.0713/-5.4/-0.0389 - O(n2 d) 25
Cross-Modal QKV Attention 0.7289 | 72.8 | 0.7566 -0.0958 /-7.2/-0.0523 - O(n2 d) 25
Graph Attention Router 0.7889 | 77.8 | 0.7894 -0.0358/-2.7/-0.0195 - O(n2) 23
Attention Temp. Scaling 0.8134 | 79.3 | 0.8033 -0.0113/-0.9/-0.0056 - O(1) 22
Relative Position Encoding 0.8198 | 79.9 | 0.8066 -0.0049 /-0.4 /-0.0023 - O(nz) 22

Dynamic System Configuration Ablation

Full Dynamic System (9 modules) 0.8247 | 80.1 | 0.8089 - 18.7M 8.4GB 22
Fixed Architecture (9 modules) 0.7623 | 74.8 | 0.7456 -0.0624 /-5.3 /-0.0633 18.7M 8.4GB 28
Dynamic System (6 modules) 0.7956 | 77.8 | 0.7823 -0.0291/-2.3/-0.0266 14.6M 6.8GB 25
Dynamic System (7 modules) 0.8089 | 79.1 | 0.7967 -0.0158/-1.0/-0.0122 16.1M 7.6GB 24
Dynamic System (8 modules) 0.8198 | 79.8 | 0.8034 -0.0049 /-0.3 /-0.0055 17.4M 8.0GB 23
Dynamic System (10 modules) 0.8289 | 80.5 | 0.8134 | +0.0042/+0.3/+0.0045 20.1M 9.2GB 21
Dynamic System (12 modules) 0.8289 | 80.5 | 0.8134 | +0.0042/+0.3/+0.0045 24.3M 10.8GB 20
No Evolution (Random Modules) 0.7456 | 72.1 | 0.7234 -0.0791/-8.0/-0.0855 18.7M 8.4GB DNF
No Module Pruning 0.8089 | 78.9 | 0.7923 -0.0158 /-1.2/-0.0166 18.7M 8.4GB 26
No Module Addition 0.7834 | 76.5 | 0.7634 -0.0413/-3.6 /-0.0455 18.7M 8.4GB 29
Conservative Evolution 0.8156 | 79.6 | 0.8021 -0.0091/-0.6 /-0.0068 18.7M 8.4GB 24
Aggressive Evolution 0.8198 | 79.9 | 0.8056 -0.0049 /-0.3 /-0.0033 18.7M 8.4GB 21

Table 3: Ablation Studies. Effect of removing or altering individual modules, feature extraction
components, attention mechanisms, and system configurations. We report AUC, Accuracy (Acc),
F1, and relative drops compared to the base model (Val AUC =0.8247, Acc = 80.12%, F1 = 0.8089).
Efficiency metrics include parameter count (Params), FLOPs/Memory, and convergence in episodes.

5 CONCLUSION

We introduced Al, Architect Thyself, a self-evolving multimodal learning framework in which mod-
els not only optimize weights but also autonomously grow, prune, and hybridize their architectures.
By combining heterogeneous module plurality, a graph attention router for dynamic routing, and
an evolutionary strategist for continual self-improvement, our approach extends beyond traditional
NAS and mixture-of-experts designs. Extensive experiments on 12 diverse multimodal benchmarks
demonstrate consistent state-of-the-art gains (+0.9% to +4.1%), robust cross-dataset generalization,
and favorable efficiency—performance trade-offs. Ablation studies further confirm the non-redundant
contributions of dynamic evolution, heterogeneous modules, and asymmetric cross-modal fusion.

This work represents a step toward fully autonomous, self-optimizing systems that treat architec-
tures as evolving entities capable of adapting to new domains and tasks without human interven-
tion. However, current limitations include reliance on predefined module types, modest computa-
tional overhead from evolutionary updates, and limited evaluation on long-term continual learning
or highly dynamic real-world streams. Some of the potential future directions include exploring
lifelong evolution in open-world settings, extend the framework to temporal multimodal sequences,
and integrate with foundation model pretraining to enhance scalability and generalization.
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APPENDIX

A DIFFERENCE BETWEEN TRADITIONAL NAS AND MALS

Traditional NAS iterates in outer loops, fully retraining candidate architectures between searches.
Our proposed framework MALS here interleaves architectural updates with gradient updates using

* Micro-timescale (7,): Standard stochastic gradient descent updates the model weights.

* Macro-timescale (7,): Every k gradient steps, the Meta Controller executes an evolutionary adap-
tation event.

If 7, < 74, the architecture can quickly adapt to novel data patterns without overfitting stale topolo-
gies. This dual time-scale formalism can be expressed as in Eq. 15.

9t+1 =0, — ﬂgveﬁmsk(gt, Mt)

M1 = Fevotve(My, g, Hy) onlyif ¢ mod k=0 as)

Here, 6 represents module parameters, and F, 010 1S the learned evolutionary update function.

B PROBLEM FORMULATION AND ARCHITECTURAL OVERVIEW

B.1 NOTATION AND CORE OBJECTS

Let

e D = {(:UEU), argt), i)}V, be the dataset of multimodal examples (visual, textual, label), drawn
1.i.d. from an unknown distribution Pgq¢4.

* d be the shared latent dimension (we use d = 512 in experiments).
» A, denotes the architecture state at training step (or epoch) ¢. A; comprises:
— a set of active modules (the Neural Module Zoo) M; = {m; 1,...,m¢ N, }.

— router parameters 0,@,

— module hyperparameter descriptors ©; = {6 1, ..., 9t,1} (these describe structural choices
like layers, heads, drouput, activation type),

— global resource counters (parameter count, FLOPs).
* W, denotes all learnable weights at step ¢: module weights, router weights, projection heads,
classifier head, and any meta-controller weights (except where separated explicitly).

* T4 denote the Evolutionary Strategist (meta-controller) parameterized by ¢; it issues dis-
crete/continuous actions that transform A; — Ay 1/

A single forward pass on sample x under architecture A; yields prediction g(xz : Wy, A;). The
per-sample task loss is I(g, y), e.g. cross-entropy.

Why this representation? Treating architecture as an explicit, time-indexed object .A; makes it
possible to 1) reason about changes over training, 2) define budget constraints that vary over time,
and 3) expose 74 a state on which to condition actions — all necessary for principled co-evolution.

B.2 JOINT (BI-LEVEL) OPTIMIZATION: WEIGHTS AND TOPOLOGY

We designed this as a bi-level optimization where weights are optimized continuously while the
meta-controller optimizes the architecture trajectory:

(Outer / meta) ming E[Lya(Wr(9), Ar(9))]

subject to Apyr ~ mp(+|s),t=0,..., T —1, (16)
(Inner/ weights) W1 =UWy, Vi, Lirain(We, At)),
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where:

* Lirain and L,4; are empirical train and validation losses,
* U denotes the inner-loop optimizer (SGD/Adam step),
* s, is the strategist state,

* expectations are over data sampling and any stochastic components of 7.

Why a bi-level view? Architecture decisions change the downstream loss landscape; optimizing ¢
requires evaluating the effect of architectural actions after weight updates. The bi-level view captures
this causal dependency. Directly solving this exact bi-level problem is computationally intractable
for large models, so we adopt approximations (meta-gradient, reward shaping, and fitness proxies)
discussed below.

B.3 PARAMETRIC PLURALITY: CONFIGURATION SPACES AND MODULE INSTANCING

We define an archetype set 7 (e.g., Transformer, LSTM, ResNet, MLP, Squeeze-Excite). For each
archetype a € T, we defined a configuration (hyperparameter) space €2,. A module instance is then:

m = (a, 9(’”'Ch),cu)7 9(@reh) € Q. w = learned weights (17
We denoted the probability distribution over configurations as P(H(‘“"Ch) |a) - the strategist can sam-
ple from or choose points in this space.

Parametric plurality means for a fixed archetype a, we allow multiple instances {m;} with differ-
ent 61°"") . Formally:

M= J{m 057" ~ P(fa)}. (18)
acT

Why? Because of two main reasons, the first one being that multiple instantiations of the same
structural bias with different internal hyperparameters produce distinct inductive priors and opti-
mization dynamics. The second one is reducing reliance on a single optimum configuration for an
archetype and enables per-sample specialization via the router.

Here, we quantify module diversity with a metric D(M,),

1 arch arch 1
DM) = 5z 2 AOT ™05 M) + 12 D Balluea@) ey @l (19
i.j %]

where A measures configuration distance (mixed categorical/continuous) and the second term mea-
sures output diversity.

B.4 ROUTER, CONTRIBUTION, AND THE STRATEGIST STATE

The Graph Attention Router (GAR) produces a per-sample distribution over modules:

ofx; A, W) = GAR(f (23 Ay, Wy), M) € AN L (20)

and routed representation 21 = Zm amUm. To make an evolution decision, the strategist receives
summary statistics (the state s;) that include per-module fitness traces ®; ,,, (defined in 3.5), mod-
ule utilization &, resource vector ¢(.A;) (parameter count, FLOPs, latency), global performance
indicators and diversity D(My).

Why these state features? They connect short-term routing behavior (utilization) with long-term
utility (fitness), and expose resource constraints so 7, can make capacity-aware decisions (prune
low-utility modules, grow when capacity allows).

17



Under review as a conference paper at ICLR 2026

B.5 EVOLUTIONARY OPERATORS

The strategist operates via a small set of operators that map architectures to architectures:

* Prune operator P.: We remove modules m with ®; ,, < Tprune for Thatience Steps.

* Mutate/Grow operator G: We sampled a parent m,, (probability proportional to positive fitness)
and create child m,. by:

Hg‘”"h) = 91(,’“'6}” +e e~N(0,02.,), (21)
and initialize weights w,. (either random or derived via partial weight inheritance).

 Hybridization/Crossover operator 7{: For parents m;, m;, we selected proportional to fitness,
and produced a child with mixed hyperparameters:

glareh) = CROSS(6"" ", 6\ M), (22)

where CROSS handles continuous parameters by convex combination and categorical parameters
by probabilistic selection or learned mapping (e.g., one parent chosen per categorical field with
probability proportional to fitness).

* Reinsertion/Assignment: The newly created modules are inserted into M, if resource budget
permits, else they replace low-fitness modules.

The selection probabilities for parents are softmaxed fitness scores:

exp(q)t,i/’rsel)

P(m;,ch = .
(m;, chosen) S exp(®01/Tel)

(23)

Why these operators? They emulate biological mechanisms while remaining interpretable and
tunable. Crossover blends complementary traits; mutation explores local neighbourhoods; pruning
removes dead weight. Soft selection and patience thresholds prevent noisy immediate deletions.

B.6 CONSTRAINTS AND RESOURCE-AWARE OBJECTIVE
Real systems operate under budgets. Let C'(.A;) be a vector of costs (parameters, inference latency
per sample, memory). The strategist must respect constraints C(A;) < Cpaz. We embedded

resource costs into the meta reward so the strategist optimizes utility under budgets. We defined the
per-decision reward (to be maximized):

re = —Loat(Wi, Ar) = A - cost(C(Ar)) + AaD(M), 4

where cost(+) aggregates resource usage into a scalar penalty and D(-) is the diversity reward. The
outer optimization becomes:

mj}x Er,

T—1
3 vz,-scn] . (25)

t=0
Why reward shaping? Directly minimizing final validation loss is costly to estimate. A dense

reward combining validation performance, resource penalties, and diversity fosters architectures
that generalize, are efficient, and preserve pluralism.

Replay memory and stability Architecture changes introduce non-stationarity. To stabilize train-
ing, we maintain a replay buffer R storing representative samples (and their labels). When a module
changes (spawned, hybridized), we interleave replay training on R to preserve past capabilities:

Wt+1 — U(wt, th [‘Ctruin(Wta B) + ,ulcreplay(th R)]) (26)
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This is important as replay mitigates catastrophic forgetting when architecture topology changes and
modules are inserted/removed. It also provides a stable baseline for computing module utility.

B.7 PRACTICAL APPROXIMATIONS AND ALGORITHMIC SUMMARY

Solving the exact bi-level is impractical. Therefore, we adopted these approximations:

1. Local fitness proxies: We used ®, ,,, instead of full retraining-based evaluation for parent selec-
tion.

2. Policy optimization: We trained 74 with reinforcement learning (PPO/actor-critic) using the
dense reward r;.

3. Warm-start and patience: We delayed pruning/hybridization for E,q, epochs to allow mod-
ules and router to stabilize.

4. Deterministic operations at eval time: We sparsified via deterministic top-K for reproducible
inference.

Algorithmically. We alternated inner-loop updates of W; (with replay) with occasional strategist
decision steps that apply P, G, H based on ® and s;. The GAR provides per-sample routing and the
contribution traces that ground evolutionary choices.

C MULTIMODAL FEATURE EXTRACTION

Let the input pair be (x(t), 1:(”)), where z(*) € X, denotes a sequence of text tokens and z(*) € X,
denotes an image decomposed into visual patches. Our objective is to map these heterogeneous
modalities into a shared latent manifold Z C R?, enabling subsequent cross-modal alignment and
adaptive modular routing.

C.1 TEXTUAL ENCODING

We tokenize the text sequence as

.’L'(t) = {’lU1,’lU2,...7U1Lt}, w; € V’ (27)

where V is the vocabulary. A pretrained DistilBERT encoder f; : X; € RY+*% produces contextu-
alized embeddings:

h® = fi(a®), h® = 00,6, B e RE (28)
We applied a statistical pooling operator ¢, that preserves both mean and covariance structure:

®)

u(t)_ Zh(t) Z Ltz (t) () M(t))'r (29)

A low-rank factorization (Nystrom approximation) compresses covariance into a vector:

(t)
B — vec(UkT Z Uk)> U, € R4 ¥k, (30)

Thus, the final text embedding is

(®)
Z(f) = Wt |: l:(t) :| 5 Z(t) € Rd (31)
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C.2 VisuAL ENCODING

We partition an image into L, patches:

x(v) = {p17p27"'7erU}a p] Ethwxc- (32)

A pretrained CLIP-ViT encoder f, : X, — RE+*%v yields patch embeddings using:

) = (@), RO = [ Y, ), R e R (33)

Similar to the text above, we define

(v)

L
1 v v ’U )] v )
’U(U):L E h§- E E (1) h() u(?))T7 (34)
v i

and compress via low-rank covariance embedding using

(v)

) = vec(U,[ Y Ur). (35)
The visual representation is then:
pt) d
2 =w, | Py |, 2 eR (36)
c

C.3 SHARED LATENT ALIGNMENT
Both the modalities are projected into the shared latent space Z:
O = p(r®), 2 =P, (™), 2V )¢z (37)

We enforce distributional proximity between (z(*), 2(*)) using a contrastive alignment term:

exp(sim(z®), z(")) /1)
Z(z“),z(“')) exp(sim(z(1), z(v))/7)’

where sim(+, -) is cosine similarity and 7 a temparature parameter.

ﬁalign = - IOg (38)

D CROSS-MODAL ATTENTION FUSION

From the above, we obtain projected embeddings as z(!) € RF+x4 2(v) ¢ REvxd where d = 512.
We construct modality-specific query, key, and value matrices, as:

QW = W KO = ;OW® y© — WD, (39)
with W(U) wi ), W‘(/t ) € R9%4_ Next, we defined cross-modal attention from vision to text as:

QW) (KT
Vd

Here, each visual token attends to all textual tokens, producing fused representations as z(/) =
aV(® ¢ RIvxd  Unlike symmetric co-attention, this asymmetric scheme ensures that visual

o = softmax ( ) e REbvxlt, (40)
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grounding is enriched by linguistic semantics while avoiding representation dilution from treating
both modalities equivalently. For robustness, we extended to a multi-head formulation using

H
Z(f) — @Z}(Lj)7 Z}(]f) _ ahv}ft)’ 41)
h=1

Thus, the fused representation is a concatenation of head-specific semantic refinements. To prevent
dominance of either modality, we introduced a modality gating mechanism. The scalar gate here is
defined as:

g = o(w' [mean(z")), mean(z®)], (42)

where g € (0, 1). The final fusion is a convex combination:

2 = g mean(2) + (1 — g) - mean(z"). (43)

This adaptive gate balances contributions from visual-grounded fusion and raw textual semantics,
ensuring stable cross-modal alignment.

E NEURAL MODULE Z00O AND DYNAMIC ROUTING

Formal definition. Let the zoo at time ¢ contain M; active modules:

My ={ma(601),ma(:02), ... ,mar, (+560,)}- (44)
Each module is a parametric function m; : RY — R¢ m; (2, 0;) = u;, where u; € R? is the

output embedding from module j. Thus, given z(/), the zoo produces a candidate set of transformed
representations: U = [uy,ug, ..., uys] T € RMexd,

Module Families. The zoo supports multiple operator families, each corresponding to distinct
inductive biases:

* MLP modules (dense projections):
mMLp(Z(f);ﬁ) = O’(Wg(b(le(f) —|—b1) —|—b2), 45)

where ¢(-) is ReLU or GeLU, and o (-) is a nonlinearity or identity.

* Transformer modules (contextual reasoning):

mens(z(f); ) = MHA(z(f)) + FFN(z(f))7 (46)

where MHA denotes the multi-head attention over (/).

* LSTM modules (sequential bias):

he,ce = LSTM(2Y) hy_y, ¢i_130). (47)

* ResNet-style modules(residual feature refinement):

mpes(21:0) = 20 4+ F(z1):0), (48)
where F'is a stack of nonlinear layers.

* Squeeze-and-Excitation modules (channel re-weighting):

mse(z9;0) = 21 © a(Wag(Wipool(2))). (49)
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These families are not fixed, and new families may be introduced during evolution (see subsection
3.5). Next, to encourage structural diversity, each module type admits multiple instantiations with
distinct hyperparameters using §; = {W;,b;, c;, ...}, where a; represents hyperparameters such
as hidden width, number of layers, or dropout rate. Let {2 denote the hyperparameter configuration
space. Then for a module family F:

{m(00),m(:0),...3, 0% ~ . 0

This ensures that even within the same operator family, modules exhibit functional non-redundancy,
avoiding collapse into homogeneous transformations.

Theoretical Motivation. Given 2(/), an optimal transformation is not known a priori. The zoo,
therefore, acts as a basis expansion of nonlinear operators, where the router learns convex combi-
nations:

My
j=1 J

This setup can be viewed as a functional mixture model:

F() =Y 8im;(219;06)). (52)

J=1

By evolving M, the model dynamically expands the representational capacity, while the router
ensures sparse and efficient selection.

F GRAPH ATTENTION ROUTER

Notations and Inputs. Let the Neural Module zoo previously at time ¢ contain N active modules

M; = {my,ma,...,my}. For a single input sample (or a batch handled elementwise), we de-
noted the fused embedding (router query) as f € R? (from subsection 3.2), and module outputs as
u,, € R% form = 1...N. We stacked them into U = [uy;...;uy] € RV*4 Next, we imple-

mented multi-head attention with H heads; index head by h. Each head uses projection matrices
Wi Wil W e Rinxd with dj, = d/H.

Headwise compatibility: relevance + synergy. For head h, we computed

a™ =wt, kD =W, v =W, (53)
We defined two components for the per-module compatibility score:

1. query-to-module relevance (standard scaled dot-product):

h
() — <q(h)7 k$n)>.
m /*dh

2. module-synergy score that captures how module m complements other modules for this input.
We compute a learned module affinity via scaled dot-products on keys:

(54)

(h) 1.(h)
(k0 1)

s —
" vy,

(j=1...N). (55)
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Algorithm 1 GAR Forward & Bookkeeping (per batch)

Require: Fused embeddings { f(i)}fl, module outputs U, router params 6,., module params
{0}
Ensure: Router outputs {z("%}, updated running stats {a, ®}
1: for each sample i do
. for each head h do

2 .
3 Compute ¢ = Wégh)f( Dk = Wiul, o) = Wi uly)

4:  end for )R

5:  Compute ri = %

6 Compute S, and sty = 7y + 7 - 32, softmax(S512) - qu(Sy,))
7

8

( ) — softmaxm( ( )) aggregate o, over heads — o,

: Optlonally sparsify o — & (sparsemax or top-K)
9: (ryi) — Z G - Uaég

10: end for

11: Compute task loss L, using {z(”)}

12: Compute router regularizers Leni, Lioads Loudget

13: Backprop: update 6,. and {6, } (with per-module LR scaling)
14: Bookkeeping:

15: for each m do

16: Umyt = mean; 572 (baseline loss; — loss;)

17: end for _
18: @,y < (1 =)@y, + U1

19: &+ (1= p)ay, + pmeanz[agn)]

20: Send {®,,, &, } to Evolutionary Strategist

The synergy was aggregated for m as a normalized attention over other modules:

N (h)
exp(Sy,;)
s =3 Wl G (S Wit = <L 0
j=1 Ek:l exp(Sy, ;)

Here, ¢;,+(+) is an optional nonlinearity (e.g., ReLU or identity) that lets the synergy term be asym-
metric and saturating if desired. We combined relevance and synergy linearly (learnable balance):

Sgrhl) (f7 U) — 7.7(7};) + ’Y(h)sgll), (57)

where v(") ¢ R>¢ is a learned (or scheduled) head-wise scalar controlling the emphasis on inter-
module synergy.

Novelty. The synergy term lets the router prefer modules that not only individually match the query
but that form complementary coalitions for the current input - capturing pairwise (and via repeated
application, higher-order) interactions among experts. This is distinct from class MoE routers that
treat modules as independent.

Multi-head attention and normalized routing weights. For head h, we normalized capabilities
with softmax over modules:

(h)
a — exp(sm’) (58)

N h
SN exp(si™)

We aggregated heads into a single routing weight per module (head-averaging or learned projection):
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H
1
am = 7 };agj) or «a = softmax(Weg, [a(l); o a(H)]), (59)

where W4, projects head-wise vectors to a final distribution is desired. Here, the output of the
router is the weighted mixture:

m=1

N X
(r) — v agg _ (h)
z\"" = Z O - VI w99 = i hz_:lvm . (60)

This z(") flows to the classification head and participates in standard backpropagation: gradients
pass to Wy, Wi, Wg and - via v,,, and u,, - to module parameters.

Controlled sparsity: top-k routing (efficient, capacity-aware). To enforce the Max Active
Modules constraint and reduce compute, we designed Soft — Sparse path, where we computed
dense «,, as above, then apply a differentiable sparsification to keep at most K modules per sample.
Here, we had two practical, differentiable options:

1. Sparsemax/Entmax: We replaced softmax with sparsemax/entmax, which produces exact zeros
for many entries while remaining subgradient-based and differentiable.

2. Gumbel-TopK with straight-through (ST) estimator: We sampled a binary mask g,,, indicat-
ing top-K modules (determinisitc top-K at inference). During the forward pass, we used hard
top-K selection:

g = Lamintop-K}, @, = 2 m (61)

2595

For backprop, we used straight-through, where we propagated gradients to «,, as if soft selection
had been used (or we kept the option of Gumbel-softmax relaxation for a differentiable approxi-
mation).

We used (and recommend) sparsemax in training for stable gradients and deterministic top-K at
evaluation for reproducibility.

Router regularizers and losses. To prevent collapse onto a small subset of modules and to en-
courage exploration and load balancing, we incorporated three auxiliary terms in router training:

1. Entropy Regularizer (exploration early in training):

N
1
Lent - _N Z (6779 IOg(Oém). (62)

m=1

2. Load-balancing penalty: We encouraged average router usage ¢, (running mean across sam-
ples/batches) to match uniform expectation 1/N:

N 2
1
£load = Z (am - N) 5 Oy < (1 - p)am + pEbatch[am]' (63)

m=1

3. Sparsity budget: If using sparsity, we penalized deviation from target active K via:

1 & &\
‘Cbudget = <N Z 1{am > 0} - N) (64)

m=1

(or an L1 surrogate on «).
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G EVOLUTIONARY STRATEGIST — META-CONTROLLER FOR STRUCTURAL
SELF-GROWTH

The Evolutionary Strategist is a meta-learning controller that continually modifies the Neural
Module Zoo M during training. It operates at the level of module genotypes (architecture + hyper-
parameters) and phenotypes (weights, performance types), and its goal is to maximize long-term
validation performance while respecting computation/complexity constraints and encouraging para-
metric plurality. The strategist combines: (i) an interpretable fitness signal derived from the Graph
Attention Router, (ii) a set of genetic operators (prune, mutate, hybridize), and (iii) a policy 7y
trained with a reinforcement/meta-gradient objective. Below, we define state, actions, fitness, evo-
lution operators, the learning objective for the controller, and practical stabilizers.

Notation and State Representation. At discrete evolution decision times ¢t € {0, T, 2T, ...},
the system maintains:

* Module pool: M; = {m,...,mp, }.
* Each module m has:

— genotype (hyperparameters, topology): 6,, (e.g., depth, width, dropout, heads, activation
phenotype (weights): w,,,

usage/metadata: age,,, params,, (parameter count), FLOPs,,,,
contribution statistics: tracked variables defined below.

* Global training state S; comprises:

St = {{(0m, wm, age,,,, params, ., Cp,) bmem, , val_metrics;_ a.¢, budget_remaining},  (65)
where C,,, is a numeric contribution/fitness proxy.

The controller 7y (a¢|S;) outputs actions a; altering M, (prune, spawn/mutate, hybridize, no-op, or
other maintenance actions). Actions can be multi-step (e.g., hybridize two parents into one child +
spawn).

Contribution and Fitness Estimation. A robust, low-variance fitness signal is central. We com-
bine two complementary, efficiently computable signals in each evolution epoch:

1. Attention-contribution proxy (router-based)

For module m, collect the per-batch average routing weight from the Graph Attention router over
a recent buffer 5 (the last B mini-batches):

- 1
=15 B85 (66)

beB
2. Leave-one-out loss impact (performance-proxy)
For a mini-batch b compute the batch loss with full routing L%u and the loss with module m

ablated (zeroing or masking its output) E(_bzn We defined per-batch delta:
b b
ALY =0 0. (67)

Positive A/, indicates the module is helpful. The average over B:

— 1
Alp =5 > oAl (68)
beB
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We combine these into an exponential moving average contribution score C, (t):

Bim tw max(0, Aly,) > ’ 69)

C(t) +— (1 —p)C,(t —1) + - ) 2
(8) PICm( )+ (wﬂ maxy, B ¢ maxy max (0, A, )
with p € (0, 1) smoothing factor and weights wg, w;, (0.5 each). Normalization avoids scale issues.
C,, 1s the primary short-term fitness proxy used by selection and pruning. To encourage novelty and
penalize redundancy, we also compute a novelty score:

1 2
novelty,, = N1 Z exp(—yo!0m — Okl|5, (70)
k#m
and defined a combined fitness:
Fo = acChy — Qeost - COStyy, + anov(l - noveltym), (71)

where cost,, is the normalized computational cost (params or FLOPs), and « are tuning scalars.
Lower novelty,, (i.e., more dissimilar) increases fitness via 1 — novelty.

Selection and Pruning We removed modules whose long-run contribution is consistently low
while respecting stability constraints:

* Minimum survival age: a module must survive at least A,,;, evolution intervals before being
eligible for pruning.

* Prune condition (quantile-based):

Prune m if Fp <Qq{Frlrem,) and agem > Anin, (72)

where (),(-) is the g-th percentile (¢ = 0.15). This avoids threshold tuning across varying pool
sizes. Alternatively, a dynamic threshold 7+ = pup — Ko g can be used (recommendation).

When pruning, we first attempt weight recycling: if another module has an identical genotype or an
identical interface, its weights may be reused or used to initialize new offspring.

Growth (mutation) operator. To spawn variants, we sample parent modules according to a soft-
max over fitness:

_exp(nFin)
pselect(m) = m- (73)

Given parent m,, with genotype 6, and weights w,,, we create child genotype ¢, via parameter-space
mutation:

* For continuous hyperparameters (dropout, width multipliers):

0 =09 - exp(ag - ¢), €D ~ N(0,1). (74)

* For discrete hyperparameters (number of heads), we applied categorical perturbation (random =+
step with small probability).

Child weights are initialized by soft inheritance:

We = YinhWp + (1 - ’th)N(O; 0'121;) (75)
where ;5 € [0, 1] controls how much of parent knowledge is retained. This reduces cold-start

training and stabilizes learning when the child shares structural motifs with the parent. A growth rate
constraint keeps the pool budgeted: at most G,,,,,, new modules per evolution step and Ny < Ny qz-
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Hybridization (Co-Evolutionary Crossover) Hybridization recombines structural motifs and hy-
perparameters from two high-fitness parents m; and m to create a child m.. We treat module geno-
types as graph-structured objects (topology + attributes). Let T,,, = (Vi,, Epn, ©,,) denote parent
m’s topology graph, node attributes ©,, (layer types, widths, activation), and W,,, the associated
weight tensors.

Crossover operator (motif splice):

1. Motif extraction: We sampled subgraph S; C T, and S; C T,,, by selecting contiguous
substructures using a size distribution (small-to-medium). We represent these as adjacency and
attribute sets.

2. Interface alignment: We find interface nodes u € S;,v € S; where input/output dimensionali-
ties can be projected. If dims differ, create small projection layers P, : R% — R% and P,,; as
learned linear maps. This enforces compatibility.

3. Splice: We create child topology

T. = (Tmi Sl) U Sj, (76)
where S; is grafted into 7}, at matched interfaces. (Symmetric alternatives allowed.)

4. Hyperparameter recombination: For scalar attributes in ©, we performed convex interpola-
tion:

0% = XK + (1 — \)ok)

mj I

A ~U(0,1). (77)

For categorical attributes, we used parent-sampling with probability proportional to normalized
parent fitness.

5. Weight inheritance mapping: The parameters for retained subgraphs are copied; for grafted
subgraphs, we used soft weight blending where possible:

We[shared] = KW, [shared] + (1 — K)W,, [shared] + €, (78)

i J

and new parameters are initialized as small-noise or adapted from th nearest parent via projection.

This motif-based crossover allows the child to inherit functional building blocks (e.g., a multi-head
attention motif with a particular head-to-dimension ratio) and yields architectures not present in the
initial search space.

Controller Optimization The controller 4 must learn when to prune, spawn, and hybridize to
maximize long-term validation performance under computation budget B. We pose this as a con-
strained expected reward maximization:

T
mngmw lZ’ytr(St,at) sit. Err, [Cost(r)] < B, (79)

t=0

where 7 is an evolution trajectory, v discount factor, and reward 7 is computed at evolution intervals.
We used a Lagrangian relaxation:

J(@,A) =E | Y ~'re — A(Cost; — By)| , (80)
t
and optimize ¢ via policy gradient (e.g., PPO) with gradient estimator:
VoI ~E Z Vg logmy(as]Si)As | (81)
t
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Algorithm 2 Evolutionary Strategist for Neural Module Evolution

Require: Module set M = {M;,..., Mg}, fused embeddings z € R?, contribution scores «;,
replay memory R
Ensure: Updated module set M’
1: Initialize policy 7y for meta-controller
2: while training not converged do
3:  Sample task batch B ~ D
Compute fused embedding z
Route z to modules using GraphAttentionRouter

. . T .
Compute contributions ; = softmax( \/];; )

Evaluate task loss L;4s; and reward R(M) = — L5 + ANH ()
Store (z, M, R) in replay memory R

{— Evolutionary Update —}

9: if a; < Tprune for consecutive 7" steps then

A A

10: Remove module M; from M (Pruning Rule)
11:  endif

12 if R(M) < Tgrow then

13: Spawn new module M ]’ with parameters

14: O, =0;+¢ e~N(0,0%I) (Growth Rule)
15: Add M J’ to M

16:  end if

17: if I M,, M, € M with high complementarity then

18: Generate child M, via crossover:

19: O, =n0,+(1—-n)0,, n~UQ,1) (Hybridization Rule)
20: Add M, to M

21:  endif

{— Meta-Controller Update —}
22:  Compute policy gradient:
23: Vo J(0) = Er, [Volog me(a| M) R(M)]
24:  Update 0 < 0 + BV J(0)
25: end while
26:
27: return M’

where A, is an advantage estimate (computed from actual validation metric improvement over a
horizon H). The reward r; is defined as:

re = AValMetric, i+ 5 — NeompACOSty s+ 1 + Naiwoverline, ¢4 g, (82)

balancing short-term performance gain, computational cost, and architectural novelty. In practice,
we set H to a modest number of training steps to trade off noise vs signal. Alternatively, a meta-
gradient approach can be used where action parameters are differentiable (soft choices) and the
outer validation loss is differentiated w.r.t. ¢ by unrolling a few inner optimization steps. We
recommend policy-gradient (PPO) in experiments for stability and scalability, with meta-gradient
used in ablations to evaluate potential improvements.

Stabilization, replay, and reproducibility. Structural modifications can destabilize training. We
used three stabilizers:

1. Replay memory R: We maintained a buffer of representative examples (stratified by
class/modality) and replay them for R mini-batches immediately after structural changes. This
limits catastrophic forgetting and calibrates newly created modules.

2. Warm-start fine-tuning: After spawning/hybridization, child modules are trained with a re-
duced learning rate 7.4 = (7 for Eyqrm steps before making further evolutionary decisions.
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3. Minimum-age and hysteresis: Modules must remain for A,,;,, epochs to allow their contribu-
tions to be reliably estimated; pruning decisions incorporate running variance to prevent thrash-
ing.

For reproducibility, every structural operation (prune/mutate/hybridize) is logged with a 64-bit RNG
seed, parent IDs, and a deterministic construction routine. This results in reproducible architecture
evolution given the same global initial seed.

H TRAINING OBJECTIVE

Notation & Problem Statement.

* Let an architecture (set of active modules and their hyperparameters) be A = {(m, %) }bmems
where 7, are module hyperparameters (depth, heads, dropout, widths), and M is the active mod-
ule index set.

* Let © = {0, }:ner denote all module weights plus router and head weights; let 6.,; denote the
multimodal extractor weights (DistilBERT, CLIP-ViT).

* Router produces per-sample soft contributions f3,,(x) for sample z. For a minibatch B, denote

B (B) = \%ﬂ EzeB B ().

* Meta-controller (Evolutionary Strategist) is parameterized by ¢ and implements a policy
which, at discrete architectural decision times, outputs actions a € A (prune, grow, hybridize,
and their parameters).

* Let R be the replay buffer (capacity Ng).

We cast the training as the following bilevel objective:

Outer / meta (architectural) objective: maxy E;r, [Ppat(©7, A7) —c-C(A7)]

Inner / param (weights) objective: T~ argming Lirain (0, A™; Dirain), (83)

where P, is a validation performance metric (e.g. AUC), C(A) is an architectural cost (parameters,
FLOPs), and 7 denotes a stochastic architecture trajectory induced by m4. Because architectures
are discrete and evolution is online, we used a hybrid of gradient-based inner training and policy-
gradient outer optimization.

Inner (parameter) loss. For a minibatch B = {(z, y)}. the base task loss is binary cross-entropy:

»Ctask(B; @7 A) = ﬁ Z(z,y)GB CE(yv g(xa @7 A))

§(:0, A) = o (W) (20, A)), &4

where z(") is the router’s weighted mixture output. To encourage per-sample routing diversity (avoid
collapse to a single module), we used an entropy reward on router weights averaged over the batch:

Lain(B;©, 4) = —ﬁ S S Bul@)1og fna). (85)

r€EB meM

To encourage representational orthogonality between module outputs (parametric plurality beyond
mere usage), we included a pairwise cosine-similarity penalty:

) (ui(B), u;(B)) ) (36)
)

Lorin(B;©, A) = MM = 1) Z (|Ui(B)||uj(B)

1<J

where u,,(B) = ﬁ >z Um(x) is the batch-averaged module output (or one can use per-sample
pairwise terms averaged). We penalized architectural complexity (to avoid unconstrained growth):
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Leomp(A) = Qparam Z params(m) - gm, gm = min{1,clip(Ba?/€,0,1)}, (87)
meM

where 3279 is a long-run usage estimate and g,,, behaves as a soft gate: rarely used modules incur
less cost. To mitigate catastrophic forgetting when the architecture changes, we used replay loss:

1
ﬁreplay (R7 97 A) = Tar Z CE(ya @(Tv 97 A))7 (88)

ST,
z,y)ESCR

with S a randomly sampled minibatch from the buffer. Finally, the inner total loss used to update ©
is:

‘ £tTain(B; @7 A) = ‘Ctask’ + )\div‘cdiv + /\orthﬁorth + /\replayﬁf“eplay + /\co7rz,p£comp (89)

All \’s are hyperparameters tuned to balance accuracy, diversity, and compactness. O is updated by
standard SGD/Adam steps minimizing L;,4;,,. The router parameters (and extractor finetuning) are
included in © and receive gradients through 3 and the mixture ("),

Module Fitness and Contribution Estimator. The strategist must decide which modules to
prune, which to hybridize, and which to use as parents for growth. Decisions rely on a fitness
score f,, per module that reflects usefulness and marginal contribution. We propose a practical
estimator that balances fidelity and computation:

1. Usage estimate (fast):

ult) = EMA,(Bn(By)), (90)
an exponential moving average over minibatches with decay p.

2. Marginal contribution (periodic, higher fidelity): For every T.,,; minibatches, we estimated
the marginal loss drop of module m on a small validation probe P:

ALy, ~ % > (L(x:0,A/{m}) — L(x;0,A)), 1)

zEP

where A/{m} is the architecture with m ablated (set 3,,, = 0 and renormalize). Positive AL,
means the module helps.

3. Composite fitness: We combine both signals:

fm = 71ull) + 12ReLU(AL ), (92)
normalized across modules. v weights trade off frequency vs casual contribution.
The strategist prunes modules with f,, < Tprune and age ( Apins; spawns children from par-

ents sampled proportional to f,,; selects parents for hybridization stochastically using fitness-
proportionate selection.

Evolutionary Actions. Let action set A include:

e prune(m): remove module m permanently (or mark inactive).
* grow(p,d, ): spawn new module from parent p with hyperparameter perturbation ,,.
* hybridize(p;, p;, \): create child hyperparameters

Ne = Mpp, + (1 = N)mp, + €,€ ~ N(0,07). (93)

Weight inheritance. Child weights 6. are warm-started by structured inheritance:
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« for hybridization: 6, = A0, + (1 — \)f,, + ¢, with small noise ¢ ~ N(0,02).
» for growth by mutation: copy and perturb parent: 0. = 6, + C.

After creation, children undergo a short warm-up period of 7,4, minibatches with a smaller
learning rate 7,, to prevent destabilization.

Knowledge distillation on pruning. Before the pruning module m, we optionally perform a distil-
lation step so that the remaining modules can absorb its functionality:

1 s T
Lra=1g STl @) = 2 @3 (94)
€S

where Z;Z)l ; uses m and zfﬁate 4 does not. Minimizing L4 for a few steps softens the removal.

QOuter (Meta) Objective and Optimization of ¢. The strategist parameter ¢ defines a policy
7y (at|s¢) that, given state s, (module fitness vector { f,, }, age, resource usage, recent validation
trajectory, etc.), outputs an action distribution. The meta-reward r; should encourage long-term
validation gains while penalizing cost:

Tt = A,Pval,t - nparamAParamst - nflopsAFLOPst —k- Cinstab,ta (95)
where Pyait = Puai(t + A) — Puai(t) is the improvement observed after applying action(s) and

letting the model train for a short horizon, and C;,stqb,+ penalizes validation volatility (to avoid
reckless growth that yields unstable gains). We maximized expected return:

T
J(¢) =Errr, [Z m] : (96)
t=0

We applied two practical optimization strategies here:

1. Policy Gradient (REINFORCE). We used sampled trajectories of length 7},,¢t,, estimate re-
turns R; = 3_,_, &, and update:

V¢J~"5E

> Vologmg(as,) (R — bt)] ; o7
t

where b, is a learned baseline (value network) to reduce variance. Entropy regularization
— i >, H(mg(+|s¢)) is added to encourage exploration.

2. Truncated Meta-Gradient (Differentiable Unroll). When computational budget allows, we
unrolled k inner optimization steps of © after an action and differentiate the validation loss w.r.t.
¢ via chain rule (truncated backprop through optimization). Let O, (¢) denote the inner opti-
mized weights after K steps influenced by decisions sampled from 7. Then,

_ aﬁval . a@t+k
00, 09
which we compute with automatic differentiation for small K. This gives lower variance but

larger memory/computation. In practice, we combine both: use REINFORCE for long-horizon
exploration and occasional truncated meta-gradient updates for fine-tuning.

Vo Lyal(O1+k())

(98)

31



	Introduction
	Related Work

	Problem Formulation
	Self-Evolving Neural Architecture Framework
	Multimodal Feature Extraction
	Cross-Modal Attention Fusion
	Neural Module Zoo and Dynamic Routing
	Graph Attention Router (GAR): A Self-Evolution Engine
	Evolutionary Strategist: A Meta-Controller for Structural Self-Growth

	Experiments
	Dataset and Experimental Settings
	Comparison with State-of-the-Art
	Ablation Studies

	Conclusion
	Difference between Traditional NAS and MALS
	Problem Formulation and Architectural Overview
	Notation and core objects
	Joint (bi-level) Optimization: Weights and Topology
	Parametric Plurality: Configuration Spaces and Module Instancing
	Router, Contribution, and the Strategist State
	Evolutionary Operators
	Constraints and Resource-Aware Objective
	Practical approximations and Algorithmic summary

	Multimodal Feature Extraction
	Textual Encoding
	Visual Encoding
	Shared Latent Alignment

	Cross-Modal Attention Fusion
	Neural Module Zoo and Dynamic Routing
	Graph Attention Router
	Evolutionary Strategist — Meta-Controller for structural self-growth
	Training Objective

