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A Models and Datasets

A.1 Models

Table 1 provides an overview of the models used in this study. Model names link to the used
checkpoints, where available.

Model name Reference Variant Parameters

AlexNet Krizhevsky et al. (2012) 8 layers 62.4M
BiT-L (R50-x1) Kolesnikov et al. (2020) ResNet50, 1× width 25.5M
BiT-L (R101-x1) Kolesnikov et al. (2020) ResNet101, 1× width 44.5M
BiT-L (R50-x3) Kolesnikov et al. (2020) ResNet50, 3× width 217.3M
BiT-L (R101-x3) Kolesnikov et al. (2020) ResNet101, 3× width 387.9M
BiT-L (R152-x4) Kolesnikov et al. (2020) ResNet154, 4× width 936.5M
CLIP Radford et al. (2021) ResNet50-based 25.5M
CLIP Radford et al. (2021) ViT-B32-based 88.3M
EfficientNet-NS (B1) Xie et al. (2020) 18 layers, 1× width 7.9M
EfficientNet-NS (B3) Xie et al. (2020) 31 layers, 1× width 12.3M
EfficientNet-NS (B5) Xie et al. (2020) 45 layers, 2× width 30.6M
EfficientNet-NS (B7) Xie et al. (2020) 64 layers, 2× width 66.7M
Mixer (B) Tolstikhin et al. (2021) B/16, JFT-300m 59.9M
Mixer (L) Tolstikhin et al. (2021) L/16, JFT-300m 280.5M
Mixer (H) Tolstikhin et al. (2021) H/14, JFT-300m 589.7M
Mixer (H) Tolstikhin et al. (2021) H/14, JFT-2.5b 589.7M
ResNeXt-WSL Mahajan et al. (2018) ResNeXt 101, 32x8d 88M
ResNeXt-WSL Mahajan et al. (2018) ResNeXt 101, 32x16d 193M
ResNeXt-WSL Mahajan et al. (2018) ResNeXt 101, 32x32d 466M
ResNeXt-WSL Mahajan et al. (2018) ResNeXt 101, 32x48d 829M
SimCLR (1x) Chen et al. (2020) ResNet50, 1× width 25.6M
SimCLR (2x) Chen et al. (2020) ResNet50, 2× width 98.1M
SimCLR (4x) Chen et al. (2020) ResNet50, 4× width 383.8M
ViT (B) Dosovitskiy et al. (2021) B/32 88.3M
ViT (B) Dosovitskiy et al. (2021) B/16 86.9M
ViT (L) Dosovitskiy et al. (2021) L/32 306.6M
ViT (L) Dosovitskiy et al. (2021) L/16 304.7M
ViT (H) Dosovitskiy et al. (2021) H/14 633.2M

Table 1: Overview of models used in this study. Per model family, the rows are sorted by increasing
marker size in Figure 1 (i.e. approximate relative model size in terms of pretraining compute). We
chose a qualitative scale to indicate model size because quantitative measures such as the number of
parameters do not always reflect the representational power of a model. For example, ViT-B/16 has
slightly fewer parameters than ViT-B/32 but requires more compute and is a more powerful model.

A.2 Datasets

We evaluate accuracy and calibration the following benchmark datasets:

1. IMAGENET (Deng et al., 2009) refers to the ILSVRC-2012 variant of the ImageNet database,
a dataset of images of 1 000 diverse object classes. For evaluation, we use 40 000 images
randomly sampled from the public validation set. We reserve the remaining 10 000 images for
fitting the temperature scaling parameter.

2. IMAGENETV2 (Recht et al., 2019) is a new IMAGENET test set collected by closely following
the original IMAGENET labeling protocol. The dataset contains 10 000 images.

3. IMAGENET-C (Hendrycks & Dietterich, 2019) consists of the images from IMAGENET,
modified with synthetic perturbations such as blur, pixelation, and compression artifacts at a
range of severities. The dataset includes 15 perturbations at 5 severities each, for a total of 75
datasets. For evaluation, we use the 40 000 images that were not derived from the IMAGENET
images we used for temperature scaling.
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4. IMAGENET-R (Hendrycks et al., 2020a) contains artificial renditions of IMAGENET classes
such as art, cartoons, drawings, sculptures, and others. The dataset has 30 000 images of 200
classes. Following Hendrycks et al., we sub-select the model logits for the 200 classes before
computing accuracy and calibration metrics.

5. IMAGENET-A (Hendrycks et al., 2021) contains images that are classified as belonging to
IMAGENET classes by humans, but adversarially selected to be hard to classify by a ResNet50
trained on IMAGENET. The dataset has 7 500 samples of 200 classes. As for IMAGENET-R,
we sub-select the logits for the 200 classes before computing accuracy and calibration metrics.

In addition, the following datasets are used for pretraining as described in the text:

1. IMAGENET-21K (Deng et al., 2009) refers to the full variant of the ImageNet database. It
contains 14.2 million images of 21 000 object classes, organized by the WordNet hierarchy.
Each image may have several labels.

2. JFT-300 (Sun et al., 2017) consists of approximately 300 million images, with 1.26 labels per
image on average. The labels are organized into a hierarchy of 18 291 classes.

B Supplementary Analyses

B.1 Fine-grained Analysis of Pretraining

Section 4.2 and Figure 3 discuss the effect of the amount of pretraining on accuracy and calibration
by comparing models pretrained on three different datasets. Figure 10 provides a more fine-grained
analysis. We pretrained BiT models with varying dataset sizes or number of pretraining steps, while
holding the other constant. Learning rate schedules were appropriately adapted to the number of
steps, i.e. a separate model was trained with a full schedule for each condition, rather than comparing
different checkpoints from the same training run. After pretraining, all models were finetuned on
IMAGENET as in Kolesnikov et al. (2020).

We find that pretraining dataset size has little consistent effect on calibration error (Figure 10, left).
Longer pretraining causes a slight increase in calibration error, but also decreases classification error
(Figure 10, right).

0.00

0.02

0.04

EC
E

(te
m

p.
-s

ca
le

d)

Pretraining: JFT

Pretraining dataset size
(num. examples)

1M 3M 5M 9M 13M

0.00

0.02

0.04

Pretraining: JFT

Pretraining duration
(steps)

112k 229k 791k 1M

0.10 0.15 0.20 0.25 0.30 0.35
Classification error

0.00

0.02

0.04

EC
E

(te
m

p.
-s

ca
le

d)

Pretraining: ImageNet-21k

0.10 0.15 0.20 0.25 0.30 0.35
Classification error

0.00

0.02

0.04

Pretraining: ImageNet-21k

Figure 10: Effect of pretraining dataset size and duration on calibration. Larger dots indicate
BiT-R101x3, smaller dots indicate BiT-R50x1. The pretraining datasets are subsampled from JFT-
300 (top) or IMAGENET-21K (a larger variant of IMAGENET; bottom). Classification error is on
IMAGENET after fine-tuning.
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B.2 Correlation Between Calibration and Accuracy

Figures 4 and 6 show that, across a sufficiently large range of distribution shift, calibration error and
classification error are correlated. Figure 11 illustrates this correlation for each model family across
model variants and datasets.

In general, it is expected that calibration error and classification error are correlated to some degree
due to noise in the model predictions, since adding random noise to the model confidence score would
increase both calibration and classification error. Indeed, all model families show a strong positive
correlation between calibration and classification error. However, there are consistent differences
between model families, reflecting their intrinsic calibration properties. The relationship can be
remarkably strong and lawful. For example, a simple power law of the form y = axk (where x is
classification error and y is ECE) provides a good fit for some model families (e.g. ResNeXt WSL;
Figure 11). The parameters of the fit provide a quantitative description of the intrinsic calibration
properties of a model family that goes beyond ECE on a specific dataset.
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Figure 11: Correlation between ECE and classification error. Each dot represents a different com-
bination of model variant and evaluation dataset (top: IMAGENET-C variants without averaging
corruptions and severities; bottom: allo other datasets). Lines show power laws of the form y = axk

where x is classification error and y is ECE. Range in parentheses indicates the 95% confidence
interval by bootstrap.

B.3 Contribution of Accuracy and Calibration to Decision Cost

In Section 4.4, we use a selective prediction task as a practical scenario in which we can quantify the
relative impact of accuracy and calibration on the ultimate decision cost incurred by a model user.
In this task, the user can either accept a model prediction and incur a misclassification cost if the
prediction is wrong, or reject (abstain from) the prediction and incur an abstention cost (which is
independent of whether the model prediction would have been correct). This decision is made based
on the model’s confidence. The total cost therefore depends on both the accuracy and the calibration
of the model. A concrete example is a medical diagnosis task in which we can choose to use the
model’s diagnosis as-is, or refer the case to a human for review. Figure 12 shows cost planes for eight
model pairs.

First, we compare models from the same family (Figure 12, a–e). In the blue regions, the relative
cost for the model with higher accuracy (always the larger model) is lower (better); in red regions, the
relative cost of the model with lower accuracy (always the smaller model) is lower (better). For most
models and for most practical cost settings, the higher accuracy model is preferred over the better
calibrated model. In the ViT family, for example, the bigger model has 0.076 lower classification
error (0.194 vs. 0.118) and 0.007 higher ECE (0.017 vs. 0.01). For these models, the cost analysis
shows that the difference in classification error outweighs the difference in ECE across all tested
misclassification costs and abstention rates.

Next, we compare models pretrained for a different number of steps (same models as used in
Figure 10) and provide the results in Figure 12, f–g. Again, the models with lower classification error
(e.g. for R101x3, 0.176 vs 0.232 in favor of the longer-trained model) reach a lower total cost than
the models with lower ECE (e.g. for R101x3, 0.019 vs 0.028 in favor of the shorter-trained model).
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Figure 12: Relative impact of accuracy and calibration in a selective prediction scenario. Each
heatmap compares two models and shows the relative cost of the better-calibrated (lower-ECE) model
with respect to the other model. Total cost is computed as a linear combination of the misclassification
cost and abstention cost at a given cost ratio (x-axis) and abstention rate (y-axis). Compared model
pairs are indicated above each column. The top row shows IMAGENET, the bottom row IMAGENET-
R. In most scenarios, the higher-accuracy model is preferred over the better-calibrated model (blue
regions). Only in a few cases and at very high abstention rates does the difference in calibration
outweigh the difference in accuracy (red regions). In other words, for practical abstention rates and
across a wide range of abstention costs, the accuracy advantage outweighs the calibration advantage.

Finally, we compare models which attain similar classification error and ECE difference (Fig-
ure 12, h). In particular, we compare ViT-B/32 and ResNeXt-WSL 32d models. The latter model has
0.03 lower (better) classification error while the ViT model has 0.03 lower (better) ECE. Again, for
most practical cost settings, the model with better accuracy has lower cost than (is preferred over) the
model with better ECE.

C Sampling Bias for `2-ECE

In Section 5, we hinted at the fact that the bias of the ECE estimator depends on the model accuracy.
Here, we expand on Equation 5 and fully derive the bias for a variant of the ECE score, when we take
the squared instead of the absolute differences in each bucket for tractability.

Lemma 1 Define the random variables A = Y ∈ arg max f(X) and C = max f(X), consider the
squared ECE metric

ECE2 =

m∑
i=1

P (X ∈ Bi)(accuracy(Bi)− confidence(Bi))
2,

where the Bi represent the m disjoint buckets. If we estimate the per-bin statistics using their sample
means, the statistical bias is equal to∑

i

1

n
V[C −A | X ∈ Bi] =

1

n

∑
i

(αi(1− αi)(1− δi) + V[C | X ∈ Bi]),

where αi is the accuracy in bucket Bi and δi is the expected difference in the confidences of the
correct and incorrect predictions.

We assume that the buckets are fixed, s.t., there are ni points in bucket Bi, and a total of n =∑
i ni points (we will take the expectation over ni). We introduce two random variables — the

model confidence by C = max f(X) and the corresponding true/false indicator by A = JY ∈
arg max f(X)K. For each realization (xj , yj) we denote by cj and aj the corresponding values. We
further define for each bucket Bi

• αi = E[A | X ∈ Bi], the accuracy in bucket Bi.
• γi = E[C | X ∈ Bi], the expected confidence in bucket Bi.
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• δi = E[C | A = 1, X ∈ Bi] − E[C | A = 0, X ∈ Bi], the confidence difference for the
correct and wrong predictions.

• c̄i =
∑
c∈Bi

c/ni , the sample average confidence in bucket Bi.

• āi =
∑
a∈Bi

a/ni , the sample average accuracy in bucket Bi.

We consider the squared ECE `2 loss, which after bucketing is equal to

S2 =
∑
i

P (X ∈ Bi)(E[C | X ∈ Bi]︸ ︷︷ ︸
γi

−E[A | X ∈ Bi]︸ ︷︷ ︸
αi

)2, and the corresponding sample estimate is

Ŝ2 =
∑
i

ni
n

(
1

ni

∑
i∈Bi

ci −
1

ni

∑
j∈Bi

aj)
2.

The goal is to understand the bias Ŝ2 − S2. Note that

E[(c̄i − āi)2 | ni] = (γi − αi)2 + V[c̄i − āi | ni] = (γi − αi)2 +
1

ni
V[C −A | X ∈ Bi].

We further have

V[C −A | X ∈ Bi] = V[C | X ∈ Bi] + V[A | X ∈ Bi]− 2Cov[C,A | X ∈ Bi].

Hence, we have that

E[Ŝ2] = E[
∑
i

ni
n

(
1

ni

∑
i∈Bi

ci −
1

ni

∑
i∈Bi

ai)
2]

= E[E[
∑
i

ni
n

(
1

ni

∑
i∈Bi

ci −
1

ni

∑
i∈Bi

ai)
2 | ni]]

= E[
∑
i

ni
n

(
(γi − αi)2 +

1

ni
V[C −A | X ∈ Bi]

)
]

=
∑
i

(γi − αi)2 E[
ni
n

]︸ ︷︷ ︸
P (X∈Bi)

+
∑
i

1

n
V[C −A | X ∈ Bi]

= S2 +
1

n
V[C −A | X ∈ Bi]︸ ︷︷ ︸

bias

.

We can decompose the covariance as follows (see this MathOverflow answer), using the fact that A is
binary:

Cov[C,A | X ∈ Gi] = V[αi]δi,

Here δi is defined as E[C | A = 1, X ∈ Bi] − E[C | A = 0, X ∈ Bi]. Now the total bias can be
written as

bias =
1

n

∑
i

αi(1− αi)(1− 2δi) + V[C | X ∈ Bi].

Note that ∂αi
bias = (1− 2αi)(1− 2δi), which is negative when αj > 1/2, if we assume we have

enough bins so that δj < 1/2. Hence, for models that have at least 50% top-1 accuracy, increasing
the accuracy reduces the bias.
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D Model Confidence

An important aspect of the calibration of a model is its average confidence, i.e. the systematic bias of
the model’s scores to be too high (overconfident) or too low (underconfident) compared to the true
accuracy. A large fraction of the miscalibration of modern neural networks is typically due to over- or
underconfidence (Guo et al., 2017). In this section, we argue that over- and underconfidence are not
just a source of miscalibration, but also a confounder that obscures the intrinsic calibration properties
of models and makes it harder to compare across model families.

Quantifying confidence. Predictions of overconfident models tend to be overly “peaky” (low
entropy), such that an increase in temperature (positive temperature factor) would be necessary to
make them optimally confident, and vice versa for underconfident models. We can therefore quantify
confidence in terms of the temperature scaling factor by which the logits of the unscaled model would
have to be multiplied to provide optimal confidence.

The optimal confidence depends on the model and the dataset. Ideally, a model would be optimally
confident across all distribution shifts, indicating that its confidence is well calibrated to the difficulty
of the data. In practice, most models are slightly overconfident in-distribution, and tend to become
more overconfident as data moves further from the training distribution (Figure 13, bottom row).

Models can show the opposite trend if they are underconfident in-distribution. As an example, we
include the EfficientNet-NoisyStudent family in Figure 13. These models tend to be underconfident
(optimal temperature factor < 1; Figure 13, bottom right). Underconfident models may paradoxically
show improved calibration under distribution shift (lower ECE for higher corruption severities),
because their underconfidence balances out the general tendency towards overconfidence on OOD
data. However, such underconfident models are not better calibrated in general—they are simply
biased towards a high level of distribution shift, and are calibrated worse at weak or no distribution
shift. A well-calibrated model should have optimal confidence both in- and out-of-distribution.

Normalizing confidence. The example of EfficientNet-NoisyStudent illustrates how confidence
bias can confound trends in model calibration. This counfounder can be removed by temperature
scaling (Guo et al., 2017), i.e. by rescaling model logits to optimize the likelihood on a held-out
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Figure 13: Related to Figure 4. Calibration and accuracy on IMAGENET-C. Here, the model
confidence is shown in the third row (top two rows are identical to Figure 4). Model confidence is
quantified in terms of the temperature scaling factor by which the logits of the unscaled model would
have to be multiplied to provide optimal confidence for a given dataset. Values above 1 mean that
the unscaled model is overconfident on the given dataset, and below 1, that the unscaled model is
underconfident.
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part of the in-distribution dataset (IMAGENET in our case). By removing differences in confidence
bias between models, temperature scaling reveals a consistent trend for higher calibration error
under distribution shift for all models, including EfficientNet-NoisyStudent (Figure 13, second
row). Temperature scaling also reveals consistent differences between model families and trends
within families for in-distribution calibration (Figures 2 and 3). We therefore study calibration
after temperature scaling, in addition to unscaled calibration error and other calibration metrics
(Appendix F), throughout this work. The benefit of temperature scaling for understanding model
calibration is separate from its well-established benefit in reducing calibration error (Guo et al., 2017).

Label smoothing. One method to directly influence the confidence of a model during training is
label smoothing (Szegedy et al., 2016). In label smoothing, uniformly distributed probability mass
is added to the training targets. This decreases the implied confidence of the targets and thus of the
model trained on these targets, which can reduce overfitting and improve accuracy.

Label smoothing has been reported to improve calibration (Müller et al., 2019). Here, we argue that
label smoothing creates artificially underconfident models and may therefore improve calibration
for a specific amount of distribution shift, but does not generally improve the intrinsic calibration
properties of a model (i.e. its overall calibration across distribution shifts and datasets).

Figure 14 shows the ECE before and after temperature scaling of models trained with different
amounts of label smoothing on IMAGENET and evaluated on IMAGENET-C. Before temperature
scaling (Figure 14, left), the best-calibrated models (lowest ECE) are those trained with label
smoothing. Depending on the amount of distribution shift (corruption severity), a different amount
of label smoothing is necessary to optimize calibration. After temperature scaling on a held-out
part of the IMAGENET validation set (Figure 14, center), it becomes clear that training without
label smoothing actually results in the lowest ECE across all IMAGENET-C severities. The optimal
temperature factor (Figure 14, right) reveals that label smoothing simply biases the model confidence,
like temperature scaling, but without targeted optimization. These data suggest that, from a calibration
perspective, models should be trained without label smoothing and then recalibrated by temperature
scaling post hoc.

Label smoothing may explain the anomaly observed for EfficientNet-NoisyStudent under distribution
shift (Figure 13, far right). In contrast to all other model families we consider, EfficientNet-NS shows
strong underconfidence before temperature scaling (Appendix D); it is also the only model family
trained with label smoothing.
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Figure 14: Effect of label smoothing on calibration. EfficientNet-B4 models were trained with the
indicated label smoothing on IMAGENET and evaluated on IMAGENET-C. Before rescaling, different
amounts of non-zero label smoothing appear to yield the best calibration, depending on distribution
shift (left). After temperature scaling, it becomes clear that training without label smoothing is best
(center). Label smoothing reduces confidence (right). ResNet architectures show similar behavior.
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E ECE Variants

As discussed in Sections 2 and 5, while ECE is a well-defined quantity, estimating it requires
binning and thus a choice of binning scheme and bin size. In addition, variants of ECE such as
root mean squared calibration error (RMSCE, Nixon et al. 2019) exist. In RMSCE, the difference
between accuracy and confidence in each bin is `2-normalized, in contrast to the `1-normalization
of standard ECE. This causes larger errors to be upweighted in RMSCE. Further ECE variants
consider all classes, instead of just the class with the highest predicted probability (top-label), or
consider classes independently and report an average of class-wise ECEs. Different ECE variants
may rank models differently (Nixon et al., 2019), which could lead to the conclusion that ECE
estimators are fundamentally inconsistent. However, we find that such inconsistencies in model
rank are resolved by considering ECE and classification error jointly (Figures 15 to 17). While
ranks between models may change across ECE variants, these models differ in classification error,
such that it is always clear which model is Pareto-optimal in terms of ECE and classification error.
For example, for IMAGENETV2 in Figure 16, the ranking of BiT models (orange squares) changes
slightly between some of the ECE variants. However, the models differ so much in classification
error that the differences in ECE between metric variants are likely irrelevant (also see Appendix B.3,
which shows that differences in classification error typically have a larger influence on decision cost
than differences in ECE).

F Alternative Calibration Metrics

To confirm that our findings are not dependent on our choice of Expected Calibration Error as our main
calibration metric, we provide results for two alternative calibration metrics: negative log-likelihood
(NLL) and Brier score (Brier, 1950). Figure 8 in the main text covers IMAGENET, IMAGENETV2,
IMAGENET-R, and IMAGENET-A. Results for IMAGENET-C are provided in Figure 18

Furthermore, we provide reliability diagrams (DeGroot & Fienberg, 1983) on IMAGENET for all
models, both before (Figure 19) and after (Figure 20) temperature scaling. These diagrams visualize
model calibration across the whole confidence range, rather than summarizing calibration into a
scalar value.

Figures for Appendix E and Appendix F are on the following pages.
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Figure 15: Related to Figure 4. Each row shows the calibration and accuracy on IMAGENET-C as
in Figure 4, bottom row (i.e. after temperature scaling), but for different ECE variants. The variant
is indicated in the title of each row. While absolute values can differ between variants, relative
relationships between models are robust to the metric variant.
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Figure 16: Related to Figure 6. Calibration and accuracy on OOD datasets as in Figure 6, bottom row
(i.e. after temperature scaling), but for different ECE variants. The variant is indicated in the title of
each set of plots. While absolute values can differ between variants, relative relationships between
models are robust to the metric variant.
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Figure 17: Further ECE variants (after temperature scaling). The top row shows the variant used in
the main paper, which considers only the maximum predicted probability (“top-label calibration”)
and pools across classes. The remaining rows show other variants as discussed in Nixon et al. (2019).
L1-normalization and adaptive binning was used in all cases (100 bins for pooled-class metrics; 15
bins for class-conditional metrics). Although the specific rankings between models depend on the
ECE variant (Nixon et al., 2019), our main conclusions hold for all variants. Specifically, the same
model families tend to be Pareto-optimal across all ECE variants. Also, the relationship between
ECE and accuracy is largely consistent across ECE variants.
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Figure 18: Alternative calibration metrics for IMAGENET-C: negative log-likelihood (NLL) and Brier
score. Plotted as in Figure 4. Second and fourth rows show residuals as described in Figure 8.
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Figure 19: Reliability diagrams on IMAGENET for all models, before temperature scaling. Red boxes
indicate the error compared to perfect calibration. The histogram at the top shows the distribution of
confidence values for the dataset.
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Figure 20: Reliability diagrams on IMAGENET for all models, after temperature scaling. Red boxes
indicate the error compared to perfect calibration. The histogram at the top shows the distribution of
confidence values for the dataset.
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