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A OVERVIEW

The supplementary materials included in this paper provide an exhaustive quantitative and qualitative
assessment of the proposed method. In Section B, we delineate the process of decomposing the
multi-objective optimization into multiple subproblems and conduct an ablation study concerning
the relevant parameters. Section C contains a detailed description of our method’s training process.
In addition, a more in-depth qualitative analysis is performed in Section D. Besides, the details of
the definition of the multi-objective evaluation metrics in Section E. Finally, we expand upon related
works in Section F.

B DECOMPOSITION METHOD

At first, to avoid the effect of the magnitudes of SSIM and L1, we normalize them separately.

ssimnorm =
ssim− ssimmin

ssimmin − ssimmax

L1norm =
L1− L1min

L1max − L1min

(1)

Noting that the closer ssimnorm and L1norm are to 0, the higher the quality of the super-resolution
image. Then, we calculate

ssimdif = ssimnorm − ssimmean

L1dif = L1norm − L1mean (2)

where ssimmean and L1mean represent the average of ssimnorm and L1norm over all populations,
respectively.

Based on this, we carried out the calculation of the decomposition ratio of the two objectives.

pssim =
eL1dif

essimdif + eL1dif

pL1 =
essimdif

essimdif + eL1dif

(3)

Thus, our score function is as follows:

score = pssim ∗ ssimnorm + pL1 ∗ L1norm (4)

However, experimental findings revealed that training the model using SSIM Loss during the parent
preparation phase resulted in parent solutions with more substantial variation in SSIM values. This,
in turn, predisposed the model towards optimizing for SSIM. As such, we incorporated parameters to
regulate its proportion.

Accordingly, the final score function assumes the following form:

score = (1− λ)pssim ∗ ssimnorm + λ ∗ ppsnr ∗ psnrnorm (5)
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To thoroughly evaluate the influence of varying λ values on the MOESR decomposition problem, we
selected the EDSR baseline as a representative model. The impact of distinct λ values on the final
image quality was assessed across five datasets: Set5, Set14, BSD100, Urban100, and Manga109.

As Table 1 indicates, a clear pattern emerges: as λ increases, the model shows a tendency towards the
optimization of PSNR values. Conversely, SSIM values demonstrate a steady rise as λ decreases. This
observed correlation aligns with our initial hypotheses and further validates the idea that the trajectory
of multi-objective optimization can be modulated through adjustments to the scoring function. This
offers the potential to more effectively guide the direction of multi-objective optimization.

Table 1: The decomposition ration influence of the performance. Average PSNR/SSIM for scale
factor x2, on benchmark datasets Set5, Set14, BSD100, Urban100, and Manga109.

λ Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.1 x2 37.67 0.9664 33.48 0.9220 31.87 0.9082 31.48 0.9325 37.96 0.9815
0.2 x2 37.72 0.9621 33.52 0.9205 37.99 0.9056 31.67 0.9309 38.04 0.9793
0.4 x2 37.83 0.9608 33.55 0.9190 32.08 0.9030 31.90 0.9290 38.22 0.9789
0.6 x2 37.99 0.9604 33.59 0.9175 32.25 0.9014 32.16 0.9272 38.35 0.9769
0.8 x2 38.13 0.9599 33.71 0.9152 32.38 0.8995 32.18 0.9248 38.54 0.9757
1.0 x2 38.31 0.9587 33.96 0.9138 33.46 0.8978 32.34 0.9231 38.96 0.9741

C ADDITIONAL IMPLEMENTATION DETAILS

Parents Preparation. Existing methods predominantly employ L1 loss for training, with a primary
focus on optimizing the PSNR. However, to accomplish multi-objective optimization, we require
solutions that yield better SSIM values. As such, we opted to utilize SSIM loss to train our model
for one epoch, selecting the results from 20 equally distributed batches as parent solutions. To
further detail our methodology, we set the learning rate to 1e-6 and the batch size to 32. All other
configuration settings are maintained as the corresponding paper.

MOESR training details. Based on the experiments in Section B, we set the decomposition weight
λ to 0.4 and the number of parent generations Popsize to 20. the number of iterations to 60, and the
Batchsize to 160. And we use SHADE as our optimization method.

D QUALITATIVE ANALYSIS

Generally speaking, training super-resolution tasks using supervised deep learning with an L1 loss
function often results in models that make images appear darker and blurrier, while an SSIM loss
function focuses more on the brightness and structural information of the images. Our experiments
have revealed that the models optimized using our multi-objective approach exhibit significantly
improved overall brightness, more in line with high-resolution reference images. Therefore, our
method provides a better visual effect while maintaining the same MSE error. Since visual effects
related to brightness are not easily discernible in small patches, we recommend comparing the visual
effects of different methods using the entire image.

E EVALUATION METRICS

For a fair evaluation of MO-based super-resolution methods, we apply the following metrics to
MOSR tasks: generational distance (GD), and hypervolume indicator (HV). S represents the set of
approximate Pareto solutions obtained by the optimization algorithm, while P denotes the set of
solutions obtained through uniform sampling on the true Pareto front.

GD(S, P ) =

∑
x∈S d(x, P )

|S|

d(x, P ) represents the Euclidean distance between solution x in S and its nearest solution in P . The
number of |S| said set S. A smaller value of GD means that the solution set S is closer to the true
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Pareto solutions.

HV (S) = VOL

(⋃
x∈S

[f1(x), r
∗
1 ]× · · · × [fm(x), r∗m]

)

Where r = (r1, . . . , rm)
T represents a predefined reference point, V OL signifies the Lebesgue

metric, and HV denotes the spatial convolution sum between the solution set S and r . A higher HV
value signifies a higher-quality solution set.

In the context of this paper, the set P is not initially available. We generate both P and r∗ using the
following approach, which enables us to compute IGD, HV, and metrics.

Initially, we normalize the current set of solutions to be evaluated using the maximum and minimum
values from the initial population. We define the point (1.1, 1.1) as our reference point and draw a
circle with its center at the origin (0,0).

For each normalized solution, we create a set of reference point sets by intersecting the circle with a
line that connects that solution point to the origin, as illustrated in Figure 1. We then de-normalize all
these points to obtain the set of reference solutions P required for GD and IGD evaluation, as well
as the reference point r∗ necessary for HV computation, as depicted in Figure 2. Consequently, the
evaluation of the current solution set depends not only on the set itself but also on the characteristics
of the initial population.

Figure 1: Normalization and generate reference
points

Figure 2: The reference point r∗ and the set of
reference points P

F ADDITIONAL RELATED WORK

Evolutionary Algorithm. EA methods have proven effective in the design and training of rein-
forcement learning models, as demonstrated in several studies Montana et al. (1989); Stanley et al.
(2019); Suganuma et al. (2017); Zhang & Li (2007). Neuro-evolution, for instance, NEAT Stanley &
Miikkulainen (2002), has been successfully deployed in creating more efficient neural architectures.
Further, certain neuro-evolution techniques, such as evolution strategy Salimans et al. (2017), have
been shown to outperform the deep Q-learning, as well as the policy gradient algorithm A3C Mnih
et al. (2016), among others, in reinforcement learning tasks. Nevertheless, these EA-based methods
have reportedly been more efficacious with smaller datasets and smaller Deep Neural Networks
(DNNs)Piotrowski (2014). When applied to optimize DNN weights in large-scale datasets, EA-based
methods often struggle with slow convergence or even failure to converge, given the overwhelming
number of model parameters and the complexity of the search space required to achieve deep repre-
sentation. Piotrowski documented the stagnation issues of several adaptive Differential Evolution
(DE) variants, including SADE, JADE, and DEGL, when optimizing network weights for regression
problemsPiotrowski (2014). To address this, Sun et al. proposed an efficient gene encoding approach
that leverages the concept of null spaces for DNNs in unsupervised learning tasks on the MNIST
and CIFAR-10 scales Sun et al. (2018). Yet, existing EA-based weight optimization methods have
demonstrated limited scalability when applied to larger datasets.
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